

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-Methyl (3aR*,4S*,5R*,7aR*)-5,7abis(acetyloxy)-3-oxo-2-phenyloctahydro-1H-isoindole-4-carboxylate

Flavien A. A. Toze,^a* Eugeniva V. Nikitina,^b Vladimir P. Zaytsev,^b Fedor I. Zubkov^b and Victor N. Khrustalev^c

^aDepartment of Chemistry, University of Douala, Faculty of Sciences, PO Box 24157, Douala, Republic of , Cameroon, ^bOrganic Chemistry Department, Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation, and ^cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation Correspondence e-mail: vkh@xray.ineos.ac.ru

Received 29 July 2013; accepted 10 September 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 22.0.

The title molecule, $C_{20}H_{23}NO_7$, the product of nucleophilic cleavage of the 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate, comprises a cisfused bicyclic system containing a 2-pyrrolidinone ring in an envelope conformation (with the C atom bearing the carboxylate substituent as the flap) and a cyclohexane ring in a chair conformation. The carboxylate substituent occupies the equatorial position, whereas the two acetyloxy substituents are in axial positions. The N atom has a trigonal-planar geometry, the sum of the bond angles being $359.3 (3)^\circ$. The dihedral angle between the mean plane of the four planar atoms of the pyrrolidinone ring and the phenyl ring is 25.98 (6)°. In the crystal, molecules are linked into zigzag chains along the c-axis direction by $C-H\cdots O$ hydrogen bonds.

Related literature

For the synthesis of 3a,6-epoxyisoindoles by intramolecular Diels-Alder reactions of furan, see: Vogel et al. (1999); Zubkov et al. (2005). For the synthesis of 2-phenyloctahydroisoindoles and their analogues, see: Balthaser et al. (2011); Zubkov et al. (2011). For related compounds, see: Zubkov et al. (2009, 2012); Claeys et al. (2010).

24538 measured reflections

 $R_{\rm int} = 0.031$

5633 independent reflections

4521 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{20}H_{23}NO_7$	$V = 3846.8 (4) \text{ Å}^3$
$M_r = 389.39$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 12.3802 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 18.3516 (10) Å	$T = 120 { m K}$
c = 17.3596 (9) Å	$0.24 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 102.749 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS, Bruker, 2003) $T_{\min} = 0.976, \ T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	256 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
5633 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3A - H3A \cdots O3^{i}$	1.00	2.55	3.4135 (13)	144
$C12-H12\cdots O2^{ii}$	0.95	2.46	3.2812 (15)	145

Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the Russian Foundation for Basic Research for financial support of this work (grant No. 12-03-31088-a).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2096).

References

- Balthaser, B. R., Malonev, M. C., Beeler, A. B., Porco, J. A. Jr & Snyder, J. K. (2011). Nat. Chem. 3, 969-973
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Claeys, D. D., Stevens, C. V., Roman, B. I., Caveye, P. van D., Waroquier, M. & Speybroeck, V. V. (2010). Org. Biomol. Chem. 8, 3644-3654.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.
- Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.
- Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.
- Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Boltukhina, E. V., Varlamov, A. V., Khrustalev, V. N. & Gozun, S. V. (2011). Tetrahedron, 67, 9148-9163.
- Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Varlamov, A. V., Khrustalev, V. N. & Novikov, R. A. (2012). Chem. Heterocycl. Compd, 48, 514-524.

supporting information

Acta Cryst. (2013). E69, o1555 [doi:10.1107/S1600536813025129]

rac-Methyl (3a*R**,4*S**,5*R**,7a*R**)-5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1*H*-isoindole-4-carboxylate

Flavien A. A. Toze, Eugeniya V. Nikitina, Vladimir P. Zaytsev, Fedor I. Zubkov and Victor N. Khrustalev

S1. Comment

3a,6-Epoxyisoindoles, which are very easy prepared by intramolecular Diels-Alder reaction of furan (IMDAF) (Vogel *et al.*, 1999; Zubkov *et al.*, 2005), find a wide application for synthesis of various complicated natural-like molecules (Balthaser *et al.*, 2011; Zubkov *et al.*, 2011). Most of these transformations proceed *via* electrophilic or nucleophilic opening of the epoxy bridge. As a rule, the first leads to aromatic compounds, whereas the latter gives rise to perhydro-isoindoles with several (three or four) asymmetric centers in mild conditions (Zubkov *et al.*, 2009, 2012; Claeys *et al.*, 2010). Stereochemistry of the nucleophilic process is hardly predictable, because it depends on mechanism of the reaction (S_N 1 or S_N 2).

