

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(6'*R**,7'*R**)-7'-(1,3,-Diphenyl-1*H*-pyrazol-4-yl)-1,2,5',6',7',7a',3",4"-octahydro-1'*H*,2"*H*-dispiro[acenaphthylene-1,5'pyrrolo[1,2-c][1,3]thiazole-6',3"-[1]benzopyran]-2,4"-dione

J. Murugan,^a J. Haribabu,^b B. S. R. Reddy,^b G. Rajarajan^c and S. Murugavel^d*

^aDepartment of Physics, Sree Krishna College of Engineering, Anicut, Vellore 632 001, India, ^bIndustrial Chemistry Labratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, ^cDepartment of Physics, Mahendra Engineering College, Namakkal 637 503, India, and ^dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India Correspondence e-mail: smurugavel27@gmail.com

Received 27 February 2013; accepted 28 February 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.154; data-to-parameter ratio = 22.7.

In the title compound, C₄₀H₂₉N₃O₃S, the pyran ring adopts a sofa conformation, the thiazolidine ring adopts a twisted conformation and the pyrrolidine ring adopts an envelope conformation with the N atom as the flap. The pyrazole ring is essentially planar [maximum deviation = 0.002(2) Å] and forms dihedral angles of 4.8 (1) and 39.0 (1) $^{\circ}$, respectively, with the benzene rings attached to the N and C atoms. The acenapthylene ring system is approximately planar [maximum deviation = 0.058(2) Å] and forms dihedral angles of 85.9(1) and $48.5 (1)^{\circ}$, respectively, with the pyrollothiazole and chromene ring systems. The molecular conformation is stabilized by three weak intramolecular C-H···O hydrogen bonds, which generate one S(8) and two S(6) ring motifs. In the crystal, pairs of C-H···O hydrogen bonds link centrosymmetrically related molecules into dimers, generating $R_2^2(14)$ ring motifs. The crystal packing also features pairs of $C-H\cdots\pi$ interactions, which link the dimers into a supramolecular chain along the b axis.

Related literature

For the biological properties of spiroheterocycles, see: Kilonda *et al.* (1995); Ferguson *et al.* (2005). For ring puckering parameters, see: Cremer & Pople (1975), and for asymmetry parameters, see: Duax *et al.* (1976). For related structures, see: Wei *et al.* (2012); Jagadeesan *et al.* (2013). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

 $\gamma = 98.518 \ (3)^{\circ}$ V = 1537.79 (16) Å³

Mo $K\alpha$ radiation

 $0.23 \times 0.21 \times 0.16 \text{ mm}$

36242 measured reflections

9612 independent reflections

6569 reflections with $I > 2\sigma(I)$

 $\mu = 0.15 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.029$

Z = 2

Experimental

Crystal data $C_{40}H_{29}N_3O_3S$ $M_r = 631.72$ Triclinic, PI a = 9.9924 (6) Å b = 13.2317 (8) Å

b = 13.2317 (8) Åc = 13.2867 (8) Å $\alpha = 116.900 (3)^{\circ}$ $\beta = 92.325 (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.966, T_{\rm max} = 0.976$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & \mbox{424 parameters} \\ wR(F^2) = 0.154 & \mbox{H-atom parameters constrained} \\ S = 1.03 & \mbox{$\Delta\rho_{\rm max} = 0.35$ e \AA^{-3}} \\ 9612 \mbox{ reflections} & \mbox{$\Delta\rho_{\rm min} = -0.23$ e \AA^{-3}} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C23-C28 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
С7−Н7…О3	0.93	2.47	3.207 (2)	136
C29-H29A···O3	0.97	2.45	3.074 (2)	122
C17-H17···O3	0.98	2.52	3.091 (2)	117
C38−H38···O1 ⁱ	0.93	2.40	3.226 (2)	148
$C1-H1\cdots Cg^{ii}$	0.93	2.94	3.713 (3)	142

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

organic compounds

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5201).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). *Topics in Stereochemistry*, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). *Nature*, 437, 209–214. Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy,
- B. S. R. (2013). Acta Cryst. E69, 0317. Kilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820–5824.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, 01265–01266.

supporting information

Acta Cryst. (2013). E69, o493-o494 [doi:10.1107/S1600536813005825]

(6'*R**,7'*R**)-7'-(1,3,-Diphenyl-1*H*-pyrazol-4-yl)-1,2,5',6',7',7a',3'',4''-octahydro-1'*H*,2''*H*-dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''-[1]benzopyran]-2,4''-dione

