organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Carboxyethyl)-3-(carboxylatomethyl)-2-ethylbenzimidazol-1-ium monohydrate

Hong Yao, Yong-Qiang Xie, Xiao-Qiang Yao, Yun-Xia Yang and You-Ming Zhang*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: zhangnwnu@126.com

Received 11 March 2013; accepted 12 March 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.102; data-to-parameter ratio = 12.8.

In the title compound, $C_{14}H_{16}N_2O_4 \cdot H_2O$, three substituent groups are located on the same side of the benzimidazole ring plane. In the crystal, O-H···O hydrogen bonds and π - π stacking between parallel imidazole rings [centroid-centroid distance = 3.858(4)Å link the molecules into a threedimensional supramolecular structure.

Related literature

For general background to supramolecular coordination complexes, see: Chakrabarty et al. (2011); Cook et al. (2012); Wang et al. (2009, 2010). For related structures, see: Wei et al. (2012); Chen & Huang (2006); Wu et al. (2012).

Experimental

Crystal data	
$C_{14}H_{16}N_2O_4{\cdot}H_2O$	
$M_r = 294.30$	
Triclinic, P1	
a = 8.286 (7) A b = 0.041 (8) Å	
D = 9.041 (8) A c = 10.620 (9) Å	
$\alpha = 69.905 (7)^{\circ}$	
$\beta = 69.096 \ (7)^{\circ}$	

 $\gamma = 79.082 \ (8)^{\circ}$ $V = 696.6 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K $0.26 \times 0.23 \times 0.22 \text{ mm}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2001)
  T_{\rm min} = 0.973, T_{\rm max} = 0.977
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.102$	independent and constrained
S = 1.07	refinement
2551 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

5039 measured reflections

 $R_{\rm int} = 0.022$

2551 independent reflections

1888 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D3-H3A\cdotsO1^{i}$	0.82	1.69	2.474 (2)	160
$D5-H1W\cdotsO4^{ii}$	0.96 (3)	1.89 (3)	2.841 (3)	168 (2)
$D5-H2W\cdotsO2^{i}$	0.90 (3)	1.96 (3)	2.851 (3)	176 (3)

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (Nos. 21064006, 21161018 and 21262032), the Program for Changjiang Scholars and Innovative Research Teams in Universities of the Ministry of Education of China (No. IRT1177), the Natural Science Foundation of Gansu Province (No. 1010RJZA018), the Youth Foundation of Gansu Province (No. 1208RJYA048) and NWNU-LKQN-11-32.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5687).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chakrabarty, R., Mukherjee, P.-S. & Stang, P. (2011). Chem. Rev. 111, 6810-6918
- Chen, D.-B. & Huang, L. (2006). Acta Cryst. E62, 04686-04688.
- Cook, T. R., Zheng, Y.-R. & Stang, P. (2012). Chem. Rev. 113, 734-777.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X.-J., Cen, Z.-M., Ni, Q.-L., Jiang, X.-F., Lian, H.-C., Gui, L.-C., Zou, H.-H. & Wang, Z.-Y. (2010). Cryst. Growth Des. 10, 2960-2968.
- Wang, K.-F., Jian, F.-F., Zhuang, R.-R. & Xiao, H.-L. (2009). Cryst. Growth Des. 9, 3934-3940.
- Wei, T.-B., Dang, J.-P., Lin, Q., Yao, H., Liu, Y., Zhang, W.-Q., Ming, J.-J. & Zhang, Y.-M. (2012). Sci. China Ser. B, 55, 2554-2561.
- Wu, H.-L., Wang, K.-T., Liu, B., Kou, F., Jia, F., Yuan, J.-K. & Bai, Y.-Y. (2012). Inorg. Chim. Acta 384, 302-308.

supporting information

Acta Cryst. (2013). E69, o546 [doi:10.1107/S1600536813006855]

