metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis((*E*)-2-{3-[4-(1*H*-imidazol-1-yl-*κN*³)styryl]-5,5-dimethylcyclohex-2-enylidene}malononitrile)diiodidomercury(II)

Wen-Gang Xi,^{a,b} Zhi-Chao Wu^{a,b} and Hong-Ping Zhou^{a,b}*

^aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and ^bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China Correspondence e-mail: zhpzhp@263.net

Received 21 July 2013; accepted 11 September 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.036; wR factor = 0.092; data-to-parameter ratio = 15.5.

In the title compound, $[HgI_2(C_{22}H_{20}N_4)_2]$, the Hg^{II} cation is situated on a twofold rotation axis and is coordinated by two iodide anions and two imidazolyl N atoms in a distorted tetrahedral geometry. In the crystal, $C-H\cdots I$ interactions link the molecules into chains extending in [010], which are further linked into sheets parallel to (100) through $C-H\cdots N$ hydrogen bonding interactions.

Related literature

For the crystal structure of the organic ligand of the title compound, see: Zheng *et al.* (2013). For mercury(II) complexes in which the Hg(II) cation is four-coordinated by two terminal iodide ions and two N atoms from organic ligands in a distorted tetrahedral geometry, see: Li (2011); Shirvan *et al.* (2012).

 $M_r = 1135.23$

Experimental

Crystal data [HgI₂(C₂₂H₂₀N₄)₂]

Data collection

Bruker SMART APEX CCD	14665 measured reflections
diffractometer	3889 independent reflections
Absorption correction: multi-scan	3647 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.042$
$T_{\min} = 0.320, \ T_{\max} = 0.439$	

Z = 2

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

 $\mu = 4.92 \text{ mm}^{-1}$

T = 298 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	251 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 2.28 \text{ e } \text{\AA}^{-3}$
3889 reflections	$\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots N2^{i}$	0.93	2.70	3.541 (15)	151
$C18-H18\cdots I1^{ii}$	0.93	3.09	3.864 (5)	142

Symmetry codes: (i) $x, -y + 3, z + \frac{1}{2}$; (ii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Program for New Century Excellent Talents in University (China), the Doctoral Program Foundation of the Ministry of Education of China (20113401110004), the National Natural Science Foundation of China (21271003 and 21271004), the Natural Science Foundation of the Education Committee of Anhui Province (KJ2012A024), the Natural Science Foundation of Anhui Province (1208085MB22) and the 211 Project of Anhui University

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CQ2006).

References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Li, T.-L. (2011). Acta Cryst. E67, m1396.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shirvan, S. A., Asghariganjeh, M. R., Aghajeri, M., Haydari Dezfuli, S. & Hossini, F. (2012). Acta Cryst. E68, m303.
- Zheng, Z., Yu, Z. P., Yang, M. D., Jin, F., Zhang, Q., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Org. Chem. 78, 3222–3234.

supporting information

Acta Cryst. (2013). E69, m548 [doi:10.1107/S1600536813025191]

$Bis((E)-2-\{3-[4-(1H-imidazol-1-yl-\kappa N^3) styryl]-5, 5-dimethylcyclohex-2-enyl-idene\}malononitrile) diiodidomercury(II)$

Wen-Gang Xi, Zhi-Chao Wu and Hong-Ping Zhou

S1. Comment

The organic ligand of the title compound has previously been investigated for its optical properties (Zheng *et al.*, 2013). In addition, some mercury(II) complexes in which the Hg(II) cation is four-coordinated by two terminal iodide ions and two nitrogen atoms from organic ligands to form distorted tetrahedral geometry have been reported (Li, 2011; Shirvan *et al.*, 2012). In this study, we report the crystal structure of the title compound (Fig. 1). In the molecular packing structure of the compound, intermolecular C—H···I interactions link the molecules into chains. The neighboring chains are further linked into sheets through C—H···N hydrogen bonding interactions (Fig.2). Intermolecular hydrogen bonds lengths and angles are reported in Table.1.

S2. Experimental

For the preparation of the title compound, a solution of HgI_2 (0.1 g, 0.22 mmol) in methanol (10 mL) was carefully layered on top of the surface of the solution of (*E*)-2-(3-(4-(1*H*-imidazol-1-yl)styryl)-5,5-dimethylcyclohex-2- enylidene) malononitrile (0.15 g, 0.44 mmol) in chloroform (10 mL). Crystals were obtained after a week at about 298 K (yield 0.16 g, 64.0%).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C -H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}$.