J. Murugan, J. Haribabu, B. S. R. Reddy, G. Rajarajan and S. Murugavel

S1. Comment

The design and synthesis of glycospiroheterocycles attracts interest because of the synthetic challenges they present and their biological profile against viruses, bacteria and cancer cells (Ferguson *et al.*, 2005). Pyrrolidines, pyrroles and chromenes are common structural motifs in drugs and drug candidates owing to their ability to act as selective glycosidase inhibitors, which are used in the treatment of diabetes, cancer, malaria and viral infections, including AIDS (Kilonda *et al.*, 1995). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The pyran ring (O2/C21/C22/C23/C28/C29) adopts a sofa conformation with puckering parameters (Cremer & Pople, 1975), $Q_T = 0.499$ (2) Å, $\theta = 127.1$ (2)°, $\varphi = 102.3$ (2)°. The thiazolidine (S1,N3,C17–C19) ring adopts a twist conformation, with twist about the C17—N3 bond; the puckering parameters $q_2 = 0.473$ (2) Å and $\varphi_2 = 267.1$ (2)°, and asymmetry parameter (Duax *et al.*, 1976) ΔC_2 [C17—N3] = 2.0 (1) Å. The pyrrolidine (N3/C16/C17/C20/C21) ring adopts an envelope conformation with the N3 (displacement = 0.273 (1) Å) atom as the flap atom and with puckering parameters $q_2 = 0.4062$ (2) Å and $\varphi_2 = 357.2$ (2)°. The pyrazole ring (N1/N2/C7–C9) is essentially planar [maximum deviation = 0.002 (2) Å for atom C8] and the N- and C-bound benzene rings are inclined to this plane [dihedral angles = 4.8 (1) and 39.0 (1)°, respectively] and form a dihedral angle of 34.6 (1)° with each other. The acenapthalene ring system is approximately planar [maximum deviation = -0.058 (2) Å for atom C37] and forms dihedral angles of 85.9 (1)° and 48.5 (1)°, respectively, with the pyrollothiazole and chromene ring systems. The geometric parameters of the title molecule agrees well with those reported for similar structures (Wei *et al.*, 2012; Jagadeesan *et al.*, 2013).

The molecular structure is stabilized by a C7—H7···O3 intramolecular hydrogen bond, forming S(8) ring motif as well as intramolecular C29—H29A···O3 and C17—H17···O3 hydrogen bonds, both forming S(6) ring motifs (Bernstein *et al.*, 1995) (Table 1). In the crystal packing (Fig. 2), the centrosymmetrically related molecules are linked by C38—H38···O1 hydrogen bonds into cyclic centrosymmetric $R_2^2(14)$ dimers. The crystal packing (Fig. 3) is further stabilized by C— H··· π (arene) hydrogen bonds, in which atom C1 acts as a hydrogen bond donor *via* H1, to the C23–C28 benzene ring of a neighbouring molecule (symmetry operation: 1-*x*, -*y*, 1-*z*), thereby generating a cyclic centrosymmetric dimer (Table 1).

S2. Experimental

A mixture of Acenaphthoquinone (1.0 mmol), thioproline (1.1 mmol) and (E)-2,3-dihydro-3-((1,3-diphenyl-1Hpyrazol-4-yl) methylene)chromen-4-one (1.0 mmol) in ethanol was refluxed for 4h and cooled to room temperature. The solid formed in the reaction mixture was poured into water and filtered, dried, and recrystallized from ethanol to obtain the title compound in good yield (84-91%).

S3. Refinement

All the H atoms were positioned geometrically with C–H = 0.93–0.98 Å and constrained to ride on their parent atom, with $U_{iso}(H) = 1.5U_{eq}$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for the sake of clarity.

Figure 2

Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating an $R_2^2(14)$ centrosymmetric dimer [Symmetry code: (i) 1-*x*, 1-*y*, 1-*z*].

Figure 3

Part of the crystal structure of (I), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Cg denotes centroid of the C23–C28 benzene ring. [Symmetry code: (ii) 1-x, -y, 1-z].

(6'*R**,7'*R**)-7'-(1,3,-Diphenyl-1*H*-pyrazol-4-yl)-1,2,5',6',7',7a',3'',4''-octahydro-1'*H*,2''*H*-dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''-[1]benzopyran]-2,4''-dione

Crystal data	
$C_{40}H_{29}N_{3}O_{3}S$ $M_{r} = 631.72$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 9.9924 (6) Å b = 13.2317 (8) Å c = 13.2867 (8) Å a = 116.900 (3)° $\beta = 92.325$ (2)° $\gamma = 98.518$ (3)° V = 1537.79 (16) Å ³	Z = 2 F(000) = 660 $D_x = 1.364 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9836 reflections $\theta = 1.8-31.0^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.23 \times 0.21 \times 0.16 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.966$, $T_{max} = 0.976$ 36242 measured reflections 9612 independent reflections 6569 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$

