organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)acetone

Sammer Yousuf,^a* Khalid M. Khan,^a Frazana Naz,^a Shahanaz Perveen^b and Ghulam A. Miana^c

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ^bPCSIR Laboratories Complex Karachi, Shahrah-e-Dr Salimuzzaman Siddiqui, Karachi 75280, Pakistan, and ^cRipha Institute of Pharmaceutical Sciences, Ripha International University, 7th Avenue G-7/4 Islamabad, Pakistan Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 2 March 2013; accepted 7 March 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.122; data-to-parameter ratio = 13.4.

In the molecule of the title compound, $C_7H_9N_3O_3$, the nitro and carbonyl groups are tilted with respect to the imidazole ring by 9.16 (6) and 65.47 (7)°, respectively. Neighbouring chains are linked *via* $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds forming two-dimensional slab-like networks lying parallel to (011).

Related literature

For the antibiotic properties of metronidazole and mecnidazole, see: Lin *et al.* (2012); Almirall *et al.* (2011); Zhang *et al.* (2011). For the crystal structure of related imidazoles, see: Yousuf *et al.* (2012); Zeb *et al.* (2012).

Experimental

Crystal data $C_7H_9N_3O_3$ $M_r = 183.17$ Monoclinic, $P2_1/n$

a = 4.7548 (4) Å
b = 12.3971 (9)
c = 14.8580 (11)

$\beta = 97.350 \ (2)^{\circ}$
$V = 868.62 (12) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.944, T_{\rm max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 120 parameters $wR(F^2) = 0.122$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.19$ e Å⁻³1614 reflections $\Delta \rho_{min} = -0.15$ e Å⁻³

Table 1		
Hydrogen-bond geometry	(Å,	°).

$C2 - H2B \cdots N2^{i}$ 0.93 2.56 3.361 (2) 144 $C5 - H5B \cdots O2^{ii}$ 0.97 2.57 3.527 (2) 167 $C7 - H7B \cdots O3^{iii}$ 0.96 2.49 3.340 (2) 147	$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C2 - H2B \cdots N2^{i}$	0.93	2.56	3.361 (2)	144
	$C5 - H5B \cdots O2^{ii}$	0.97	2.57	3.527 (2)	167
	$C7 - H7B \cdots O3^{iii}$	0.96	2.49	3.340 (2)	147

 $\mu = 0.11 \text{ mm}^{-1}$ T = 273 K

 $R_{\rm int} = 0.019$

 $0.52 \times 0.33 \times 0.24$ mm

5030 measured reflections

1614 independent reflections

1328 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x - 1, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors gratefully acknowledge the Pakistan Academy of Sciences for funding project No. 5-9/PAS/8418 entitled 'Biology-oriented Parallel Synthesis on Nitroimidazoles in Search of Better Therapeutic Agents'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5048).

References

- Almirall, P., Escobedo, A. A., Ayala, I., Alfonso, M., Salazar, Y., Cañete, R., Cimerman, S., Galloso, M., Olivero, I., Robaina, M. & Tornés, K. (2011). J. Parasitol. Res., Article ID 636857, doi:10.1155/2011/636857.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lin, Y., Su, Y., Liao, X., Yang, N., Yang, X. & Choi, M. M. F. (2012). *Talanta*, **88**, 646–652.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yousuf, S., Zeb, A., Batool, F. & Basha, F. Z. (2012). Acta Cryst. E68, o2781.
- Zeb, A., Yousuf, S. & Basha, F. Z. (2012). Acta Cryst. E68, 01218.
- Zhang, H.-J., Zhu, D.-D., Li, Z.-L., Sun, J. & Zhu, H. L. (2011). Bioorg. Med. Chem. 19, 4513–4519.

supplementary materials

Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569]

1-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)acetone

Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana

Comment

Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall *et al.*, 2011) and protozoal infections (Lin *et al.*, 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang *et al.*, 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug.

The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5nitro-1*H*-imidazol-1-yl)-ethyl methanesulfonate (Zeb *et al.*, 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone (O3/C5—C7) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf *et al.*, 2012). In the crystal, molecules are linked by C2— H2B···N2, C5—H5B···O2 and C7—H7B···O3 intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2).

Experimental

Periodic acid (2.8 mmol, 0.64 g), pyridinium chlorochromate (PCC, 4 mol%) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole (2.7 mmol, 0.50 g) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water (1:1 ν/ν), saturated aqueous Na₂SO₃ solution, dried (Na₂SO₄) and filtered. The filtrate was evaporated *in vacuum* to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound (0.32 g, 64% yield) found suitable for single-crystal X-ray diffraction analysis.