Figure 1

The molecular structure of the title molecule. [Symmetry code: #1: -x + 1, y, -z + 3/2].

Figure 2

Packing diagram of the title compound viewed along *b* axis. Intermolecular C—H…I and C—H…N interactions are shown as dashed lines in pink and yellow, respectively.

$Bis((E)-2-\{3-[4-(1H-imidazol-1-yl-\kappa N^3) styryl]-5,5-dimethylcyclohex-2-enylidene\}malononitrile) diiodidomercury(II)$

Crystal data	
$[HgI_2(C_{22}H_{20}N_4)_2]$	<i>b</i> = 6.4890 (9) Å
$M_r = 1135.23$	c = 18.681 (3) Å
Monoclinic, $P2/c$	$\beta = 103.896 \ (10)^{\circ}$
Hall symbol: -P 2yc	V = 2208.5 (5) Å ³
a = 18.768 (3) Å	Z = 2

F(000) = 1092 $D_x = 1.707 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ $\mu = 4.92 \text{ mm}^{-1}$

Data collection

Dura concerion	
Bruker SMART APEX CCD	14665 measured reflections
diffractometer	3889 independent reflections
Radiation source: fine-focus sealed tube	3647 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 22$
(SADABS; Bruker, 2002)	$k = -7 \rightarrow 7$
$T_{\min} = 0.320, \ T_{\max} = 0.439$	$l = -22 \rightarrow 22$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.04	H-atom parameters constrained
3889 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0496P)^2 + 4.7641P]$
251 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.28 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 298 K

Block, red

 $0.30 \times 0.20 \times 0.20$ mm

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.5000	-0.05717 (4)	0.7500	0.04225 (11)	
I1	0.40548 (2)	-0.27343 (6)	0.811929 (18)	0.05948 (14)	
N1	0.0943 (6)	2.1499 (14)	0.1997 (5)	0.136 (4)	
N2	0.2337 (6)	1.6553 (14)	0.1582 (5)	0.125 (3)	
N3	0.4072 (2)	0.4228 (6)	0.5797 (2)	0.0361 (8)	
N4	0.4591 (2)	0.1711 (6)	0.6528 (2)	0.0393 (9)	
C1	0.2004 (5)	1.7214 (12)	0.1961 (4)	0.083 (2)	
C2	0.1228 (5)	1.9987 (13)	0.2193 (5)	0.081 (2)	
C3	0.1591 (3)	1.8091 (9)	0.2440 (4)	0.0589 (15)	
C4	0.1556 (3)	1.7198 (8)	0.3090 (3)	0.0465 (12)	
C5	0.1146 (3)	1.8174 (9)	0.3589 (3)	0.0541 (13)	
H5A	0.0727	1.8906	0.3293	0.065*	