$\theta_{\rm max} = 31.0^{\circ}, \theta_{\rm min} = 1.8^{\circ}$	$k = -18 \rightarrow 19$
$h = -14 \rightarrow 14$	$l = -19 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.154$	neighbouring sites
S = 1.03	H-atom parameters constrained
9612 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0749P)^2 + 0.3833P]$
424 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7455 (3)	-0.28167 (19)	0.25650 (18)	0.0819 (8)	
H1	0.7796	-0.2454	0.3331	0.098*	
C2	0.7608 (4)	-0.3935 (2)	0.1866 (2)	0.1099 (13)	
H2	0.8045	-0.4326	0.2171	0.132*	
C3	0.7129 (3)	-0.44716 (19)	0.07414 (19)	0.0747 (7)	
H3	0.7228	-0.5228	0.0282	0.090*	
C4	0.6509 (2)	-0.38972 (17)	0.02968 (17)	0.0604 (5)	
H4	0.6194	-0.4254	-0.0475	0.073*	
C5	0.6343 (2)	-0.27878 (16)	0.09814 (16)	0.0555 (5)	
H5	0.5917	-0.2397	0.0669	0.067*	
C6	0.67997 (16)	-0.22511 (13)	0.21208 (13)	0.0384 (3)	
C7	0.61357 (16)	-0.03814 (13)	0.25043 (13)	0.0381 (3)	
H7	0.5798	-0.0559	0.1769	0.046*	
C8	0.62107 (14)	0.06520 (12)	0.34519 (12)	0.0333 (3)	
C9	0.67850 (15)	0.04757 (12)	0.43425 (13)	0.0344 (3)	
C10	0.71557 (16)	0.12760 (13)	0.55610 (13)	0.0375 (3)	
C11	0.63355 (19)	0.20395 (16)	0.61809 (15)	0.0480 (4)	
H11	0.5529	0.2062	0.5823	0.058*	
C12	0.6707 (3)	0.27680 (19)	0.73271 (18)	0.0653 (6)	
H12	0.6154	0.3283	0.7736	0.078*	
C13	0.7883 (3)	0.2736 (2)	0.78628 (18)	0.0743 (7)	
H13	0.8125	0.3224	0.8636	0.089*	
C14	0.8713 (2)	0.1981 (2)	0.72601 (18)	0.0662 (6)	

H14	0.9517	0.1964	0.7625	0.079*
C15	0.83462 (19)	0.12508 (16)	0.61162 (15)	0.0484 (4)
H15	0.8902	0.0737	0.5713	0.058*
C16	0.59016 (14)	0.17413 (12)	0.34794 (12)	0.0313 (3)
H16	0.6368	0.2390	0.4192	0.038*
C17	0.64407 (14)	0.19223 (12)	0.24940 (12)	0.0318 (3)
H17	0.6380	0.1176	0.1819	0.038*
C18	0.78268 (15)	0.26687 (14)	0.26813 (15)	0.0417 (3)
H18A	0.8548	0.2226	0.2576	0.050*
H18B	0.7996	0.3319	0.3439	0.050*
C19	0.58590 (16)	0.27596 (14)	0.13448 (14)	0.0397 (3)
H19A	0.5457	0.3379	0.1335	0.048*
H19B	0.5561	0.2066	0.0630	0.048*
C20	0.3201 0.41210(13)	0.20580 (11)	0.23217(11)	0.0293(3)
C21	0.43588(13)	0.18533 (11)	0.33985(11)	0.0293(3)
C22	0.43000(15) 0.41078(15)	0.10555(11) 0.29222(12)	0.33903(11) 0.44361(12)	0.0232(3)
C22	0.41078(15) 0.26783(15)	0.29222(12) 0.29257(13)	0.44501(12) 0.46627(13)	0.0350(3)
C23	0.20785(13) 0.22855(18)	0.29237(13) 0.30207(16)	0.40027(13) 0.54484(15)	0.0309(3)
U24	0.22833 (18)	0.39297 (10)	0.54464 (15)	0.0408 (4)
H24 C25	0.2941	0.4391	0.3607	0.050°
C23	0.0938 (2)	0.39313 (19)	0.30108 (17)	0.0332 (3)
H23	0.00/9	0.4020	0.0150	0.060°
C26	-0.00309 (19)	0.29610 (19)	0.4994/(18)	0.0568 (5)
H26	-0.0941	0.2974	0.5111	0.068*
C27	0.03255 (17)	0.1962/(17)	0.42169 (17)	0.0497 (4)
H27	-0.0336	0.1302	0.3811	0.060*
C28	0.16822 (16)	0.19455 (14)	0.40403 (13)	0.0379 (3)
C29	0.33824 (15)	0.08335 (13)	0.33603 (13)	0.0359 (3)
H29A	0.3530	0.0127	0.2729	0.043*
H29B	0.3570	0.0782	0.4056	0.043*
C30	0.35466 (15)	0.08938 (12)	0.12151 (12)	0.0337 (3)
C31	0.23951 (15)	0.10870 (13)	0.06378 (12)	0.0359 (3)
C32	0.15924 (17)	0.04013 (16)	-0.03783 (14)	0.0480 (4)
H32	0.1705	-0.0352	-0.0832	0.058*
C33	0.05936 (18)	0.0870 (2)	-0.07148 (16)	0.0577 (5)
H33	0.0040	0.0415	-0.1402	0.069*
C34	0.04146 (18)	0.19750 (19)	-0.00610 (16)	0.0544 (5)
H34	-0.0259	0.2252	-0.0313	0.065*
C35	0.12287 (15)	0.27082 (16)	0.09887 (14)	0.0420 (3)
C36	0.22067 (14)	0.22160 (13)	0.13097 (12)	0.0333 (3)
C37	0.31473 (14)	0.28286 (12)	0.22961 (12)	0.0312 (3)
C38	0.31458 (16)	0.39697 (13)	0.29630 (14)	0.0383 (3)
H38	0.3788	0.4407	0.3600	0.046*
C39	0.21453 (18)	0.44768 (15)	0.26665 (16)	0.0457 (4)
H39	0.2123	0.5249	0.3135	0.055*
C40	0.12157 (17)	0.38762 (17)	0.17216 (16)	0.0486 (4)
H40	0.0571	0.4239	0.1560	0.058*
N1	0.66387 (13)	-0.11021 (11)	0.28216 (11)	0.0369 (3)
N2	0.70462 (14)	-0.05886 (11)	0.39516 (11)	0.0390 (3)