This work clarifies a question concerning mechanism ($S_N 2$) and stereochemistry of a nucleophilic cleavage of 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate (Fig. 1). The structure of final product – methyl 5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1*H*-isoindole- 4-carboxylate, $C_{20}H_{23}NO_7$, was established by X-ray diffraction study.

Molecule of the title compound comprises a *cis*-fused bicyclic system containing one five-membered (2-pyrrolidinone) and one six-membered (cyclohexane) rings (Fig. 2). The five-membered ring has *envelope* conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.540 (2) Å), and the six-membered ring adopts *chair* conformation. The carboxylate substituent at the C4 carbon atom occupies the equatorial position, whereas the two acetyloxy substituents at the C5 and C7A carbon atoms are in the sterically unfavorable axial positions. Such disposition is explained by the direction of the nucleophilic cleavage of 3a,6-epoxy bridge in the initial 1-oxo-2-phenylocta-hydro-3a,6-epoxylsoindole-7-carboxylate. The nitrogen N2 atom has a trigonal-planar geometry (sum of the bond angles is 359.3 (3)°). The dihedral angle between the planar part of the pyrrolidinone ring and phenyl ring plane is 25.98 (6)°.

The molecule of the title compound> possesses four asymmetric centers at the C3A, C4, C5 and C7A carbon atoms and can have potentially numerous diastereomers. The crystal of the title compound is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-3a R^* ,4 S^* ,5 R^* ,7a R^* .

In the crystal, the molecules of the title compound are bound into the *zigzag* chains along the *c* axis by the intermolecular C—H \cdots O hydrogen bonds (Figure 3, Table 1).

S2. Experimental

BF₃\ctdotEt₂O (0.22 ml, 1.7 mmol) was added to a solution of the methyl 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate (0.2 g, 0.7 mmol) in acetic anhydride (5 ml) with stirring at room temperature during 24 h (monitoring by thin-layer chromatography). At the end of the reaction, the mixture was poured into water (50 ml), treated by aqueous sodium bicarbonate and extracted with chloroform (3 x 20 ml). The extract was dried over anhydrous magnesium sulfate. The residue was purified by crystallization from hexane – ethyl acetate to give product **I** (0.05 g, 0.13 mmol) as colourless solid. Yield 18%. The single-crystals of **I** were obtained by slow crystallization from a hexane – ethyl acetate mixture. *M*.p. = 418–419 K. IR (KBr), *v*/cm⁻¹: 1726, 1745 (NCO, CO₂CH₃, COCH₃). ¹H NMR (400 MHz, CDCl₃, 293 K): δ = 7.54 (d, 2H, H2′(6′), *J*_{2′(6′),3′(5′)} = 7.6), 7.35 (t, 2H, H3′(5′), *J*_{2′(6′),3′(5′)} = 7.6), 7.14 (t, 1H, H4′, *J*_{3′,4′} = *J*_{4′,5′} = 7.6), 5.59 (br. s, 1H, H5), 4.21 (d, 1H, H1A, *J*_{1A,1B} = 10.2), 4.01 (d, 1H, H1B, *J*_{1A,1B} = 10.2), 3.75 (s, 3H, CO2*Me*), 3.59 (d, 1H, H3a, *J*_{3a,4} = 5.7), 2.91 (dd, 1H, H4, *J*_{4,5} = 1.9, *J*_{3a,4} = 5.7), 2.13 (s, 3H, CO*Me*), 2.05 (s, 3H, CO*Me*), 1.57–1.66, 1.89–2.03, 2.37–2.45, (m, 4H, H6, H7). ¹³C NMR (100 MHz, CDCl₃, 293 K): δ = 170.5, 170.2, 170.0, 168.3 (C3, 2 *x* COCH₃, *CO*₂*CH*₃), 138.9 (C1′), 129.0 (C3′(5′)), 124.9 (C4′), 119.9 (C2′(6′)), 79.0 (C7a), 65.5 (C5), 57.2 (C1), 52.0 (CO₂*Me*), 48.3 (C3a), 40.9 (C4), 24.9, 23.9 (C6, C7), 21.2, 21.6 (2 *x* CO*Me*). Mass spectrum (EI—MS, 70 eV), *m*/z (I_r, (%)): 389 [*M*⁺] (33), 329 (100), 287 (28), 269 (22), 242 (26), 227 (16), 210 (68), 191 (33), 182 (33), 172 (16), 163 (16), 113 (15), 105 (52), 91 (67), 80 (47), 76 (83), 59 (43), 43 (52). Anal. Calcd. for C₂₀H₂₃NO₇: C, 61.69; H, 5.95; N, 3.60. Found: C, 61.49; H, 6.04; N, 3.83.