	0.1461	1 0170	0.2007	0.005*
НЭВ	0.1461	1.91/9	0.3896	0.065*
C6	0.0875 (3)	1.6647 (9)	0.4086 (3)	0.0521 (13)
C7	0.0272 (4)	1.5276 (13)	0.3621 (4)	0.0748 (19)
H7A	0.0469	1.4494	0.3277	0.112*
H7B	-0.0124	1.6123	0.3356	0.112*
H7C	0.0092	1.4352	0.3939	0.112*
C8	0.0573 (5)	1.7859 (13)	0.4649 (4)	0.088 (2)
H8A	0.0171	1.8704	0.4396	0.132*
H8B	0.0953	1.8718	0.4935	0.132*
H8C	0.0406	1.6918	0.4969	0.132*
C9	0.1524 (3)	1.5320 (8)	0.4483 (3)	0.0501 (13)
H9A	0.1849	1.6155	0.4853	0.060*
H9B	0.1341	1.4208	0.4736	0.060*
C10	0.1955 (3)	1.4417 (7)	0.3981 (3)	0.0419 (11)
C11	0.1948 (3)	1.5315 (8)	0.3326 (3)	0.0474 (12)
H11	0.2206	1.4693	0.3017	0.057*
C12	0.2392 (3)	1.2574 (8)	0.4195 (3)	0.0471 (12)
H12	0.2619	1.2009	0.3849	0.057*
C13	0.2497 (3)	1.1623 (8)	0.4841 (3)	0.0454 (11)
H13	0.2279	1.2220	0.5188	0.055*
C14	0.2919 (3)	0.9732 (7)	0.5066 (3)	0.0421 (11)
C15	0.3278 (3)	0.8633 (8)	0.4615 (3)	0.0487 (12)
H15	0.3264	0.9124	0.4145	0.058*
C16	0.3653 (3)	0.6840 (8)	0.4851 (3)	0.0461 (12)
H16	0.3890	0.6139	0.4540	0.055*
C17	0.3677 (3)	0.6079 (7)	0.5546 (2)	0.0366 (10)
C18	0.3317 (3)	0.7111 (8)	0.6003 (3)	0.0469 (12)
H18	0.3324	0.6597	0.6470	0.056*
C19	0.2945 (3)	0.8915 (8)	0.5759 (3)	0.0485 (12)
H19	0.2705	0.9605	0.6069	0.058*
C20	0.4439 (3)	0.3009 (9)	0.5405 (3)	0.0488 (12)
H20	0.4467	0.3207	0.4920	0.059*
C21	0.4750 (3)	0.1469 (8)	0.5857 (3)	0.0476 (12)
H21	0.5030	0.0407	0.5732	0.057*
C22	0.4183 (3)	0.3371 (7)	0.6475 (3)	0.0413 (11)
H22	0.3995	0.3893	0.6856	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0579 (2)	0.04093 (17)	0.03286 (16)	0.000	0.02053 (12)	0.000
I1	0.0757 (3)	0.0706 (3)	0.0394 (2)	-0.0295 (2)	0.02794 (18)	-0.01058 (15)
N1	0.165 (8)	0.101 (6)	0.144 (8)	0.062 (6)	0.038 (6)	0.065 (6)
N2	0.177 (8)	0.111 (6)	0.123 (6)	0.046 (6)	0.104 (7)	0.048 (5)
N3	0.040 (2)	0.037 (2)	0.0310 (19)	-0.0014 (16)	0.0078 (16)	0.0001 (15)
N4	0.054 (2)	0.035 (2)	0.0290 (18)	0.0050 (18)	0.0109 (17)	0.0047 (15)
C1	0.102 (6)	0.079 (5)	0.079 (5)	0.022 (4)	0.046 (5)	0.039 (4)
C2	0.094 (6)	0.073 (4)	0.078 (5)	0.021 (4)	0.021 (4)	0.030 (4)

C3	0.056 (3)	0.055 (3)	0.068 (4)	0.009 (3)	0.018 (3)	0.021 (3)
C4	0.039 (3)	0.044 (3)	0.054 (3)	0.001 (2)	0.008 (2)	0.008 (2)
C5	0.058 (3)	0.042 (3)	0.062 (3)	0.009 (2)	0.014 (3)	0.004 (2)
C6	0.049 (3)	0.055 (3)	0.054 (3)	0.005 (3)	0.017 (2)	-0.001 (3)
C7	0.048 (4)	0.090 (5)	0.085 (5)	-0.011 (3)	0.014 (3)	0.004 (4)
C8	0.105 (6)	0.091 (5)	0.081 (5)	0.036 (5)	0.047 (5)	0.005 (4)
C9	0.058 (3)	0.045 (3)	0.047 (3)	-0.001 (2)	0.013 (3)	0.001 (2)
C10	0.038 (3)	0.037 (3)	0.048 (3)	-0.0038 (19)	0.006 (2)	0.002 (2)
C11	0.049 (3)	0.043 (3)	0.053 (3)	0.003 (2)	0.018 (2)	0.008 (2)
C12	0.050 (3)	0.041 (3)	0.053 (3)	0.001 (2)	0.018 (2)	0.005 (2)
C13	0.050 (3)	0.040 (3)	0.046 (3)	0.000 (2)	0.010(2)	-0.002 (2)
C14	0.046 (3)	0.037 (2)	0.041 (3)	-0.002 (2)	0.007 (2)	0.002 (2)
C15	0.060 (3)	0.046 (3)	0.043 (3)	0.003 (3)	0.019 (2)	0.012 (2)
C16	0.055 (3)	0.046 (3)	0.043 (3)	0.007 (2)	0.023 (2)	0.007 (2)
C17	0.041 (3)	0.033 (2)	0.033 (2)	-0.002 (2)	0.0049 (19)	-0.0004 (18)
C18	0.062 (3)	0.048 (3)	0.030(2)	0.006 (2)	0.011 (2)	0.003 (2)
C19	0.059 (3)	0.048 (3)	0.039 (3)	0.012 (3)	0.013 (2)	-0.002 (2)
C20	0.063 (3)	0.055 (3)	0.033 (2)	0.013 (3)	0.020 (2)	0.006 (2)
C21	0.061 (3)	0.049 (3)	0.037 (2)	0.015 (3)	0.019 (2)	0.002 (2)
C22	0.054 (3)	0.040 (3)	0.034 (2)	0.002 (2)	0.018 (2)	0.0008 (19)