supporting information

N3	0.55049 (11)	0.25684 (10)	0.22935 (10)	0.0310 (2)
01	0.50184 (12)	0.37240 (10)	0.50186 (11)	0.0498 (3)
O2	0.19856 (11)	0.09458 (9)	0.32322 (10)	0.0406 (2)
O3	0.40291 (12)	0.00307 (9)	0.09023 (10)	0.0457 (3)
S 1	0.77092 (4)	0.31491 (4)	0.16018 (4)	0.04985 (13)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.152 (2)	0.0546 (12)	0.0414 (10)	0.0537 (14)	-0.0089 (12)	0.0153 (9)
C2	0.211 (4)	0.0627 (15)	0.0592 (14)	0.080(2)	-0.0104 (18)	0.0172 (12)
C3	0.126 (2)	0.0436 (11)	0.0538 (12)	0.0389 (13)	0.0121 (13)	0.0153 (9)
C4	0.0898 (15)	0.0462 (10)	0.0399 (9)	0.0178 (10)	0.0044 (9)	0.0140 (8)
C5	0.0823 (13)	0.0433 (9)	0.0416 (9)	0.0211 (9)	-0.0033 (9)	0.0183 (8)
C6	0.0496 (8)	0.0318 (7)	0.0376 (8)	0.0125 (6)	0.0057 (6)	0.0180 (6)
C7	0.0498 (8)	0.0337 (7)	0.0358 (7)	0.0139 (6)	0.0003 (6)	0.0190 (6)
C8	0.0368 (7)	0.0312 (7)	0.0355 (7)	0.0088 (5)	0.0015 (6)	0.0182 (6)
C9	0.0383 (7)	0.0330 (7)	0.0355 (7)	0.0075 (6)	0.0022 (6)	0.0187 (6)
C10	0.0471 (8)	0.0343 (7)	0.0334 (7)	0.0041 (6)	0.0015 (6)	0.0190 (6)
C11	0.0570 (10)	0.0475 (10)	0.0412 (9)	0.0133 (8)	0.0085 (7)	0.0208 (8)
C12	0.0896 (16)	0.0537 (12)	0.0460 (11)	0.0201 (11)	0.0176 (10)	0.0148 (9)
C13	0.1030 (19)	0.0669 (14)	0.0358 (10)	0.0085 (13)	-0.0045 (11)	0.0123 (9)
C14	0.0740 (14)	0.0706 (14)	0.0471 (11)	0.0046 (11)	-0.0158 (10)	0.0260 (10)
C15	0.0543 (10)	0.0492 (10)	0.0428 (9)	0.0081 (8)	-0.0027 (7)	0.0235 (8)
C16	0.0341 (6)	0.0274 (6)	0.0327 (7)	0.0073 (5)	-0.0009 (5)	0.0141 (5)
C17	0.0321 (6)	0.0286 (7)	0.0363 (7)	0.0086 (5)	0.0020 (5)	0.0158 (6)
C18	0.0334 (7)	0.0420 (8)	0.0537 (9)	0.0075 (6)	0.0011 (6)	0.0259 (8)
C19	0.0414 (8)	0.0434 (8)	0.0426 (8)	0.0094 (6)	0.0050 (6)	0.0266 (7)
C20	0.0321 (6)	0.0250 (6)	0.0287 (6)	0.0057 (5)	-0.0002 (5)	0.0110 (5)
C21	0.0325 (6)	0.0257 (6)	0.0277 (6)	0.0050 (5)	0.0006 (5)	0.0112 (5)
C22	0.0374 (7)	0.0303 (7)	0.0304 (7)	0.0063 (5)	0.0002 (5)	0.0122 (6)
C23	0.0396 (7)	0.0396 (8)	0.0316 (7)	0.0106 (6)	0.0044 (6)	0.0157 (6)
C24	0.0504 (9)	0.0471 (9)	0.0378 (8)	0.0150 (7)	0.0077 (7)	0.0134 (7)
C25	0.0575 (11)	0.0624 (12)	0.0496 (10)	0.0270 (9)	0.0185 (8)	0.0237 (9)
C26	0.0447 (9)	0.0748 (14)	0.0627 (12)	0.0223 (9)	0.0165 (9)	0.0381 (11)
C27	0.0387 (8)	0.0585 (11)	0.0556 (10)	0.0057 (7)	0.0047 (7)	0.0308 (9)
C28	0.0403 (7)	0.0414 (8)	0.0355 (7)	0.0080 (6)	0.0046 (6)	0.0208 (6)
C29	0.0379 (7)	0.0303 (7)	0.0393 (8)	0.0032 (6)	0.0016 (6)	0.0173 (6)
C30	0.0372 (7)	0.0302 (7)	0.0298 (7)	0.0057 (5)	0.0026 (5)	0.0109 (5)
C31	0.0335 (7)	0.0392 (8)	0.0300 (7)	0.0045 (6)	0.0007 (5)	0.0128 (6)
C32	0.0423 (8)	0.0525 (10)	0.0334 (8)	0.0025 (7)	-0.0013 (6)	0.0089 (7)
C33	0.0423 (9)	0.0805 (14)	0.0376 (9)	0.0048 (9)	-0.0103 (7)	0.0197 (9)
C34	0.0414 (9)	0.0811 (14)	0.0444 (9)	0.0182 (9)	-0.0022 (7)	0.0308 (10)
C35	0.0338 (7)	0.0574 (10)	0.0401 (8)	0.0129 (7)	0.0037 (6)	0.0260 (8)
C36	0.0306 (6)	0.0391 (8)	0.0311 (7)	0.0068 (5)	0.0029 (5)	0.0171 (6)
C37	0.0326 (6)	0.0304 (7)	0.0314 (7)	0.0078 (5)	0.0021 (5)	0.0147 (5)
C38	0.0421 (8)	0.0317 (7)	0.0394 (8)	0.0087 (6)	0.0014 (6)	0.0146 (6)
C39	0.0515 (9)	0.0387 (8)	0.0526 (10)	0.0199 (7)	0.0111 (8)	0.0224 (7)

