Structure Reports

Online
ISSN 1600-5368

3,9-Dimethyl-2,3-dihydrospiro[carbaz-ole-1, 2^{\prime}-[1,3]dithiolan]-4(9H)-one

Sibel Gülle, ${ }^{\text {a }}$ Nagihan Çaylak Delibas, ${ }^{\text {b }}$ Yavuz Ergün ${ }^{\text {c }}$ and Tuncer Hökelek ${ }^{\text {d }}$ *

${ }^{\text {a }}$ Celal Bayar University, Faculty of Arts and Sciences, Department of Chemistry, 45030 Muradiye, Manisa, Turkey, ${ }^{\text {b }}$ Department of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, ${ }^{\text {c Dokuz Eylül University, Faculty of Arts and }}$ Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, Izmir, Turkey, and ${ }^{\mathbf{d}}$ Hacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 18 March 2013; accepted 21 March 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$;
R factor $=0.075 ; w R$ factor $=0.195 ;$ data-to-parameter ratio $=19.3$.

The title compound, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOS}_{2}$, consists of a carbazole skeleton with methyl and dithiolane groups as substituents. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of $1.02(11)^{\circ}$. The cyclohexenone ring has a twisted conformation, while the dithiolane ring adopts an envelope conformation with one of the $\mathrm{CH}_{2} \mathrm{C}$ atoms at the flap. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into supramolecular chains nearly parallel to the c axis. These hydrogen bonds together with weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions link the molecules into a three-dimensional supramolecular network.

Related literature

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2009); Patır et al. (1997); Hökelek \& Patır (1999); Çaylak et al. (2007); Uludağ et al. (2009). For the isolation of carbazole alkaloids such as 3-methylcarbazole and its several oxidized derivatives from taxonomically related higher plants, see: Chakraborty (1993); Bhattacharyya \& Chakraborty (1987). For the use of 4-oxo-tetrahydrocarbazole in the synthesis of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists, see: Littell \& Allen (1973); Ping \& Guoping (1997); Fabio et al. (2006); Kumar et al. (2008). For the use of 4-oxo-tetrahydrocarbazole derivatives in the synthesis of indole alkaloids, see: Magnus et al. (1992); Ergün et al. $(2000,2002)$. For the synthesis of tetrahydrocarbazolonebased antitumor active compounds and inhibitors of HIV integrase from 4-oxo-tetrahydrocarbazoles, see: Li \& Vince (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOS}_{2}$
$V=2861.44(10) \AA^{3}$
$M_{r}=303.43$
Orthorhombic, Pbca
$Z=8$
$a=16.8163$ (3) \AA
Mo $K \alpha$ radiation
$b=9.8407$ (2) \AA
$\mu=0.37 \mathrm{~mm}^{-1}$
$c=17.2913$ (4) \AA
$T=100 \mathrm{~K}$
$0.47 \times 0.32 \times 0.29 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.847, T_{\text {max }}=0.901$
13394 measured reflections 3540 independent reflections 2912 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075 \quad 183$ parameters
$w R\left(F^{2}\right)=0.195 \quad$ H-atom parameters constrained
$S=1.05$
$\Delta \rho_{\text {max }}=1.73 \mathrm{e}^{-3}$
3540 reflections
$\Delta \rho_{\min }=-1.08 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
Cg 3 is the centroid of the benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{\text {i }}$	0.99	2.60	$3.483(5)$	149
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg}^{3 i}$	0.99	2.89	$3.813(4)$	155

Symmetry codes: (i) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

[^0]
References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bhattacharyya, P. \& Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, edited by W. Hertz, H. Grisebach, G. W. Kirby \& C. Tamm, Vol. 52, pp. 159-209. Wien, New York: Springer-Verlag.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
Çaylak, N., Hökelek, T., Uludağ, N. \& Patır, S. (2007). Acta Cryst. E63, o3913o3914.
Chakraborty, D. P. (1993). The Alkaloids, edited by G. A. Cordell, Vol. 44, pp. 257-364. New York: Academic Press.
Ergün, Y., Bayraktar, N., Patır, S. \& Okay, G. (2000). J. Heterocycl. Chem. 37, 11-14.
Ergün, Y., Patır, S. \& Okay, G. (2002). J. Heterocycl. Chem. 39, 315-317.
Fabio, R. D., Giovannini, R., Bertani, B., Borriello, M., Bozzoli, A., Donati, D., Falchi, A., Ghirlanda, D., Leslie, C. P., Pecunioso, A., Rumboldt, G. \& Spada, S. (2006). Bioorg. Med. Chem. Lett. 16, 1749-1752.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. \& Ergün, Y. (2009). Acta Cryst. E65, o1702-o1703.
Hökelek, T., Gündüz, H., Patir, S. \& Uludağ, N. (1998). Acta Cryst. C54, 12971299.