S3. Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [$U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃-groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for the other groups].

Figure 1

Reaction of a nucleophilic cleavage of 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate.

Figure 2

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 3

A portion of the crystal packing of the title compound demonstrating the H-bonded *zigzag* chains along the *c* axis. Dashed lines indicate the intermolecular C—H···O hydrogen bonds.

rac-Methyl (3aR*,4S*,5R*,7aR*)-5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1H-isoindole-4-carboxylate

Crystal data	
C ₂₀ H ₂₃ NO ₇	F(000) = 1648
$M_r = 389.39$	$D_x = 1.345 \text{ Mg m}^{-3}$
Monoclinic, C2/c	Mo K\alpha radiation, \lambda = 0.71073 Å
Hall symbol: -C 2yc	Cell parameters from 6890 reflections
a = 12.3802 (7) Å	$\theta = 2.2-32.6^{\circ}$
b = 18.3516 (10) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 17.3596 (9) Å $\beta = 102.749 (1)^{\circ}$ $V = 3846.8 (4) \text{ Å}^{3}$ Z = 8 Data collection	T = 120 K Prism, colourless $0.24 \times 0.20 \times 0.18 \text{ mm}$
Bruker APEXII CCD	24538 measured reflections
diffractometer	5633 independent reflections
Radiation source: fine-focus sealed tube	4521 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.031$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(<i>SADABS</i> , Bruker, 2003)	$k = -25 \rightarrow 25$
$T_{\min} = 0.976, T_{\max} = 0.982$	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.04	H-atom parameters constrained
5633 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 1.6602P]$
256 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.56464 (7)	0.07894 (4)	0.60114 (5)	0.02273 (18)
O2	0.29290 (7)	0.12128 (5)	0.54848 (6)	0.0303 (2)
O3	0.37833 (7)	0.11721 (4)	0.67737 (5)	0.02327 (18)
O4	0.45957 (7)	0.19171 (5)	0.47486 (5)	0.02225 (18)
O5	0.32731 (9)	0.21367 (6)	0.36585 (6)	0.0436 (3)
O6	0.61038 (6)	0.31985 (4)	0.69818 (5)	0.01906 (17)
07	0.76385 (7)	0.38200 (5)	0.68767 (5)	0.02475 (18)
C1	0.73913 (9)	0.23138 (6)	0.65747 (7)	0.0180 (2)
H1A	0.7920	0.2569	0.6316	0.022*
H1B	0.7697	0.2299	0.7152	0.022*
N2	0.71434 (7)	0.15773 (5)	0.62498 (6)	0.01699 (18)
C3	0.60532 (9)	0.13840 (6)	0.61919 (6)	0.0167 (2)
C3A	0.54746 (8)	0.20432 (5)	0.64506 (6)	0.01519 (19)
H3A	0.5493	0.1979	0.7025	0.018*
C4	0.42576 (9)	0.21450 (6)	0.60303 (6)	0.0169 (2)
H4	0.3945	0.2518	0.6340	0.020*
C5	0.41288 (9)	0.24521 (6)	0.52002 (6)	0.0200 (2)
Н5	0.3329	0.2536	0.4954	0.024*
C6	0.47768 (10)	0.31571 (6)	0.52277 (7)	0.0230 (2)
H6A	0.4495	0.3516	0.5562	0.028*
H6B	0.4667	0.3362	0.4688	0.028*
C7	0.60063 (10)	0.30302 (6)	0.55594 (7)	0.0207 (2)
H7A	0.6400	0.3503	0.5590	0.025*
H7B	0.6300	0.2712	0.5193	0.025*
C7A	0.62497 (9)	0.26789 (5)	0.63798 (6)	0.0160 (2)