supporting information

C40	0.0441 (8)	0.0592 (11)	0.0570 (10)	0.0251 (8)	0.0100 (8)	0.0345 (9)
N1	0.0489 (7)	0.0314 (6)	0.0330 (6)	0.0123 (5)	0.0004 (5)	0.0162 (5)
N2	0.0503 (7)	0.0354 (7)	0.0342 (6)	0.0102 (6)	-0.0011 (5)	0.0184 (5)
N3	0.0308 (5)	0.0304 (6)	0.0353 (6)	0.0070 (4)	0.0014 (5)	0.0181 (5)
O1	0.0443 (6)	0.0350 (6)	0.0480 (7)	0.0035 (5)	-0.0053 (5)	0.0022 (5)
O2	0.0367 (5)	0.0355 (6)	0.0428 (6)	0.0005 (4)	0.0004 (4)	0.0145 (5)
O3	0.0548 (7)	0.0309 (5)	0.0429 (6)	0.0133 (5)	0.0006 (5)	0.0086 (5)
S 1	0.0412 (2)	0.0578 (3)	0.0645 (3)	0.00799 (19)	0.01113 (19)	0.0404 (2)

Geometric parameters (Å, °)

C1—C6	1.360 (2)	C20—N3	1.4561 (17)
C1—C2	1.382 (3)	C20—C37	1.5199 (18)
C1—H1	0.9300	C20—C30	1.5762 (19)
C2—C3	1.359 (3)	C20—C21	1.5871 (18)
С2—Н2	0.9300	C21—C29	1.5229 (19)
C3—C4	1.352 (3)	C21—C22	1.5273 (19)
С3—Н3	0.9300	C22—O1	1.2109 (18)
C4—C5	1.373 (3)	C22—C23	1.472 (2)
C4—H4	0.9300	C23—C28	1.392 (2)
C5—C6	1.371 (2)	C23—C24	1.393 (2)
С5—Н5	0.9300	C24—C25	1.375 (3)
C6—N1	1.4171 (19)	C24—H24	0.9300
C7—N1	1.3522 (17)	C25—C26	1.383 (3)
С7—С8	1.366 (2)	C25—H25	0.9300
С7—Н7	0.9300	C26—C27	1.369 (3)
С8—С9	1.4207 (19)	C26—H26	0.9300
C8—C16	1.5031 (18)	C27—C28	1.387 (2)
C9—N2	1.3337 (19)	C27—H27	0.9300
C9—C10	1.471 (2)	C28—O2	1.3619 (19)
C10-C11	1.385 (2)	C29—O2	1.4367 (18)
C10-C15	1.387 (2)	C29—H29A	0.9700
C11—C12	1.381 (3)	C29—H29B	0.9700
C11—H11	0.9300	C30—O3	1.2080 (17)
C12—C13	1.365 (3)	C30—C31	1.473 (2)
С12—Н12	0.9300	C31—C32	1.370 (2)
C13—C14	1.379 (3)	C31—C36	1.398 (2)
С13—Н13	0.9300	C32—C33	1.407 (3)
C14—C15	1.378 (3)	С32—Н32	0.9300
C14—H14	0.9300	C33—C34	1.365 (3)
С15—Н15	0.9300	С33—Н33	0.9300
C16—C17	1.5377 (19)	C34—C35	1.414 (2)
C16—C21	1.5744 (18)	C34—H34	0.9300
C16—H16	0.9800	C35—C36	1.403 (2)
C17—N3	1.4488 (16)	C35—C40	1.408 (3)
C17—C18	1.517 (2)	C36—C37	1.404 (2)
С17—Н17	0.9800	C37—C38	1.362 (2)
C18—S1	1.8190 (17)	C38—C39	1.418 (2)