Hökelek, T. \& Patır, S. (1999). Acta Cryst. C55, 675-677.
Hökelek, T., Patır, S., Gülce, A. \& Okay, G. (1994). Acta Cryst. C50, 450-453.
Hökelek, T., Patır, S. \& Uludağ, N. (1999). Acta Cryst. C55, 114-116.
Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. \& Thakur, R. G. (2008). US Patent Appl. No. US 2008/0009635 A1.

Li, X. \& Vince, R. (2006). Bioorg. Med. Chem. 14, 2942-2955.
Littell, R. \& Allen, G. R. (1973). US Patent No. 3740404.
Magnus, P., Sear, N. L., Kim, C. S. \& Vicker, N. (1992). J. Org. Chem. 57, 70-78.
Patır, S., Okay, G., Gülce, A., Salih, B. \& Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.
Ping, H. \& Guoping, F. (1997). Assignee: Shanghai Hualian Pharmaceutical Co., People's Republic of China, Patent No. CN 1145902.
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Uludağ, N., Öztürk, A., Hökelek, T. \& Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595-o596.

supporting information

Acta Cryst. (2013). E69, o598-o599 [doi:10.1107/S1600536813007873]

3,9-Dimethyl-2,3-dihydrospiro[carbazole-1,2'-[1,3]dithiolan]-4(9H)-one

Sibel Gülle, Nagihan Çaylak Delibaş, Yavuz Ergün and Tuncer Hökelek

S1. Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek \& Patır, 1999). Most of the carbazole alkaloids such as 3-methylcarbazole and its several oxidized derivatives have been isolated from taxonomically related higher plants of genera Glycosmis, Clausena and Murraya (family Rutaceae) (Chakraborty, 1993; Bhattacharyya \& Chakraborty, 1987). The structures of these alkaloids can vary from simple substituted carbazoles to molecules containing complex terpene moieties. Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar et al., 2008; Fabio et al., 2006; Ping \& Guoping, 1997; Littell \& Allen, 1973). 4-oxo-tetrahydrocarbazole derivatives have also been used in the syntheses of indole alkaloids (Magnus et al., 1992; Ergün et al., 2000; Ergün et al., 2002). Tetrahydrocarbazolone based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li \& Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound.
The molecule of the title compound, (I), (Fig. 1) consists of a carbazole skeleton with two methyl and a dithiolane groups at positions 3, N9 and 1, respectively, where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B $(\mathrm{C} 4 \mathrm{a} / \mathrm{C} 5 \mathrm{a} / \mathrm{C} 8 \mathrm{a} / \mathrm{N} 9 / \mathrm{C} 9 \mathrm{a})$ and $\mathrm{C}(\mathrm{C} 5 \mathrm{a} / \mathrm{C} 5-\mathrm{C} 8 / \mathrm{C} 8 \mathrm{a})$ are nearly coplanar [with a maximum deviation of -0.017 (3) \AA for atom C 7] with dihedral angle of $\mathrm{B} / \mathrm{C}=1.02(11)^{\circ}$. Ring $\mathrm{A}(\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 4 \mathrm{a} / \mathrm{C} 9 \mathrm{a})$ adopts twisted conformation, while the corresponding rings adopt envelope conformations in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a] carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a, 4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009). Ring A has a pseudo twofold axis running through the midpoints of $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 9$ a bonds. Dithiolane ring $\mathrm{D}(\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{C} 1 / \mathrm{C} 12 / \mathrm{C} 13)$ has a local pseudo-mirror plane running through C12 and the midpoint of the $\mathrm{C} 1-\mathrm{S} 2$ bond. The conformation of ring D is an envelope, with atom C 12 at the flap position, 0.720 (5) \AA from the mean plane through the other four atoms.
In the crystal, intermolecular weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into infinite chains nearly parallel to the c -axis (Table 1 and Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table 1).

S2. Experimental

For the preparation of the title compound, (I), a solution of 3-methyl-2,3-dihydrospiro[carbazole-1,2'-[1,3]dithio-lan]-4(9 H)-one ($1.50 \mathrm{~g}, 5.2 \mathrm{mmol}$) in dichloromethane (40 ml) was cooled to 273 K . Then, sodium hydroxide (1.5 ml , 50%), tetrabutylammonium hydrogen sulfate ($0.10 \mathrm{~g}, 0.3 \mathrm{mmol}$) and methyl iodide ($0.75 \mathrm{~g}, 5.3 \mathrm{mmol}$) were added. The mixture was stirred for 1 h at 273 K , the stirring was continued for 2 h at room temperature, and then washed with hydrochloric acid ($50 \mathrm{ml}, 10 \%$). The organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the resulting residue was recrystallized from ethyl acetate (yield; $1.50 \mathrm{~g}, 96 \%$, m.p. 447 K).