C8	0.79927 (9)	0.11026 (6)	0.61369 (6)	0.0165 (2)
C9	0.90772 (9)	0.12300 (6)	0.65522 (7)	0.0196 (2)
Н9	0.9234	0.1630	0.6906	0.023*
C10	0.99269 (10)	0.07721 (6)	0.64477 (7)	0.0220 (2)
H10	1.0662	0.0858	0.6735	0.026*
C11	0.97091 (10)	0.01913 (6)	0.59273 (7)	0.0220 (2)
H11	1.0291	-0.0122	0.5859	0.026*
C12	0.86307 (10)	0.00707 (6)	0.55054 (7)	0.0214 (2)
H12	0.8481	-0.0324	0.5144	0.026*
C13	0.77700 (9)	0.05211 (6)	0.56061 (6)	0.0190 (2)
H13	0.7036	0.0434	0.5316	0.023*
C14	0.35836 (9)	0.14570 (6)	0.60423 (7)	0.0205 (2)
C15	0.33283 (11)	0.04564 (7)	0.68386 (9)	0.0309 (3)
H15A	0.3523	0.0296	0.7391	0.046*
H15B	0.3633	0.0113	0.6510	0.046*
H15C	0.2521	0.0474	0.6659	0.046*
C16	0.40743 (10)	0.17976 (7)	0.39944 (7)	0.0265 (3)
C17	0.46300 (12)	0.11914 (8)	0.36509 (8)	0.0348 (3)
H17A	0.4301	0.1148	0.3085	0.052*
H17B	0.4531	0.0733	0.3917	0.052*
H17C	0.5422	0.1297	0.3726	0.052*
C18	0.68623 (10)	0.37373 (6)	0.71805 (7)	0.0199 (2)
C19	0.65958 (11)	0.42028 (7)	0.78205 (8)	0.0273 (3)
H19A	0.7274	0.4436	0.8115	0.041*
H19B	0.6279	0.3899	0.8180	0.041*
H19C	0.6059	0.4578	0.7586	0.041*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0219 (4)	0.0148 (4)	0.0313 (4)	-0.0026 (3)	0.0054 (3)	-0.0028 (3)
02	0.0248 (4)	0.0285 (5)	0.0336 (5)	-0.0059 (4)	-0.0025 (4)	-0.0037 (4)
03	0.0257 (4)	0.0189 (4)	0.0263 (4)	-0.0069 (3)	0.0080 (3)	-0.0004 (3)
04	0.0203 (4)	0.0270 (4)	0.0184 (4)	0.0050 (3)	0.0018 (3)	-0.0028 (3)
05	0.0446 (6)	0.0527 (7)	0.0259 (5)	0.0213 (5)	-0.0089 (4)	-0.0071 (4)
06	0.0214 (4)	0.0154 (4)	0.0221 (4)	-0.0019 (3)	0.0086 (3)	-0.0049 (3)
07	0.0274 (4)	0.0197 (4)	0.0288 (4)	-0.0068 (3)	0.0099 (4)	-0.0040 (3)
C1	0.0179 (5)	0.0146 (5)	0.0215 (5)	-0.0019 (4)	0.0045 (4)	-0.0033 (4)
N2	0.0161 (4)	0.0130 (4)	0.0216 (4)	-0.0002 (3)	0.0037 (3)	-0.0028 (3)
C3	0.0171 (5)	0.0154 (5)	0.0170 (5)	0.0004 (4)	0.0024 (4)	0.0014 (4)
C3A	0.0159 (5)	0.0141 (4)	0.0155 (5)	-0.0009 (4)	0.0033 (4)	0.0004 (4)
C4	0.0162 (5)	0.0149 (5)	0.0197 (5)	0.0005 (4)	0.0043 (4)	-0.0010 (4)
C5	0.0189 (5)	0.0218 (5)	0.0187 (5)	0.0057 (4)	0.0026 (4)	-0.0001 (4)
C6	0.0276 (6)	0.0197 (5)	0.0219 (5)	0.0043 (4)	0.0058 (4)	0.0064 (4)
C7	0.0251 (6)	0.0176 (5)	0.0206 (5)	-0.0011 (4)	0.0076 (4)	0.0032 (4)
C7A	0.0199 (5)	0.0121 (4)	0.0168 (5)	-0.0010 (4)	0.0062 (4)	-0.0016 (4)
C8	0.0186 (5)	0.0146 (5)	0.0168 (5)	0.0016 (4)	0.0049 (4)	0.0014 (4)
C9	0.0198 (5)	0.0204 (5)	0.0184 (5)	0.0002 (4)	0.0038 (4)	-0.0022 (4)