Geometric parameters (Å, °)

Hg1—N4 ⁱ	2.326 (4)	C8—H8B	0.9600
Hg1—N4	2.326 (4)	C8—H8C	0.9600
Hg1—I1 ⁱ	2.7277 (4)	C9—C10	1.499 (8)
Hg1—I1	2.7277 (4)	С9—Н9А	0.9700
N1-C2	1.135 (10)	С9—Н9В	0.9700
N2—C1	1.135 (10)	C10—C11	1.351 (7)
N3—C22	1.353 (6)	C10—C12	1.451 (7)
N3—C20	1.371 (6)	C11—H11	0.9300
N3—C17	1.430 (6)	C12—C13	1.328 (7)
N4—C22	1.311 (6)	C12—H12	0.9300
N4—C21	1.366 (6)	C13—C14	1.466 (7)
C1—C3	1.435 (10)	C13—H13	0.9300
С2—С3	1.429 (9)	C14—C19	1.389 (7)
C3—C4	1.362 (8)	C14—C15	1.394 (8)
C4—C11	1.440 (7)	C15—C16	1.375 (7)
C4—C5	1.486 (8)	C15—H15	0.9300
C5—C6	1.525 (8)	C16—C17	1.380 (7)
С5—Н5А	0.9700	C16—H16	0.9300
С5—Н5В	0.9700	C17—C18	1.384 (7)
С6—С8	1.527 (9)	C18—C19	1.383 (7)
С6—С9	1.529 (8)	C18—H18	0.9300
С6—С7	1.535 (9)	C19—H19	0.9300
С7—Н7А	0.9600	C20—C21	1.348 (7)
С7—Н7В	0.9600	C20—H20	0.9300
С7—Н7С	0.9600	C21—H21	0.9300

supporting information

С8—Н8А	0.9600	С22—Н22	0.9300
N4 ⁱ —Hg1—N4	100.90 (19)	С10—С9—Н9А	108.8
N4 ⁱ —Hg1—I1 ⁱ	122.15 (10)	С6—С9—Н9А	108.8
N4—Hg1—I1 ⁱ	97.07 (10)	С10—С9—Н9В	108.8
N4 ⁱ —Hg1—I1	97.07 (10)	С6—С9—Н9В	108.8
N4—Hg1—I1	122.15 (10)	H9A—C9—H9B	107.7
I1 ⁱ —Hg1—I1	118.08 (2)	C11—C10—C12	119.1 (5)
C22—N3—C20	106.1 (4)	C11—C10—C9	120.6 (5)
C22—N3—C17	127.2 (4)	C12—C10—C9	120.3 (5)
C20—N3—C17	126.6 (4)	C10—C11—C4	122.4 (5)
C22—N4—C21	106.1 (4)	C10—C11—H11	118.8
C22—N4—Hg1	131.2 (3)	C4—C11—H11	118.8
C21—N4—Hg1	122.6 (3)	C13—C12—C10	125.7 (5)
N2-C1-C3	178.8 (10)	C13—C12—H12	117.1
N1—C2—C3	179.6 (10)	C10—C12—H12	117.1
C4—C3—C2	122.2 (6)	C12—C13—C14	127.0 (5)
C4—C3—C1	122.5 (5)	C12—C13—H13	116.5
C2—C3—C1	115.3 (6)	C14—C13—H13	116.5
C3—C4—C11	120.2 (5)	C19—C14—C15	117.0 (5)
C3—C4—C5	121.4 (5)	C19—C14—C13	118.8 (5)
C11—C4—C5	118.3 (5)	C15—C14—C13	124.1 (5)
C4—C5—C6	113.7 (5)	C16—C15—C14	121.6 (5)
C4—C5—H5A	108.8	С16—С15—Н15	119.2
C6—C5—H5A	108.8	C14—C15—H15	119.2
C4—C5—H5B	108.8	C15—C16—C17	120.2 (5)
С6—С5—Н5В	108.8	C15—C16—H16	119.9
H5A—C5—H5B	107.7	С17—С16—Н16	119.9
C5—C6—C8	108.5 (5)	C16—C17—C18	119.8 (5)
C5—C6—C9	108.6 (5)	C16—C17—N3	120.5 (4)
C8—C6—C9	109.8 (5)	C18—C17—N3	119.7 (4)
C5—C6—C7	109.9 (5)	C19—C18—C17	119.2 (5)
C8—C6—C7	110.0 (6)	C19—C18—H18	120.4
C9—C6—C7	110.0 (5)	C17—C18—H18	120.4
С6—С7—Н7А	109.5	C18—C19—C14	122.2 (5)
С6—С7—Н7В	109.5	C18—C19—H19	118.9
H7A—C7—H7B	109.5	C14—C19—H19	118.9
С6—С7—Н7С	109.5	C21—C20—N3	106.9 (4)
H7A—C7—H7C	109.5	C21—C20—H20	126.5
H7B—C7—H7C	109.5	N3—C20—H20	126.5
C6—C8—H8A	109.5	C20—C21—N4	109.4 (4)
С6—С8—Н8В	109.5	C20—C21—H21	125.3
H8A—C8—H8B	109.5	N4—C21—H21	125.3
С6—С8—Н8С	109.5	N4—C22—N3	111.4 (4)
H8A—C8—H8C	109.5	N4—C22—H22	124.3
H8B—C8—H8C	109.5	N3—C22—H22	124.3
C10—C9—C6	113.8 (5)	-	