1-(2-Carboxyethyl)-3-(carboxylatomethyl)-2-ethylbenzimidazol-1-ium monohydrate

Hong Yao, Yong-Qiang Xie, Xiao-Qiang Yao, Yun-Xia Yang and You-Ming Zhang

S1. Comment

Benzimidazole and its derivatives are strongly coordinating agents and form stable complexes with various metals, which find various application in supramolecular coordination complexes, catalytic systems and soft materials (Chakrabarty *et al.*, 2011; Cook *et al.*, 2012; Wang *et al.*, 2009; Wei *et al.*, 2012). Meanwhile, the coordination chemistry of dicarboxylates has gained great attention for a variety of reasons, such as good conformation freedom, various coordination modes and so on (Wang *et al.*, 2010; Wu *et al.*, 2012). Herein we report the crystal structure of 1-(2-acetoxy)-3-(3-propionyl-oxy)-2-ethyl-3*H*-benzimidazolium salt and the molecular structure is shown in Fig 1. In the imidazolium ring, the bond lenghs range from 1.338 (2) to 1.397 (2) Å, in good agreement with the presence of conjugated double bonds and indicating a zwitterionic structure (Chen & Huang, 2006). In the U-shaped molecule, the two carboxyl group run almost perpendicular to the benzimidazolium plane in the same orientation. The N1—C10—C11 and N2—C12—C13 angles are 112.57 (14) and 113.06 (15)°, respectively. A dimer is formed by benzimidazolium salt connected to neighboring molecule through O3—H3A ···O1 hydrogen bonds (Fig 2). In addition, the dimer makes full use of two water molecules as bridging molecules to form various O—H···O hydrogen bonds to generate the wide hydrogen-bond ribbon (Fig 3). Obviously, water molecules, as a kind of linking unit, play an important role in constructing this structure. The distance between the donor and acceptor of the hydrogen bond is in the range of 2.474 (2)–2.851 (3) Å. π - π stacking is observed between parallel imidazole rings of adjacent molecules [1-x, 2-y, -z], the centroids distance being 3.858 (4) Å.

S2. Experimental

1-(2-Acetoxy)-3-(3-propionyloxy)-2-ethyl-3*H*-benzimidazolium salt (0.2 mmol, 0.0552 g) was dissolved in distilled water. Colorless block crystals separated after several weeks.

S3. Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å, $U_{iso}(H) = 1.5U_{eq}(C,O)$.

Figure 1

The molecular structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Hydrogen-bonded linking pattern of the wide hydrogen-bonded ribbon in the crystal structure of the title compound.

Figure 3

Packing diagram of the title compound. All hydrogen atoms bonded to carbon are omitted for clarity.

1-(2-Carboxyethyl)-3-(carboxylatomethyl)-2-ethylbenzimidazol-1-ium monohydrate

Z = 2

F(000) = 312

 $\theta = 2.4 - 26.1^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Block, colourless

 $0.26 \times 0.23 \times 0.22 \text{ mm}$

5039 measured reflections

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

2551 independent reflections

1888 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.022$

 $h = -10 \rightarrow 9$

 $k = -10 \rightarrow 10$

 $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.403 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1681 reflections

Crystal data

C₁₄H₁₆N₂O₄·H₂O $M_r = 294.30$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.286 (7) Å b = 9.041 (8) Å c = 10.629 (9) Å a = 69.905 (7)° $\beta = 69.096$ (7)° $\gamma = 79.082$ (8)° V = 696.6 (10) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.973, T_{\max} = 0.977$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 0.0692P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.2641 (2)	1.08245 (19)	0.06635 (18)	0.0295 (4)
C2	0.2190 (2)	1.1649 (2)	-0.05422 (18)	0.0358 (4)
H2	0.2043	1.2747	-0.0837	0.043*