C18—H18A	0.9700	С38—Н38	0.9300
C18—H18B	0.9700	C39—C40	1.362 (3)
C19—N3	1.4410 (19)	С39—Н39	0.9300
C19—S1	1.8187 (16)	C40—H40	0.9300
С19—Н19А	0.9700	N1—N2	1.3516 (18)
C19—H19B	0.9700		
C6—C1—C2	119.36 (19)	C29—C21—C22	106.27 (11)
C6—C1—H1	120.3	C29—C21—C16	113.43 (11)
C2—C1—H1	120.3	C22—C21—C16	110.40 (11)
C3—C2—C1	121.0 (2)	C29—C21—C20	114.27 (11)
С3—С2—Н2	119.5	C22—C21—C20	107.39 (10)
C1—C2—H2	119.5	C16—C21—C20	104.98 (10)
C4—C3—C2	119.44 (19)	O1—C22—C23	122.22 (14)
С4—С3—Н3	120.3	O1—C22—C21	122.30 (13)
С2—С3—Н3	120.3	C23—C22—C21	115.47 (12)
C3—C4—C5	120.17 (19)	C28—C23—C24	118.87 (15)
C3—C4—H4	119.9	C28—C23—C22	120.37 (14)
C5—C4—H4	119.9	C24—C23—C22	120.62 (14)
C6—C5—C4	120.58 (16)	C25—C24—C23	120.63 (18)
С6—С5—Н5	119.7	C25—C24—H24	119.7
C4—C5—H5	119.7	C23—C24—H24	119.7
C1—C6—C5	119.36 (16)	C24—C25—C26	119.41 (18)
C1—C6—N1	120.22 (15)	С24—С25—Н25	120.3
C5—C6—N1	120.37 (14)	С26—С25—Н25	120.3
N1—C7—C8	108.02 (13)	C27—C26—C25	121.22 (17)
N1—C7—H7	126.0	С27—С26—Н26	119.4
С8—С7—Н7	126.0	С25—С26—Н26	119.4
C7—C8—C9	103.96 (12)	C26—C27—C28	119.37 (17)
C7—C8—C16	126.20 (13)	С26—С27—Н27	120.3
C9—C8—C16	129.46 (13)	С28—С27—Н27	120.3
N2—C9—C8	111.39 (13)	O2—C28—C27	117.43 (15)
N2—C9—C10	118.23 (13)	O2—C28—C23	122.08 (13)
C8—C9—C10	130.34 (13)	C27—C28—C23	120.48 (16)
C11—C10—C15	118.73 (16)	O2—C29—C21	111.51 (11)
C11—C10—C9	122.01 (15)	O2—C29—H29A	109.3
C15—C10—C9	119.25 (15)	С21—С29—Н29А	109.3
C12—C11—C10	120.43 (18)	O2—C29—H29B	109.3
C12—C11—H11	119.8	С21—С29—Н29В	109.3
C10—C11—H11	119.8	H29A—C29—H29B	108.0
C13—C12—C11	120.2 (2)	Q3—C30—C31	127.91 (14)
C13—C12—H12	119.9	03-C30-C20	124.41 (13)
C11—C12—H12	119.9	C31—C30—C20	107.62 (11)
C12—C13—C14	120.2 (2)	C32—C31—C36	120.07 (14)
C12—C13—H13	119.9	C32—C31—C30	132.19 (15)
C14—C13—H13	119.9	$C_{36} - C_{31} - C_{30}$	107.71(12)
C15-C14-C13	119.8 (2)	$C_{31} - C_{32} - C_{33}$	118.07 (17)
C15—C14—H14	120.1	C31—C32—H32	121.0