S3. Refinement

The C-bound H -atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.95,1.00,0.99$ and $0.98 \AA$, for aromatic, methine, methylene and methyl H -atoms, respectively, and constrained to ride on their parent atoms, with $U_{\mathrm{is} 0}(\mathrm{H})=\mathrm{k} \times U_{\mathrm{eq}}(\mathrm{C})$, where $\mathrm{k}=1.5$ for methyl H -atoms and $\mathrm{k}=1.2$ for all other H -atoms. The highest residual electron density was found 0.96 \AA from C2 and the deepest hole $0.65 \AA$ from S2.

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view of the crystal packing of the title compound. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines [H -atoms not involved in hydrogen bonding have been omitted for clarity].

3,9-Dimethyl-2,3-dihydrospiro[carbazole-1,2'-[1,3]dithiolan]-4(9H)-one

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOS}_{2}$
$M_{r}=303.43$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=16.8163$ (3) \AA
$b=9.8407$ (2) \AA
$c=17.2913$ (4) \AA
$V=2861.44(10) \AA^{3}$
$Z=8$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.847, T_{\text {max }}=0.901$
$F(000)=1280$
$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3799 reflections
$\theta=2.7-28.2^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.47 \times 0.32 \times 0.29 \mathrm{~mm}$

13394 measured reflections
3540 independent reflections
2912 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-22 \rightarrow 22$
$k=-13 \rightarrow 10$
$l=-23 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075$
$w R\left(F^{2}\right)=0.195$
$S=1.05$
3540 reflections
183 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0845 P)^{2}+10.7607 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=1.73 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.08 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	0.92826 (5)	0.57718 (9)	0.92430 (5)	0.0250 (2)
S2	0.76350 (5)	0.48874 (9)	0.95846 (6)	0.0268 (2)
O1	0.85144 (15)	0.3722 (3)	0.64738 (14)	0.0239 (5)
C1	0.8416 (2)	0.4921 (3)	0.88344 (19)	0.0197 (6)
C2	0.8013 (2)	0.5688 (4)	0.8151 (2)	0.0286 (8)
H2A	0.7473	0.5313	0.8072	0.034*
H2B	0.7955	0.6658	0.8292	0.034*
C3	0.8470 (3)	0.5590 (4)	0.7396 (2)	0.0289 (8)
H3	0.9021	0.5935	0.7492	0.035*
C4	0.85370 (19)	0.4092 (3)	0.71536 (19)	0.0191 (6)
C4A	0.87029 (17)	0.3169 (3)	0.77841 (18)	0.0148 (6)
C5	0.91327 (18)	0.0866 (3)	0.7158 (2)	0.0194 (6)
H5	0.9066	0.1127	0.6633	0.023*
C5A	0.89776 (17)	0.1783 (3)	0.77599 (19)	0.0163 (6)
C6	0.9385 (2)	-0.0429 (3)	0.7349 (2)	0.0239 (7)
H6	0.9489	-0.1066	0.6948	0.029*
C7	0.9491 (2)	-0.0818 (3)	0.8121 (2)	0.0256 (7)
H7	0.9658	-0.1718	0.8234	0.031*
C8	0.9357 (2)	0.0079 (3)	0.8720 (2)	0.0224 (7)
H8	0.9437	-0.0184	0.9243	0.027*
C8A	0.90996 (18)	0.1386 (3)	0.85310 (19)	0.0170 (6)
N9	0.89088 (16)	0.2472 (3)	0.90098 (16)	0.0181 (5)
C9A	0.86652 (18)	0.3536 (3)	0.85548 (18)	0.0155 (6)
C10	0.8955 (2)	0.2417 (4)	0.9851 (2)	0.0235 (7)
H10A	0.9219	0.1574	1.0009	0.035*
H10B	0.8418	0.2445	1.0069	0.035*
H10C	0.9261	0.3197	1.0041	0.035*
C11	0.8106 (2)	0.6453 (4)	0.6759 (2)	0.0255 (7)
H11A	0.8438	0.6398	0.6294	0.038*
H11B	0.8074	0.7400	0.6932	0.038*
H11C	0.7571	0.6118	0.6641	0.038*
C12	0.8746 (3)	0.6719 (5)	0.9974 (3)	0.0377 (10)