Refinement

H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2

The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

Crystal data

C₇H₉N₃O₃ $M_r = 183.17$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.7548 (4) Å b = 12.3971 (9) Å c = 14.8580 (11) Å $\beta = 97.350$ (2)° V = 868.62 (12) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.944, T_{\max} = 0.974$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.06	H-atom parameters constrained
1614 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.2124P]$
120 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 384

 $\theta = 2.8 - 26.7^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless

 $0.52 \times 0.33 \times 0.24 \text{ mm}$

5030 measured reflections 1614 independent reflections

 $\theta_{\max} = 25.5^{\circ}, \ \theta_{\min} = 2.2^{\circ}$ $h = -5 \rightarrow 5$

1328 reflections with $I > 2\sigma(I)$

T = 273 K

 $R_{\rm int} = 0.019$

 $k = -14 \rightarrow 15$

 $l = -14 \rightarrow 17$

 $D_{\rm x} = 1.401 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1790 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.1621 (4)	0.29596 (12)	0.33611 (13)	0.0887 (5)
O2	0.1562 (3)	0.37418 (11)	0.26792 (12)	0.0791 (5)
03	-0.2465 (3)	0.53369 (11)	0.15962 (9)	0.0622 (4)
N1	-0.0008 (3)	0.57463 (11)	0.33181 (9)	0.0424 (4)
N2	-0.2805 (3)	0.59824 (13)	0.43940 (10)	0.0574 (4)

N3	-0.0337 (3)	0.37691 (12)	0.31638 (12)	0.0589 (4)	
C1	-0.1098 (3)	0.47575 (13)	0.35252 (12)	0.0464 (4)	
C2	-0.2784 (4)	0.49243 (16)	0.41793 (12)	0.0554 (5)	
H2B	-0.3781	0.4389	0.4442	0.067*	
C3	-0.1137 (4)	0.64611 (14)	0.38648 (11)	0.0485 (4)	
C4	-0.0467 (5)	0.76284 (16)	0.38973 (15)	0.0728 (6)	
H4A	-0.1214	0.7951	0.4404	0.109*	
H4B	-0.1305	0.7965	0.3346	0.109*	
H4C	0.1552	0.7725	0.3963	0.109*	
C5	0.1509 (3)	0.60187 (13)	0.25566 (11)	0.0444 (4)	
H5A	0.3240	0.5598	0.2597	0.053*	
H5B	0.2034	0.6775	0.2595	0.053*	
C6	-0.0235 (3)	0.58087 (13)	0.16507 (12)	0.0451 (4)	
C7	0.1011 (4)	0.62131 (17)	0.08469 (13)	0.0653 (5)	
H7A	-0.0270	0.6069	0.0307	0.098*	
H7B	0.2783	0.5855	0.0810	0.098*	
H7C	0.1326	0.6976	0.0905	0.098*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1009 (12)	0.0431 (8)	0.1246 (15)	-0.0117 (8)	0.0248 (10)	0.0121 (8)
O2	0.0790 (10)	0.0538 (9)	0.1115 (13)	0.0122 (7)	0.0387 (9)	-0.0036 (8)
03	0.0539 (8)	0.0678 (9)	0.0641 (9)	-0.0109 (6)	0.0049 (6)	-0.0016 (6)
N1	0.0423 (7)	0.0430 (8)	0.0437 (8)	-0.0021 (6)	0.0123 (6)	0.0018 (6)
N2	0.0622 (9)	0.0651 (10)	0.0487 (9)	-0.0007 (7)	0.0216 (7)	0.0031 (7)
N3	0.0590 (9)	0.0430 (9)	0.0751 (11)	0.0029 (7)	0.0098 (8)	0.0065 (7)
C1	0.0465 (9)	0.0426 (9)	0.0509 (10)	-0.0010 (7)	0.0098 (7)	0.0075 (7)
C2	0.0541 (10)	0.0610 (12)	0.0530 (11)	-0.0045 (9)	0.0138 (8)	0.0145 (9)
C3	0.0529 (9)	0.0508 (10)	0.0432 (9)	-0.0007 (8)	0.0112 (8)	-0.0011 (7)
C4	0.0993 (16)	0.0555 (12)	0.0684 (14)	-0.0068 (11)	0.0296 (12)	-0.0125 (10)
C5	0.0436 (8)	0.0444 (9)	0.0479 (9)	-0.0045 (7)	0.0159 (7)	0.0003 (7)
C6	0.0457 (9)	0.0395 (9)	0.0518 (10)	0.0047 (7)	0.0124 (7)	-0.0012 (7)
C7	0.0693 (12)	0.0784 (14)	0.0502 (11)	-0.0027 (10)	0.0151 (9)	0.0038 (10)