C3	0.1973 (2)	1.0757 (2)	-0.12773 (19)	0.0420 (5)
H3	0.1676	1.1265	-0.2096	0.050*
C4	0.2185 (3)	0.9111 (2)	-0.0833 (2)	0.0423 (5)
H4	0.2019	0.8555	-0.1363	0.051*
C5	0.2629 (2)	0.8285 (2)	0.03621 (19)	0.0388 (5)
Н5	0.2767	0.7188	0.0657	0.047*
C6	0.2861 (2)	0.91826 (19)	0.11035 (17)	0.0309 (4)
C7	0.3413 (2)	1.0071 (2)	0.26096 (19)	0.0333 (4)
C8	0.3829 (3)	1.0131 (2)	0.3834 (2)	0.0455 (5)
H8A	0.4589	1.0970	0.3522	0.055*
H8B	0.4449	0.9142	0.4195	0.055*
C9	0.2221 (3)	1.0414 (3)	0.5024 (2)	0.0526 (6)
H9A	0.1572	1.1366	0.4663	0.079*
H9B	0.2565	1.0516	0.5760	0.079*
H9C	0.1513	0.9539	0.5396	0.079*
C10	0.2867 (2)	1.2987 (2)	0.1588 (2)	0.0375 (5)
H10A	0.3267	1.3640	0.0613	0.045*
H10B	0.3618	1.3096	0.2067	0.045*
C11	0.1029 (3)	1.3575 (2)	0.22808 (19)	0.0371 (4)
C12	0.3833 (2)	0.7124 (2)	0.30663 (19)	0.0417 (5)
H12A	0.4830	0.7123	0.3342	0.050*
H12B	0.4172	0.6495	0.2422	0.050*
C13	0.2397 (2)	0.63694 (19)	0.43592 (19)	0.0370 (4)
H13A	0.2173	0.6898	0.5066	0.044*
H13B	0.1347	0.6500	0.4113	0.044*
C14	0.2846 (3)	0.4640 (2)	0.4969 (2)	0.0388 (5)
N1	0.29992 (18)	1.13350 (15)	0.16246 (15)	0.0312 (4)
N2	0.33392 (18)	0.87598 (16)	0.23231 (15)	0.0334 (4)
01	0.09505 (19)	1.48021 (15)	0.26178 (15)	0.0534 (4)
O2	-0.01868 (18)	1.28600 (16)	0.24520 (16)	0.0548 (4)
O3	0.1787 (2)	0.38995 (15)	0.61738 (15)	0.0562 (4)
H3A	0.0996	0.4523	0.6453	0.084*
O4	0.41378 (18)	0.39251 (15)	0.43815 (15)	0.0523 (4)
O5	0.3224 (3)	0.5657 (2)	0.8276 (2)	0.0651 (5)
H1W	0.405 (4)	0.594 (3)	0.734 (3)	0.097 (10)*
H2W	0.230 (4)	0.614 (4)	0.800 (3)	0.114 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0273 (10)	0.0276 (9)	0.0312 (9)	-0.0028 (7)	-0.0062 (7)	-0.0088 (7)
C2	0.0375 (11)	0.0312 (9)	0.0334 (10)	-0.0035 (8)	-0.0093 (8)	-0.0047 (8)
C3	0.0484 (13)	0.0456 (11)	0.0298 (10)	-0.0060 (9)	-0.0126 (9)	-0.0072 (8)
C4	0.0490 (13)	0.0449 (11)	0.0365 (11)	-0.0089 (9)	-0.0086 (9)	-0.0187 (9)
C5	0.0426 (11)	0.0280 (9)	0.0412 (11)	-0.0042 (8)	-0.0047 (9)	-0.0129 (8)
C6	0.0280 (10)	0.0293 (9)	0.0294 (9)	-0.0021 (7)	-0.0054 (7)	-0.0055 (7)
C7	0.0268 (10)	0.0361 (10)	0.0349 (10)	0.0004 (7)	-0.0099 (8)	-0.0094 (8)
C8	0.0450 (12)	0.0533 (12)	0.0434 (11)	-0.0027 (9)	-0.0218 (10)	-0.0133 (9)