H12A	0.9120	0.7095	1.0360	0.045^{*}
H12B	0.8452	0.7481	0.9734	0.045^{*}
C13	$0.8179(3)$	$0.5753(5)$	$1.0353(2)$	$0.0354(9)$
H13A	0.7806	0.6254	1.0692	0.043^{*}
H13B	0.8474	0.5085	1.0671	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0233(4)$	$0.0244(4)$	$0.0275(5)$	$-0.0063(3)$	$0.0077(3)$	$-0.0106(3)$
S2	$0.0184(4)$	$0.0257(4)$	$0.0362(5)$	$0.0007(3)$	$0.0008(3)$	$-0.0062(4)$
O1	$0.0292(12)$	$0.0296(13)$	$0.0130(12)$	$0.0025(10)$	$-0.0008(10)$	$0.0004(9)$
C1	$0.0298(16)$	$0.0154(14)$	$0.0138(15)$	$0.0006(12)$	$-0.0039(13)$	$-0.0015(11)$
C2	$0.0336(18)$	$0.0278(18)$	$0.0243(19)$	$0.0059(15)$	$-0.0034(15)$	$0.0004(14)$
C3	$0.041(2)$	$0.0244(16)$	$0.0210(18)$	$0.0081(15)$	$-0.0011(16)$	$0.0028(14)$
C4	$0.0193(14)$	$0.0248(15)$	$0.0133(15)$	$0.0020(12)$	$-0.0002(12)$	$0.0016(12)$
C4A	$0.0144(12)$	$0.0158(13)$	$0.0142(14)$	$-0.0020(11)$	$0.0003(11)$	$-0.0005(11)$
C5	$0.0170(13)$	$0.0209(15)$	$0.0204(16)$	$-0.0018(12)$	$0.0045(12)$	$-0.0032(12)$
C5A	$0.0144(13)$	$0.0169(14)$	$0.0175(15)$	$-0.0021(11)$	$0.0031(11)$	$-0.0002(11)$
C6	$0.0209(15)$	$0.0196(15)$	$0.031(2)$	$-0.0013(12)$	$0.0068(14)$	$-0.0083(13)$
C7	$0.0216(15)$	$0.0173(14)$	$0.038(2)$	$0.0013(12)$	$0.0063(14)$	$0.0014(14)$
C8	$0.0207(15)$	$0.0184(15)$	$0.0279(19)$	$0.0014(12)$	$0.0019(13)$	$0.0062(13)$
C8A	$0.0163(13)$	$0.0160(14)$	$0.0187(16)$	$-0.0011(11)$	$0.0011(12)$	$-0.0014(12)$
N9	$0.0226(12)$	$0.0173(12)$	$0.0143(13)$	$0.0013(10)$	$0.0000(11)$	$0.0017(10)$
C9A	$0.0175(13)$	$0.0155(13)$	$0.0134(15)$	$-0.0011(11)$	$-0.0034(11)$	$0.0012(11)$
C10	$0.0287(16)$	$0.0250(16)$	$0.0167(17)$	$0.0012(14)$	$-0.0053(13)$	$0.0050(13)$
C11	$0.0318(18)$	$0.0264(16)$	$0.0184(17)$	$0.0040(14)$	$-0.0038(14)$	$0.0076(13)$
C12	$0.035(2)$	$0.042(2)$	$0.035(2)$	$-0.0019(18)$	$0.0037(18)$	$-0.0165(18)$
C13	$0.034(2)$	$0.047(2)$	$0.025(2)$	$-0.0040(18)$	$0.0074(16)$	$-0.0127(18)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.823(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{~S} 1-\mathrm{C} 12$	$1.811(4)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{~S} 2-\mathrm{C} 1$	$1.847(4)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.379(5)$
$\mathrm{S} 2-\mathrm{C} 13$	$1.824(4)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{O} 1-\mathrm{C} 4$	$1.231(4)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$1.396(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.558(5)$	$\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}$	$1.390(4)$
$\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}$	$1.505(4)$	$\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}$	$1.372(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	$\mathrm{~N} 9-\mathrm{C} 10$	$1.458(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.382(4)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.519(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{C} 11$	$1.520(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	1.0000	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9800
$\mathrm{C} 4-\mathrm{C} 3$	$1.536(5)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9800
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	$1.446(4)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9800
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.441(4)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9800
C5-C6	$1.383(5)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.498(6)$