Geometric parameters (Å, °)

01—N3	1.230 (2)	C3—C4	1.481 (3)
O2—N3	1.225 (2)	C4—H4A	0.9600
O3—C6	1.205 (2)	C4—H4B	0.9600
N1—C3	1.358 (2)	C4—H4C	0.9600
N1C1	1.381 (2)	C5—C6	1.510 (2)
N1—C5	1.457 (2)	C5—H5A	0.9700
N2—C3	1.326 (2)	C5—H5B	0.9700
N2—C2	1.350 (3)	C6—C7	1.486 (3)
N3—C1	1.404 (2)	С7—Н7А	0.9600
C1—C2	1.352 (2)	С7—Н7В	0.9600
C2—H2B	0.9300	С7—Н7С	0.9600
C3—N1—C1	104.93 (14)	C3—C4—H4C	109.5

C3—N1—C5	125.87 (14)	H4A—C4—H4C	109.5
C1—N1—C5	128.02 (14)	H4B—C4—H4C	109.5
C3—N2—C2	105.74 (15)	N1—C5—C6	112.47 (13)
02—N3—O1	122.92 (17)	N1—C5—H5A	109.1
O2—N3—C1	119.63 (15)	C6—C5—H5A	109.1
01—N3—C1	117.45 (17)	N1—C5—H5B	109.1
C2C1N1	107.35 (15)	C6—C5—H5B	109.1
C2-C1-N3	127.87 (16)	H5A—C5—H5B	107.8
N1-C1-N3	124.56 (15)	O3—C6—C7	123.21 (16)
N2—C2—C1	109.97 (15)	O3—C6—C5	121.44 (15)
N2—C2—H2B	125.0	C7—C6—C5	115.35 (14)
C1—C2—H2B	125.0	С6—С7—Н7А	109.5
N2—C3—N1	112.01 (16)	С6—С7—Н7В	109.5
N2—C3—C4	124.07 (16)	H7A—C7—H7B	109.5
N1—C3—C4	123.86 (16)	С6—С7—Н7С	109.5
C3—C4—H4A	109.5	H7A—C7—H7C	109.5
C3—C4—H4B	109.5	H7B—C7—H7C	109.5
Н4А—С4—Н4В	109.5		
C3—N1—C1—C2	-0.39 (18)	C2—N2—C3—N1	-0.6 (2)
C5—N1—C1—C2	-168.41 (15)	C2—N2—C3—C4	-177.73 (19)
C3—N1—C1—N3	-175.31 (16)	C1—N1—C3—N2	0.60 (18)
C5—N1—C1—N3	16.7 (3)	C5—N1—C3—N2	168.96 (14)
O2—N3—C1—C2	-168.38 (18)	C1—N1—C3—C4	177.77 (18)
01—N3—C1—C2	11.0 (3)	C5—N1—C3—C4	-13.9 (3)
O2—N3—C1—N1	5.5 (3)	C3—N1—C5—C6	-106.10 (18)
O1—N3—C1—N1	-175.14 (16)	C1—N1—C5—C6	59.6 (2)
C3—N2—C2—C1	0.3 (2)	N1—C5—C6—O3	-9.0 (2)
N1-C1-C2-N2	0.1 (2)	N1—C5—C6—C7	171.59 (15)
N3-C1-C2-N2	174.76 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C2—H2 <i>B</i> ···N2 ⁱ	0.93	2.56	3.361 (2)	144
C5—H5 <i>B</i> ···O2 ⁱⁱ	0.97	2.57	3.527 (2)	167
C7—H7 <i>B</i> ···O3 ⁱⁱⁱ	0.96	2.49	3.340 (2)	147

Symmetry codes: (i) -*x*-1, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*+1, *y*, *z*.

supporting information

Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569]

1-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)acetone

Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana

S1. Comment

Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall *et al.*, 2011) and protozoal infections (Lin *et al.*, 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang *et al.*, 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug.