C9	0.0569 (14)	0.0669 (14)	0.0397 (11)	-0.0077 (11)	-0.0166 (10)	-0.0200 (10)
C10	0.0400 (11)	0.0311 (9)	0.0450 (11)	-0.0064 (8)	-0.0130 (9)	-0.0141 (8)
C11	0.0427 (12)	0.0296 (10)	0.0349 (10)	-0.0028 (9)	-0.0103 (9)	-0.0069 (8)
C12	0.0397 (11)	0.0323 (10)	0.0416 (11)	0.0075 (8)	-0.0123 (9)	-0.0030 (8)
C13	0.0397 (11)	0.0306 (10)	0.0382 (10)	0.0002 (8)	-0.0121 (9)	-0.0090 (8)
C14	0.0432 (12)	0.0324 (10)	0.0389 (11)	0.0001 (9)	-0.0140 (9)	-0.0091 (8)
N1	0.0322 (8)	0.0284 (8)	0.0343 (8)	-0.0022 (6)	-0.0113 (7)	-0.0101 (6)
N2	0.0350 (9)	0.0286 (8)	0.0322 (8)	0.0015 (6)	-0.0116 (7)	-0.0050 (6)
01	0.0616 (10)	0.0376 (8)	0.0585 (9)	-0.0083 (7)	-0.0041 (7)	-0.0246 (7)
O2	0.0385 (9)	0.0531 (9)	0.0754 (11)	-0.0040 (7)	-0.0103 (7)	-0.0303 (8)
03	0.0669 (11)	0.0318 (7)	0.0469 (8)	0.0043 (7)	-0.0031 (8)	-0.0036 (6)
O4	0.0472 (9)	0.0376 (8)	0.0580 (9)	0.0093 (7)	-0.0098 (7)	-0.0111 (7)
05	0.0661 (12)	0.0636 (11)	0.0644 (12)	0.0109 (9)	-0.0241 (11)	-0.0227 (9)

Geometric parameters (Å, °)

C1—C2	1.385 (3)	С9—Н9С	0.9600	
C1—N1	1.392 (2)	C10—N1	1.464 (2)	
C1—C6	1.392 (3)	C10—C11	1.518 (3)	
C2—C3	1.372 (3)	C10—H10A	0.9700	
С2—Н2	0.9300	C10—H10B	0.9700	
C3—C4	1.395 (3)	C11—O2	1.225 (2)	
С3—Н3	0.9300	C11—O1	1.262 (2)	
C4—C5	1.373 (3)	C12—N2	1.475 (2)	
C4—H4	0.9300	C12—C13	1.505 (3)	
C5—C6	1.387 (3)	C12—H12A	0.9700	
С5—Н5	0.9300	C12—H12B	0.9700	
C6—N2	1.397 (2)	C13—C14	1.503 (3)	
C7—N2	1.338 (2)	C13—H13A	0.9700	
C7—N1	1.344 (2)	C13—H13B	0.9700	
С7—С8	1.481 (3)	C14—O4	1.221 (2)	
С8—С9	1.527 (3)	C14—O3	1.300 (2)	
C8—H8A	0.9700	O3—H3A	0.8200	
C8—H8B	0.9700	O5—H1W	0.96 (3)	
С9—Н9А	0.9600	O5—H2W	0.90 (3)	
С9—Н9В	0.9600			
C2—C1—N1	131.62 (16)	N1-C10-C11	112.57 (14)	
C2—C1—C6	121.81 (16)	N1-C10-H10A	109.1	
N1-C1-C6	106.55 (15)	C11-C10-H10A	109.1	
C3—C2—C1	116.25 (17)	N1-C10-H10B	109.1	
С3—С2—Н2	121.9	C11-C10-H10B	109.1	
C1—C2—H2	121.9	H10A—C10—H10B	107.8	
C2—C3—C4	121.97 (18)	O2—C11—O1	127.11 (18)	
С2—С3—Н3	119.0	O2—C11—C10	119.49 (17)	
С4—С3—Н3	119.0	O1—C11—C10	113.39 (17)	
C5—C4—C3	122.09 (18)	N2-C12-C13	113.06 (15)	
C5—C4—H4	119.0	N2-C12-H12A	109.0	