C13—C14—H14	120.1	С33—С32—Н32	121.0
C14—C15—C10	120.59 (19)	C34—C33—C32	121.84 (16)
C14—C15—H15	119.7	С34—С33—Н33	119.1
C10—C15—H15	119.7	С32—С33—Н33	119.1
C8—C16—C17	111.83 (11)	C33—C34—C35	121.61 (16)
C8—C16—C21	117.44 (11)	С33—С34—Н34	119.2
C17—C16—C21	104.14 (10)	С35—С34—Н34	119.2
C8—C16—H16	107.7	C36—C35—C40	116.42 (15)
C17—C16—H16	107.7	C36—C35—C34	115.40 (16)
C21—C16—H16	107.7	C40—C35—C34	128.12 (15)
N3—C17—C18	103.38 (11)	C31—C36—C35	123.00 (14)
N3—C17—C16	103.13 (11)	C31—C36—C37	113.46 (12)
C18—C17—C16	119.69 (12)	C35—C36—C37	123.41 (14)
N3—C17—H17	110.0	C38—C37—C36	118.75 (13)
C18—C17—H17	110.0	C38—C37—C20	131.74 (13)
C16—C17—H17	110.0	C36—C37—C20	109.06 (12)
C17—C18—S1	103.54 (10)	C37—C38—C39	118.62 (15)
C17—C18—H18A	111.1	С37—С38—Н38	120.7
S1—C18—H18A	111.1	С39—С38—Н38	120.7
C17—C18—H18B	111.1	C40—C39—C38	122.53 (15)
S1-C18-H18B	111.1	С40—С39—Н39	118.7
H18A—C18—H18B	109.0	С38—С39—Н39	118.7
N3—C19—S1	103.29 (10)	C39—C40—C35	120.16 (14)
N3—C19—H19A	111.1	C39—C40—H40	119.9
S1—C19—H19A	111.1	C35—C40—H40	119.9
N3—C19—H19B	111.1	N2—N1—C7	111.75 (12)
S1—C19—H19B	111.1	N2—N1—C6	120.28 (11)
H19A—C19—H19B	109.1	C7—N1—C6	127.95 (13)
N3—C20—C37	109.51 (11)	C9—N2—N1	104.88 (11)
N3—C20—C30	113.12 (11)	C19—N3—C17	109.17 (11)
C37—C20—C30	102.09 (11)	C19—N3—C20	121.01 (11)
N3—C20—C21	99.91 (10)	C17—N3—C20	108.75 (10)
C37—C20—C21	120.89 (11)	C28—O2—C29	114.31 (12)
C30—C20—C21	111.76 (10)	C19—S1—C18	93.45 (7)
C6—C1—C2—C3	0.8 (5)	C22—C23—C28—C27	-177.10 (14)
C1—C2—C3—C4	0.8 (5)	C22—C21—C29—O2	61.29 (14)
C2—C3—C4—C5	-1.2 (4)	C16—C21—C29—O2	-177.24 (11)
C3—C4—C5—C6	-0.1 (4)	C20—C21—C29—O2	-56.95 (16)
C2-C1-C6-C5	-2.1 (4)	N3—C20—C30—O3	62.38 (18)
C2-C1-C6-N1	-179.7 (3)	C37—C20—C30—O3	179.95 (14)
C4—C5—C6—C1	1.8 (3)	C21—C20—C30—O3	-49.46 (19)
C4—C5—C6—N1	179.35 (18)	N3—C20—C30—C31	-114.91 (12)
N1—C7—C8—C9	-0.38 (17)	C37—C20—C30—C31	2.65 (14)
N1-C7-C8-C16	173.16 (14)	C21—C20—C30—C31	133.25 (12)
C7—C8—C9—N2	0.50 (17)	O3—C30—C31—C32	-1.8 (3)
C16—C8—C9—N2	-172.75 (14)	C20-C30-C31-C32	175.39 (17)
C7—C8—C9—C10	178.08 (15)	O3—C30—C31—C36	-179.50 (15)