The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5nitro-1*H*-imidazol-1-yl)-ethyl methanesulfonate (Zeb *et al.*, 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone (O3/C5—C7) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf *et al.*, 2012). In the crystal, molecules are linked by C2— H2B···N2, C5—H5B···O2 and C7—H7B···O3 intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2).

S2. Experimental

Periodic acid (2.8 mmol, 0.64 g), pyridinium chlorochromate (PCC, 4 mol%) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole (2.7 mmol, 0.50 g) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water (1:1 ν/ν), saturated aqueous Na₂SO₃ solution, dried (Na₂SO₄) and filtered. The filtrate was evaporated *in vacuum* to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound (0.32 g, 64% yield) found suitable for single-crystal X-ray diffraction analysis.

S3. Refinement

H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating group model was applied to the methyl group.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2

The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

Crystal data

C₇H₉N₃O₃ $M_r = 183.17$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.7548 (4) Å b = 12.3971 (9) Å c = 14.8580 (11) Å $\beta = 97.350$ (2)° V = 868.62 (12) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector	5030 measured reflections
diffractometer	1614 independent reflections
Radiation source: fine-focus sealed tube	1328 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
ωscan	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(SADABS; Bruker, 2000)	$k = -14 \rightarrow 15$
$T_{\min} = 0.944, \ T_{\max} = 0.974$	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.06	H-atom parameters constrained
1614 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.2124P]$
120 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 384

 $\theta = 2.8 - 26.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless

 $0.52 \times 0.33 \times 0.24 \text{ mm}$

T = 273 K

 $D_{\rm x} = 1.401 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1790 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$U_{ m eq}$
7 (5)
1 (5)
2 (4)
4 (4)
124

N2	-0.2805 (3)	0.59824 (13)	0.43940 (10)	0.0574 (4)	
N3	-0.0337 (3)	0.37691 (12)	0.31638 (12)	0.0589 (4)	
C1	-0.1098 (3)	0.47575 (13)	0.35252 (12)	0.0464 (4)	
C2	-0.2784 (4)	0.49243 (16)	0.41793 (12)	0.0554 (5)	
H2B	-0.3781	0.4389	0.4442	0.067*	
C3	-0.1137 (4)	0.64611 (14)	0.38648 (11)	0.0485 (4)	
C4	-0.0467 (5)	0.76284 (16)	0.38973 (15)	0.0728 (6)	
H4A	-0.1214	0.7951	0.4404	0.109*	
H4B	-0.1305	0.7965	0.3346	0.109*	
H4C	0.1552	0.7725	0.3963	0.109*	
C5	0.1509 (3)	0.60187 (13)	0.25566 (11)	0.0444 (4)	
H5A	0.3240	0.5598	0.2597	0.053*	
H5B	0.2034	0.6775	0.2595	0.053*	
C6	-0.0235 (3)	0.58087 (13)	0.16507 (12)	0.0451 (4)	
C7	0.1011 (4)	0.62131 (17)	0.08469 (13)	0.0653 (5)	
H7A	-0.0270	0.6069	0.0307	0.098*	
H7B	0.2783	0.5855	0.0810	0.098*	
H7C	0.1326	0.6976	0.0905	0.098*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1009 (12)	0.0431 (8)	0.1246 (15)	-0.0117 (8)	0.0248 (10)	0.0121 (8)
O2	0.0790 (10)	0.0538 (9)	0.1115 (13)	0.0122 (7)	0.0387 (9)	-0.0036 (8)
03	0.0539 (8)	0.0678 (9)	0.0641 (9)	-0.0109 (6)	0.0049 (6)	-0.0016 (6)
N1	0.0423 (7)	0.0430 (8)	0.0437 (8)	-0.0021 (6)	0.0123 (6)	0.0018 (6)
N2	0.0622 (9)	0.0651 (10)	0.0487 (9)	-0.0007 (7)	0.0216 (7)	0.0031 (7)
N3	0.0590 (9)	0.0430 (9)	0.0751 (11)	0.0029 (7)	0.0098 (8)	0.0065 (7)
C1	0.0465 (9)	0.0426 (9)	0.0509 (10)	-0.0010 (7)	0.0098 (7)	0.0075 (7)
C2	0.0541 (10)	0.0610 (12)	0.0530 (11)	-0.0045 (9)	0.0138 (8)	0.0145 (9)
C3	0.0529 (9)	0.0508 (10)	0.0432 (9)	-0.0007 (8)	0.0112 (8)	-0.0011 (7)
C4	0.0993 (16)	0.0555 (12)	0.0684 (14)	-0.0068 (11)	0.0296 (12)	-0.0125 (10)
C5	0.0436 (8)	0.0444 (9)	0.0479 (9)	-0.0045 (7)	0.0159 (7)	0.0003 (7)
C6	0.0457 (9)	0.0395 (9)	0.0518 (10)	0.0047 (7)	0.0124 (7)	-0.0012 (7)
C7	0.0693 (12)	0.0784 (14)	0.0502 (11)	-0.0027 (10)	0.0151 (9)	0.0038 (10)