supporting information

C10	0.0193 (5)	0.0250 (6)	0.0221 (5)	0.0026 (4)	0.0054 (4)	0.0013 (4)
C11	0.0248 (6)	0.0204 (5)	0.0237 (5)	0.0050 (4)	0.0114 (4)	0.0028 (4)
C12	0.0284 (6)	0.0162 (5)	0.0215 (5)	-0.0003 (4)	0.0099 (4)	-0.0008 (4)
C13	0.0223 (5)	0.0159 (5)	0.0190 (5)	-0.0008 (4)	0.0053 (4)	-0.0003 (4)
C14	0.0160 (5)	0.0193 (5)	0.0263 (6)	0.0002 (4)	0.0053 (4)	-0.0027 (4)
C15	0.0310 (7)	0.0203 (6)	0.0432 (8)	-0.0081 (5)	0.0118 (6)	0.0019 (5)
C16	0.0265 (6)	0.0311 (6)	0.0201 (5)	0.0015 (5)	0.0012 (4)	-0.0032 (5)
C17	0.0345 (7)	0.0412 (8)	0.0265 (6)	0.0057 (6)	0.0023 (5)	-0.0109 (6)
C18	0.0236 (5)	0.0140 (5)	0.0222 (5)	-0.0007 (4)	0.0048 (4)	-0.0016 (4)
C19	0.0324 (6)	0.0205 (5)	0.0307 (6)	-0.0020 (5)	0.0104 (5)	-0.0097 (5)

Geometric parameters (Å, °)