N4 ⁱ —Hg1—N4—C22	-46.1 (4)	C11—C10—C12—C13	174.5 (5)
I1 ⁱ —Hg1—N4—C22	-170.9 (4)	C9—C10—C12—C13	-5.0 (8)
I1—Hg1—N4—C22	59.5 (5)	C10-C12-C13-C14	178.3 (5)
N4 ⁱ —Hg1—N4—C21	134.9 (4)	C12-C13-C14-C19	-177.6 (5)
I1 ⁱ —Hg1—N4—C21	10.1 (4)	C12—C13—C14—C15	-0.3 (9)
I1—Hg1—N4—C21	-119.5 (4)	C19—C14—C15—C16	-1.1 (8)
N1—C2—C3—C4	113 (100)	C13—C14—C15—C16	-178.4 (5)
N1-C2-C3-C1	-67 (100)	C14—C15—C16—C17	0.3 (8)
N2—C1—C3—C4	-128 (47)	C15—C16—C17—C18	0.7 (8)
N2-C1-C3-C2	51 (48)	C15-C16-C17-N3	-179.3 (5)
C2—C3—C4—C11	-178.3 (6)	C22—N3—C17—C16	175.5 (5)
C1—C3—C4—C11	0.8 (10)	C20—N3—C17—C16	-1.7 (8)
C2—C3—C4—C5	-1.2 (10)	C22—N3—C17—C18	-4.6 (7)
C1—C3—C4—C5	177.9 (7)	C20—N3—C17—C18	178.2 (5)
C3—C4—C5—C6	154.3 (6)	C16—C17—C18—C19	-1.0 (8)
C11—C4—C5—C6	-28.5 (7)	N3-C17-C18-C19	179.1 (5)
C4—C5—C6—C8	171.2 (6)	C17—C18—C19—C14	0.1 (9)
C4—C5—C6—C9	51.9 (6)	C15-C14-C19-C18	0.9 (8)
C4—C5—C6—C7	-68.5 (7)	C13-C14-C19-C18	178.4 (5)
C5-C6-C9-C10	-49.4 (6)	C22—N3—C20—C21	0.4 (6)
C8—C6—C9—C10	-167.9 (5)	C17—N3—C20—C21	178.1 (5)
C7—C6—C9—C10	70.9 (6)	N3-C20-C21-N4	-0.5 (7)
C6—C9—C10—C11	23.9 (7)	C22—N4—C21—C20	0.4 (6)
C6-C9-C10-C12	-156.7 (5)	Hg1-N4-C21-C20	179.7 (4)
C12—C10—C11—C4	-177.0 (5)	C21—N4—C22—N3	-0.2 (6)
C9—C10—C11—C4	2.4 (8)	Hg1—N4—C22—N3	-179.3 (3)
C3—C4—C11—C10	177.1 (6)	C20—N3—C22—N4	-0.2 (6)
C5—C4—C11—C10	-0.1 (8)	C17—N3—C22—N4	-177.8 (4)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
C13—H13…N2 ⁱⁱ	0.93	2.70	3.541 (15)	151
C18—H18…I1 ⁱⁱⁱ	0.93	3.09	3.864 (5)	142

Symmetry codes: (ii) *x*, -*y*+3, *z*+1/2; (iii) *x*, *y*+1, *z*.