C5-H5	0.9500
C5A-C5	1.402 (4)
C5A-C8A	1.405 (5)
C6-C7	1.400 (6)
C12-S1-C1	96.24 (18)
C13-S2-C1	98.43 (17)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	107.72 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	114.8 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 2$	103.4 (2)
C9A-C1-S1	108.6 (2)
C9A- $\mathrm{C} 1-\mathrm{S} 2$	114.0 (2)
C9A-C1-C2	108.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
C3-C2-C1	113.6 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7
C2-C3-C11	112.5 (3)
C2-C3-C4	109.4 (3)
C2-C3-H3	107.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	107.7
C11-C3-C4	111.6 (3)
C11-C3-H3	107.7
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	122.8 (3)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	122.7 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3$	114.3 (3)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	129.4 (3)
C9A-C4A-C4	123.7 (3)
C9A-C4A-C5A	106.8 (3)
C5A-C5-H5	120.9
C6-C5-C5A	118.3 (3)
C6-C5-H5	120.9
C5-C5A-C4A	133.7 (3)
C5-C5A-C8A	119.9 (3)
C8A-C5A-C4A	106.4 (3)
C5-C6-C7	121.2 (3)
C5-C6-H6	119.4
C7-C6-H6	119.4
C6-C7-H7	119.3
C8-C7-C6	121.3 (3)
$\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	-23.5 (2)
$\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	91.1 (3)
C12-S1-C1-C9A	-147.4 (3)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 13$	45.7 (3)
C13-S2-C1-S1	-0.1 (2)

C12-H12A	0.9900
C12-H12B	0.9900
C13-H13A	0.9900
C13-H13B	0.9900
C8-C7-H7	119.3
C7-C8-C8A	117.7 (3)
C7-C8-H8	121.2
C8A-C8-H8	121.2
C8-C8A-C5A	121.6 (3)
N9-C8A-C5A	108.5 (3)
N9-C8A-C8	129.9 (3)
C8A-N9-C10	123.6 (3)
C9A-N9-C8A	108.3 (3)
C9A-N9-C10	128.0 (3)
C4A-C9A-C1	124.0 (3)
N9-C9A-C1	126.1 (3)
N9-C9A-C4A	109.9 (3)
N9-C10-H10A	109.5
N9-C10-H10B	109.5
N9-C10-H10C	109.5
H10A-C10-H10B	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C3-C11-H11A	109.5
C3-C11-H11B	109.5
C3-C11-H11C	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
S1-C12-H12A	110.3
S1-C12-H12B	110.3
C13-C12-S1	107.2 (3)
C13-C12-H12A	110.3
C13-C12-H12B	110.3
H12A-C12-H12B	108.5
$\mathrm{S} 2-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	110.3
S2-C13-H13B	110.3
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{S} 2$	107.3 (3)
C12-C13-H13A	110.3
C12-C13-H13B	110.3
H13A-C13-H13B	108.5
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	175.7 (3)
C9A-C4A-C5A-C5	-180.0 (3)
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	-0.5 (3)
C5A-C5-C6-C7	-0.5 (5)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6$	-179.0 (3)

$\mathrm{C} 13-\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 2$	$-122.0(3)$
$\mathrm{C} 13-\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}$	$120.4(3)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 13-\mathrm{C} 12$	$30.4(3)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$75.4(4)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-167.6(3)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-46.2(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9$	$67.1(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-110.8(3)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9$	$-53.0(4)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$129.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9$	$-167.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$14.5(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$60.7(4)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-174.7(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$144.3(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11$	$19.1(5)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-41.2(4)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11$	$-166.4(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{O} 1$	$10.0(5)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3$	$-164.4(3)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{O} 1$	$-174.3(3)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3$	$11.2(5)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 5$	$-3.8(6)$

$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6$	$1.6(4)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 9$	$0.1(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$179.0(3)$
$\mathrm{C} 5-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 9$	$179.6(3)$
$\mathrm{C} 5-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$-1.5(5)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.8(5)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$1.0(5)$
$\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{C} 7$	$178.8(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{C} 7$	$0.2(5)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$0.4(3)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$-178.4(3)$
$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$179.2(3)$
$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$0.4(5)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1$	$-178.9(3)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-0.7(4)$
$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1$	$2.4(5)$
$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-179.5(3)$
$\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	$-175.7(3)$
$\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$0.8(3)$
$\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	$2.5(5)$
$\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$179.0(3)$
S1-C12-C13-S2	$-50.0(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 3 is the centroid of the benzene ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13 — \mathrm{H} 13 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.99	2.60	$3.483(5)$	149
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots C g 33^{\mathrm{ii}}$	0.99	2.89	$3.813(4)$	155

Symmetry codes: (i) $-x+3 / 2,-y+1, z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5690).