01—C3	1.2137 (13)	С6—Н6В	0.9900
O2—C14	1.2034 (14)	C7—C7A	1.5315 (15)
O3—C14	1.3446 (14)	С7—Н7А	0.9900
O3—C15	1.4433 (14)	С7—Н7В	0.9900
O4—C16	1.3438 (14)	C8—C9	1.3964 (15)
O4—C5	1.4536 (13)	C8—C13	1.3970 (15)
O5—C16	1.2066 (15)	C9—C10	1.3893 (15)
O6—C18	1.3548 (13)	С9—Н9	0.9500
O6—C7A	1.4552 (12)	C10-C11	1.3847 (17)
O7—C18	1.2034 (14)	C10—H10	0.9500
C1—N2	1.4705 (13)	C11—C12	1.3915 (17)
C1—C7A	1.5329 (15)	C11—H11	0.9500
C1—H1A	0.9900	C12—C13	1.3897 (16)
C1—H1B	0.9900	C12—H12	0.9500
N2—C3	1.3776 (14)	C13—H13	0.9500
N2—C8	1.4121 (13)	C15—H15A	0.9800
С3—С3А	1.5232 (15)	C15—H15B	0.9800
C3A—C7A	1.5326 (14)	C15—H15C	0.9800
C3A—C4	1.5336 (15)	C16—C17	1.4992 (18)
СЗА—НЗА	1.0000	C17—H17A	0.9800
C4—C14	1.5161 (15)	C17—H17B	0.9800
C4—C5	1.5226 (15)	C17—H17C	0.9800
C4—H4	1.0000	C18—C19	1.4949 (16)
С5—С6	1.5176 (17)	C19—H19A	0.9800
С5—Н5	1.0000	C19—H19B	0.9800
C6—C7	1.5218 (16)	C19—H19C	0.9800
С6—Н6А	0.9900		
C14—O3—C15	115.72 (10)	O6—C7A—C1	112.49 (9)
C16—O4—C5	118.23 (9)	C7—C7A—C1	111.83 (9)
C18—O6—C7A	118.17 (8)	C3A—C7A—C1	102.28 (8)
N2C1C7A	102.29 (8)	C9—C8—C13	119.72 (10)
N2—C1—H1A	111.3	C9—C8—N2	119.05 (9)
C7A—C1—H1A	111.3	C13—C8—N2	121.21 (10)
N2—C1—H1B	111.3	C10—C9—C8	120.05 (10)

C7A—C1—H1B	111.3	С10—С9—Н9	120.0
H1A—C1—H1B	109.2	С8—С9—Н9	120.0
C3—N2—C8	125.34 (9)	C11—C10—C9	120.45 (11)
C3—N2—C1	112.51 (9)	C11—C10—H10	119.8
C8—N2—C1	121.44 (9)	С9—С10—Н10	119.8
O1—C3—N2	126.48 (10)	C10—C11—C12	119.46 (10)
O1—C3—C3A	126.50 (10)	C10-C11-H11	120.3
N2—C3—C3A	106.91 (9)	C12—C11—H11	120.3
C3—C3A—C7A	103.73 (8)	C13—C12—C11	120.83 (10)
C3—C3A—C4	115.66 (9)	C13—C12—H12	119.6
C7A—C3A—C4	115.84 (8)	C11—C12—H12	119.6
С3—С3А—НЗА	107.0	C12—C13—C8	119.48 (10)
С7А—СЗА—НЗА	107.0	С12—С13—Н13	120.3
С4—С3А—НЗА	107.0	C8—C13—H13	120.3
C14—C4—C5	112.22 (9)	O2—C14—O3	124.43 (11)
C14—C4—C3A	112.21 (9)	O2—C14—C4	125.04 (11)
C5—C4—C3A	112.46 (9)	O3—C14—C4	110.47 (9)
C14—C4—H4	106.5	O3—C15—H15A	109.5
C5—C4—H4	106.5	O3—C15—H15B	109.5
C3A—C4—H4	106.5	H15A—C15—H15B	109.5
O4—C5—C6	108.81 (9)	O3—C15—H15C	109.5
O4—C5—C4	106.82 (9)	H15A—C15—H15C	109.5
C6—C5—C4	109.97 (9)	H15B—C15—H15C	109.5
O4—C5—H5	110.4	O5—C16—O4	123.61 (12)
С6—С5—Н5	110.4	O5—C16—C17	126.23 (12)
С4—С5—Н5	110.4	O4—C16—C17	110.16 (10)
C5—C6—C7	111.04 (9)	C16—C17—H17A	109.5
С5—С6—Н6А	109.4	C16—C17—H17B	109.5
С7—С6—Н6А	109.4	H17A—C17—H17B	109.5
С5—С6—Н6В	109.4	C16—C17—H17C	109.5
С7—С6—Н6В	109.4	H17A—C17—H17C	109.5
H6A—C6—H6B	108.0	H17B—C17—H17C	109.5
С6—С7—С7А	113.04 (9)	O7—C18—O6	123.80 (10)
С6—С7—Н7А	109.0	O7—C18—C19	125.60 (11)
С7А—С7—Н7А	109.0	O6—C18—C19	110.60 (10)
С6—С7—Н7В	109.0	C18—C19—H19A	109.5
С7А—С7—Н7В	109.0	C18—C19—H19B	109.5
H7A—C7—H7B	107.8	H19A—C19—H19B	109.5
O6—C7A—C7	111.22 (8)	C18—C19—H19C	109.5
O6—C7A—C3A	105.19 (8)	H19A—C19—H19C	109.5
C7—C7A—C3A	113.38 (9)	H19B—C19—H19C	109.5
C7A—C1—N2—C3	-23.81 (11)	C4—C3A—C7A—O6	82.25 (10)
C7A—C1—N2—C8	165.34 (9)	C3—C3A—C7A—C7	88.38 (10)
C8—N2—C3—O1	-2.61 (18)	C4—C3A—C7A—C7	-39.48 (12)
C1—N2—C3—O1	-173.04 (11)	C3—C3A—C7A—C1	-32.19 (10)
C8—N2—C3—C3A	173.69 (9)	C4—C3A—C7A—C1	-160.05 (9)
C1—N2—C3—C3A	3.26 (12)	N2-C1-C7A-O6	145.93 (8)