C3—C4—H4	119.0	C13—C12—H12A	109.0
C4—C5—C6	116.14 (17)	N2—C12—H12B	109.0
C4—C5—H5	121.9	C13—C12—H12B	109.0
С6—С5—Н5	121.9	H12A—C12—H12B	107.8
C5—C6—C1	121.74 (17)	C14—C13—C12	111.66 (16)
C5—C6—N2	131.85 (16)	C14—C13—H13A	109.3
C1—C6—N2	106.40 (15)	С12—С13—Н13А	109.3
N2—C7—N1	108.99 (16)	C14—C13—H13B	109.3
N2—C7—C8	125.90 (16)	C12—C13—H13B	109.3
N1—C7—C8	125.09 (17)	H13A—C13—H13B	107.9
C7—C8—C9	112.83 (17)	O4—C14—O3	119.89 (17)
С7—С8—Н8А	109.0	O4—C14—C13	122.94 (17)
С9—С8—Н8А	109.0	O3—C14—C13	117.17 (17)
С7—С8—Н8В	109.0	C7—N1—C1	109.03 (15)
С9—С8—Н8В	109.0	C7—N1—C10	126.07 (16)
H8A—C8—H8B	107.8	C1—N1—C10	124.85 (14)
С8—С9—Н9А	109.5	C7—N2—C6	109.03 (14)
С8—С9—Н9В	109.5	C7—N2—C12	126.86 (16)
H9A—C9—H9B	109.5	C6—N2—C12	123.88 (15)
С8—С9—Н9С	109.5	C14—O3—H3A	109.5
Н9А—С9—Н9С	109.5	H1W—O5—H2W	95 (2)
Н9В—С9—Н9С	109.5		
N1—C1—C2—C3	178.24 (17)	C8—C7—N1—C1	-178.25 (16)
C6—C1—C2—C3	0.0 (3)	N2-C7-N1-C10	177.63 (15)
C1—C2—C3—C4	0.3 (3)	C8—C7—N1—C10	-0.7 (3)
C2—C3—C4—C5	-0.3 (3)	C2-C1-N1-C7	-178.66 (18)
C3—C4—C5—C6	-0.2 (3)	C6-C1-N1-C7	-0.20 (18)
C4—C5—C6—C1	0.5 (3)	C2-C1-N1-C10	3.8 (3)
C4—C5—C6—N2	-178.59 (18)	C6-C1-N1-C10	-177.77 (15)
C2-C1-C6-C5	-0.4 (3)	C11—C10—N1—C7	-94.1 (2)
N1-C1-C6-C5	-179.05 (15)	C11—C10—N1—C1	83.0 (2)
C2-C1-C6-N2	178.87 (16)	N1—C7—N2—C6	0.06 (19)
N1-C1-C6-N2	0.23 (17)	C8—C7—N2—C6	178.38 (16)
N2—C7—C8—C9	-100.2 (2)	N1—C7—N2—C12	174.64 (15)
N1—C7—C8—C9	77.8 (2)	C8—C7—N2—C12	-7.0 (3)
N1-C10-C11-O2	-19.1 (2)	C5—C6—N2—C7	178.99 (18)
N1-C10-C11-O1	161.19 (15)	C1—C6—N2—C7	-0.18 (19)
N2-C12-C13-C14	171.70 (16)	C5-C6-N2-C12	4.2 (3)
C12-C13-C14-O4	-7.5 (3)	C1-C6-N2-C12	-174.96 (15)
C12—C13—C14—O3	172.71 (17)	C13—C12—N2—C7	85.2 (2)
N2-C7-N1-C1	0.09 (19)	C13—C12—N2—C6	-101.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3A…O1 ⁱ	0.82	1.69	2.474 (2)	160

O5—H1W···O4ⁱⁱ 0.96 (3) 1.89 (3) 2.841 (3) 168 (2) O5—H2W···O2ⁱ 0.90 (3) 1.96 (3) 2.851 (3) 176 (3)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.