C16—C8—C9—C10	4.8 (3)	C20—C30—C31—C36	-2.33 (16)
N2-C9-C10-C11	-141.17 (16)	C36—C31—C32—C33	0.2 (2)
C8—C9—C10—C11	41.4 (2)	C30—C31—C32—C33	-177.25 (17)
N2-C9-C10-C15	37.3 (2)	C31—C32—C33—C34	0.1 (3)
C8—C9—C10—C15	-140.12 (17)	C32—C33—C34—C35	0.2 (3)
C15—C10—C11—C12	0.6 (3)	C33—C34—C35—C36	-0.8(3)
C9—C10—C11—C12	179.15 (17)	C33—C34—C35—C40	176.27 (18)
C10—C11—C12—C13	-0.5 (3)	C32—C31—C36—C35	-0.9(2)
C11—C12—C13—C14	0.5 (4)	C30—C31—C36—C35	177.11 (14)
C12—C13—C14—C15	-0.5(4)	C32—C31—C36—C37	-177.03 (14)
C13—C14—C15—C10	0.7 (3)	C30—C31—C36—C37	1.02 (17)
C11—C10—C15—C14	-0.7(3)	C40—C35—C36—C31	-176.26(15)
C9-C10-C15-C14	-179.25(17)	C_{34} C_{35} C_{36} C_{31}	1.2 (2)
C7—C8—C16—C17	-40.1(2)	C40-C35-C36-C37	-0.6(2)
C9-C8-C16-C17	131.79 (16)	C_{34} C_{35} C_{36} C_{37}	176.91 (15)
C7-C8-C16-C21	80.22 (19)	C_{31} C_{36} C_{37} C_{38}	173.97 (13)
C9-C8-C16-C21	-107.91(17)	C_{35} C_{36} C_{37} C_{38}	-2.1(2)
C8-C16-C17-N3	151 11 (11)	$C_{31} = C_{36} = C_{37} = C_{20}$	0.79(17)
C_{21} C_{16} C_{17} N_{3}	23 32 (13)	$C_{35} = C_{36} = C_{37} = C_{20}$	-17529(13)
C8-C16-C17-C18	-94.90(15)	N_{3} C_{20} C_{37} C_{20}	-53.9(2)
C_{21} C_{16} C_{17} C_{18}	137 31 (12)	C_{30} C_{20} C_{37} C_{38}	-174.06(15)
N_{3} C_{17} C_{18} S_{1}	-41.84(13)	C_{21} C_{20} C_{37} C_{38}	61 2 (2)
$C_{16} - C_{17} - C_{18} - S_{1}$	-15570(10)	N_{3} C_{20} C_{37} C_{36}	118.04(12)
C8-C16-C21-C29	2 85 (17)	C_{30} C_{20} C_{37} C_{36}	-2.08(14)
C17 - C16 - C21 - C29	127 10 (12)	$C_{20} = C_{20} = C_{37} = C_{36}$	-126.82(13)
C8-C16-C21-C22	127.10(12) 121.98(13)	$C_{36} = C_{37} = C_{38} = C_{39}$	34(2)
C_{17} C_{16} C_{21} C_{22}	-11377(12)	C_{20} C_{37} C_{38} C_{39}	17472(14)
$C_{1}^{8} - C_{16}^{16} - C_{21}^{21} - C_{22}^{20}$	-12258(13)	$C_{20} = C_{37} = C_{30} = C_{40}$	-22(3)
$C_{17} = C_{16} = C_{21} = C_{20}$	1 67 (13)	$C_{38} = C_{39} = C_{40} = C_{40}$	-0.5(3)
$N_{1}^{2} = C_{10}^{2} = C_{21}^{2} = C_{20}^{2}$	-15053(11)	$C_{36} = C_{39} = C_{40} = C_{39}$	1.8(2)
$C_{20} = C_{21} = C_{23}$	80.50 (15)	$C_{30} = C_{30} = C_{40} = C_{39}$	-175 25 (18)
C_{30} C_{20} C_{21} C_{29}	-30.60(15)	$C_{34} = C_{33} = C_{40} = C_{33}$	175.25(18)
$N_{2}^{3} = C_{2}^{3} = C_{2}^{3} = C_{2}^{3} = C_{2}^{3}$	01.87(12)	$C_8 = C_7 = N_1 = N_2$	-177.00(15)
13-22-21-222	-28.00(16)	$C_{0} = C_{1} = N_{1} = C_{0}$	-4.8(3)
$C_{3}^{2} - C_{2}^{2} - C_{2}^{2} - C_{2}^{2}$	-148 10 (11)	$C_1 = C_0 = N_1 = N_2$	4.0(3)
$C_{30} - C_{20} - C_{21} - C_{22}$	-146.19(11) -25.63(12)	$C_{1} = C_{0} = N_{1} = N_{2}$	177.07(10) 173.2(2)
13-22-21-210	-145.60(12)	$C_1 = C_0 = N_1 = C_7$	-4.2(2)
C_{30} C_{20} C_{21} C_{10}	143.00(12)	C_{3} C_{0} N_{1} N_{1}	-0.41(17)
C_{20} C_{21} C_{21} C_{10}	94.50(12)	$C_0 = C_0 = N_2 = N_1$	-0.41(17)
$C_{29} = C_{21} = C_{22} = 01$	144.48(13) 21.00(10)	C10-C9-N2-N1	-1/8.31(13)
$C_{10} = C_{21} = C_{22} = O_1$	21.09(19)	C = NI = N2 = C9	0.10(17)
C_{20} C_{21} C_{22} C_{23} C_{23}	-92.82(10)	$C_{0} = N_{1} = N_{2} = C_{9}$	1/6.4/(13)
$C_{29} = C_{21} = C_{22} = C_{23}$	-37.07(13) -160.46(12)	S1 = C19 = INS = C17	-42.70(13) -170.07(10)
$C_{10} = C_{21} = C_{22} = C_{23}$	100.40(12)	51 - 0.19 - 103 - 0.20	1/0.07(10)
$C_{20} - C_{21} - C_{22} - C_{23}$	03.02(14) -172.05(15)	$C_{10} - C_{17} - N_{20} - C_{19}$	57.10(15) -177.57(12)
$C_{1} = C_{22} = C_{23} = C_{28}$	-1/3.93(13)	$C_{10} - C_{17} - N_{2} - C_{19} - C_$	-1/1.3/(12)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7.0 (2) 10.2 (2)	$C_{10} - C_{17} - N_{3} - C_{20}$	-108.95(12)
01 - 022 - 023 - 024	10.3(2)	$C_{10} - C_{1} / - N_{3} - C_{20}$	-43.02(14)
C21—C22—C23—C24	-108.12 (14)	C3/C20N3C19	-01.20 (16)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 (3) 176.08 (16) 0.7 (3) -0.8 (3) -0.2 (3) -177.88 (15) 1.3 (3) 177.82 (14) 2.2 (6)	C30—C20—N3—C19 C21—C20—N3—C19 C37—C20—N3—C17 C30—C20—N3—C17 C21—C20—N3—C17 C27—C28—O2—C29 C23—C28—O2—C29 C21—C29—O2—C28	51.93 (16) 170.87 (12) 171.32 (11) -75.55 (14) 43.38 (13) -158.75 (14) 22.10 (19) -55.40 (16)
C24—C23—C28—O2	177.82 (14)	C21—C29—O2—C28	-55.40 (16)
C22—C23—C28—O2	2.0 (2)	N3—C19—S1—C18	13.50 (11)
C24—C23—C28—C27	-1.3 (2)	C17—C18—S1—C19	16.32 (12)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C23–C28 benzene ring.

D—H···A	D—H	H···A	D····A	D—H···A
С7—Н7…О3	0.93	2.47	3.207 (2)	136
С29—Н29А…ОЗ	0.97	2.45	3.074 (2)	122
С17—Н17…ОЗ	0.98	2.52	3.091 (2)	117
C38—H38…O1 ⁱ	0.93	2.40	3.226 (2)	148
C1—H1··· <i>Cg</i> ⁱⁱ	0.93	2.94	3.713 (3)	142

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.