O1—C3—C3A—C7A	-164.92 (11)	N2-C1-C7A-C7	-88.07 (10)
N2—C3—C3A—C7A	18.78 (11)	N2—C1—C7A—C3A	33.57 (10)
O1—C3—C3A—C4	-36.95 (15)	C3—N2—C8—C9	-149.57 (11)
N2-C3-C3A-C4	146.75 (9)	C1—N2—C8—C9	20.06 (15)
C3—C3A—C4—C14	51.02 (12)	C3—N2—C8—C13	31.90 (16)
C7A—C3A—C4—C14	172.71 (9)	C1—N2—C8—C13	-158.47 (10)
C3—C3A—C4—C5	-76.63 (11)	C13—C8—C9—C10	-1.15 (16)
C7A—C3A—C4—C5	45.06 (12)	N2-C8-C9-C10	-179.70 (10)
C16—O4—C5—C6	-100.66 (11)	C8—C9—C10—C11	0.60 (17)
C16—O4—C5—C4	140.66 (10)	C9—C10—C11—C12	0.30 (17)
C14—C4—C5—O4	-64.68 (11)	C10-C11-C12-C13	-0.66 (17)
C3A-C4-C5-O4	62.96 (11)	C11—C12—C13—C8	0.11 (16)
C14—C4—C5—C6	177.40 (9)	C9—C8—C13—C12	0.79 (16)
C3A-C4-C5-C6	-54.96 (12)	N2-C8-C13-C12	179.31 (10)
O4—C5—C6—C7	-55.63 (12)	C15—O3—C14—O2	12.04 (17)
C4—C5—C6—C7	61.05 (12)	C15—O3—C14—C4	-170.57 (9)
С5—С6—С7—С7А	-56.34 (13)	C5-C4-C14-O2	-7.30 (16)
C18—O6—C7A—C7	-71.68 (12)	C3A—C4—C14—O2	-135.08 (12)
C18—O6—C7A—C3A	165.19 (9)	C5—C4—C14—O3	175.33 (9)
C18—O6—C7A—C1	54.65 (12)	C3A—C4—C14—O3	47.55 (12)
C6—C7—C7A—O6	-73.57 (11)	C5-04-C16-O5	4.05 (19)
C6—C7—C7A—C3A	44.73 (12)	C5-04-C16-C17	-175.72 (11)
C6—C7—C7A—C1	159.74 (9)	C7A—O6—C18—O7	1.55 (16)
C3—C3A—C7A—O6	-149.89 (8)	C7A—O6—C18—C19	-178.41 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C3A—H3A…O3 ⁱ	1.00	2.55	3.4135 (13)	144
С12—Н12…О2 ^{іі}	0.95	2.46	3.2812 (15)	145

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+1, -y, -z+1.