Geometric parameters (Å, °)

01—N3	1.230 (2)	C3—C4	1.481 (3)
O2—N3	1.225 (2)	C4—H4A	0.9600
O3—C6	1.205 (2)	C4—H4B	0.9600
N1—C3	1.358 (2)	C4—H4C	0.9600
N1—C1	1.381 (2)	C5—C6	1.510 (2)
N1—C5	1.457 (2)	C5—H5A	0.9700
N2—C3	1.326 (2)	C5—H5B	0.9700
N2—C2	1.350 (3)	C6—C7	1.486 (3)
N3—C1	1.404 (2)	C7—H7A	0.9600
C1—C2	1.352 (2)	С7—Н7В	0.9600

supporting information

C2—H2B	0.9300	С7—Н7С	0.9600
C3—N1—C1	104.93 (14)	C3—C4—H4C	109.5
C3—N1—C5	125.87 (14)	H4A—C4—H4C	109.5
C1—N1—C5	128.02 (14)	H4B—C4—H4C	109.5
C3—N2—C2	105.74 (15)	N1—C5—C6	112.47 (13)
O2—N3—O1	122.92 (17)	N1—C5—H5A	109.1
O2—N3—C1	119.63 (15)	С6—С5—Н5А	109.1
O1—N3—C1	117.45 (17)	N1—C5—H5B	109.1
C2-C1-N1	107.35 (15)	С6—С5—Н5В	109.1
C2—C1—N3	127.87 (16)	H5A—C5—H5B	107.8
N1—C1—N3	124.56 (15)	O3—C6—C7	123.21 (16)
N2—C2—C1	109.97 (15)	O3—C6—C5	121.44 (15)
N2—C2—H2B	125.0	C7—C6—C5	115.35 (14)
C1—C2—H2B	125.0	С6—С7—Н7А	109.5
N2—C3—N1	112.01 (16)	С6—С7—Н7В	109.5
N2—C3—C4	124.07 (16)	H7A—C7—H7B	109.5
N1—C3—C4	123.86 (16)	С6—С7—Н7С	109.5
C3—C4—H4A	109.5	H7A—C7—H7C	109.5
C3—C4—H4B	109.5	H7B—C7—H7C	109.5
H4A—C4—H4B	109.5		
C3—N1—C1—C2	-0.39 (18)	C2—N2—C3—N1	-0.6 (2)
C5—N1—C1—C2	-168.41 (15)	C2—N2—C3—C4	-177.73 (19)
C3—N1—C1—N3	-175.31 (16)	C1—N1—C3—N2	0.60 (18)
C5—N1—C1—N3	16.7 (3)	C5—N1—C3—N2	168.96 (14)
O2—N3—C1—C2	-168.38 (18)	C1—N1—C3—C4	177.77 (18)
O1—N3—C1—C2	11.0 (3)	C5—N1—C3—C4	-13.9 (3)
O2—N3—C1—N1	5.5 (3)	C3—N1—C5—C6	-106.10 (18)
O1—N3—C1—N1	-175.14 (16)	C1—N1—C5—C6	59.6 (2)
C3—N2—C2—C1	0.3 (2)	N1—C5—C6—O3	-9.0 (2)
N1—C1—C2—N2	0.1 (2)	N1—C5—C6—C7	171.59 (15)
N3—C1—C2—N2	174.76 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$\overline{\text{C2-H2}B^{\dots}\text{N2}^{\text{i}}}$	0.93	2.56	3.361 (2)	144
C5—H5 <i>B</i> ····O2 ⁱⁱ	0.97	2.57	3.527 (2)	167
C7—H7 <i>B</i> ···O3 ⁱⁱⁱ	0.96	2.49	3.340 (2)	147

Symmetry codes: (i) -*x*-1, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*+1, *y*, *z*.