

Acta Crystallographica Section E

#### **Structure Reports**

**Online** 

ISSN 1600-5368

# 4-{(*E*)-[2-(Pyridin-3-ylcarbonyl)-hydrazinylidene]methyl}phenyl acetate

## Riya Datta,<sup>a</sup> V. Ramya,<sup>a</sup> M. Sithambaresan<sup>b\*</sup> and M. R. Prathapachandra Kurup<sup>c</sup>

<sup>a</sup>Department of Chemistry, Christ University, Hosur Road, Bangalore 560 029, India, <sup>b</sup>Department of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and <sup>c</sup>Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India Correspondence e-mail: eesans@yahoo.com

Received 25 August 2013; accepted 9 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma(C-C) = 0.003 \text{ Å}$ ; R factor = 0.049; wR factor = 0.140; data-to-parameter ratio = 17.1.

The title compound,  $C_{15}H_{13}N_3O_3$ , exists in the E conformation with respect to the azomethane C=N double bond. The pyridyl and phenyl rings form dihedral angles of 35.67 (8) and 36.65 (7)°, respectively with the central  $C(=O)N_2C$  unit. In the crystal,  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds connect the molecules into chains along the b axis. Another  $C-H\cdots O$  interaction connects molecules along the c-axis direction, forming layers.

#### **Related literature**

For biological applications of benzohydrazones and their derivatives, see: Sreeja *et al.* (2004); Rakha *et al.* (1996); Takahama (1996). For the synthesis of related compounds, see: Emmanuel *et al.* (2011). For related structures, see: Reshma *et al.* (2012).

#### **Experimental**

Crystal data

 $\begin{array}{lll} C_{18}H_{13}N_3O_3 & b = 5.0859 \ (10) \ \mathring{A} \\ M_r = 283.28 & c = 18.408 \ (5) \ \mathring{A} \\ \text{Monoclinic, } P2_1/n & \beta = 115.311 \ (9)^\circ \\ a = 16.347 \ (4) \ \mathring{A} & V = 1383.6 \ (6) \ \mathring{A}^3 \end{array}$ 

Z = 4 T = 296 K Mo  $K\alpha$  radiation  $\mu$  = 0.10 mm $^{-1}$ 

Data collection

Bruker Kappa APEXII CCD 9585 measured reflections 3325 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2004)  $T_{\min} = 0.953, \ T_{\max} = 0.976$   $R_{\text{int}} = 0.023$ 

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.049 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.140 & \text{independent and constrained} \\ S=1.04 & \text{refinement} \\ 3325 \text{ reflections} & \Delta\rho_{\max}=0.31 \text{ e Å}^{-3} \\ 1 \text{ restraint} & \Delta\rho_{\min}=-0.25 \text{ e Å}^{-3} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D$ $ H$ $\cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|--------------------------------|----------|-------------------------|-------------------------|------------------------|
| $N2-H2'\cdots O1^{i}$          | 0.87 (1) | 2.08 (1)                | 2.9107 (18)             | 162 (2)                |
| $C7-H7\cdots O1^{i}$           | 0.93     | 2.48                    | 3.251 (2)               | 140                    |
| $C15-H15C\cdots O3^{ii}$       | 0.96     | 2.55                    | 3.469 (4)               | 161                    |

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the diffraction measurements. RV and RD thank Christ University, Bangalore, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2641).

#### References

Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2004). *APEX2*, *SAINT*, *XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Rakha, T. H., Ibrahim, K. M., Abdallah, A. M. & Hassanian, M. M. (1996).
Synth. React. Inorg. Met.-Org. Chem. 26, 1113–1123.

Reshma, P. R., Sithambaresan, M. & Kurup, M. R. P. (2012). *Acta Cryst.* E68, o2821–o2822.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.

Takahama, U. (1996). *Physiol. Plant.* **98**, 731–736. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

Acta Cryst. (2013). E69, o1549 [doi:10.1107/S1600536813025075]

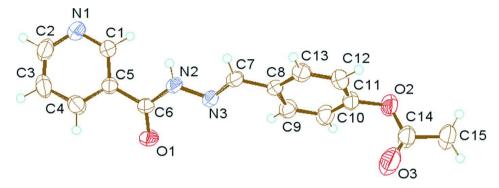
### 4-{(*E*)-[2-(Pyridin-3-ylcarbonyl)hydrazinylidene]methyl}phenyl acetate

### Riya Datta, V. Ramya, M. Sithambaresan and M. R. Prathapachandra Kurup

#### S1. Comment

Hydrazone derivatives show excellent spectrum of biological activities (Sreeja *et al.*, 2004). The chemical and pharmacological properties of aroylhydrazones have been extensively investigated recently owing to their potential application as antineoplastic, antiviral and antiinflammatory agents (Rakha *et al.*, 1996; Takahama, 1996).

The compound (Fig. 1) crystallizes in the monoclinic space group  $P2_1/n$ . This molecule adopts an E configuration with respect to the C7=N3 bond and it exists in the amido form with a C6=O1 bond length of 1.2277 (18) Å which is very close to the reported C=O bond length of a related structure (Reshma *et al.*, 2012). The O1 and N2 atoms are in a E configuration with respect to C6–N2 having a torsion angle of 9.9 (3)°. The central C(=O)N<sub>2</sub>C unit has dihedral angles of 35.67 (8) and 36.65 (7)°, respectively with the pyridyl and the phenyl rings.


There is a classical intermolecular N–H···O hydrogen bond interaction between the H atom attached at the N2 and O1 atom of neighbouring molecule with D···A distance of 2.9107 (18) Å and two C–H···O hydrogen bond interactions (Fig. 2) between the H atoms attached at the C7 & C15 and O1 & O3 atoms of neighbouring molecules with D···A distances of 3.251 (2) and 3.469 (4) Å, respectively. The classical hydrogen bond together with C–H···O interaction connect the molecules along b axis while the other C–H···O interaction chain the molecules along b axis in the crystal system. Four types of C–H··· $\pi$  interactions are also found in the molecular system (Fig. 3) with H···Cg distances of 3.1267, 3.2825, 3.3911 and 3.1984 Å forming a three-dimensional-supramolecular architecture together with the intermolecular hydrogen bonding interactions. Although there are very weak short ring interactions found in the crystal system, they are not significant to support the network since centroid-centroid distances are above 4 Å. Fig. 4 shows a packing diagram of the title compound viewed along the b axis.

#### **S2. Experimental**

The title compound was prepared by adapting a reported procedure (Emmanuel *et al.*, 2011). A solution of pyridine-3-carbohydrazide (0.137 g, 1 mmol) in ethanol (10 ml) was mixed with a methanolic solution (10 ml) of 4-formylphenyl acetate (0.164 g, 1 mmol). The mixture was refluxed for 6 h after adding few drops of glacial acetic acid and then cooled to room temperature. The formed crystals were collected, washed with few drops of methanol and dried over  $P_4O_{10}$  *in vacuo*. Colorless block shaped crystals, suitable for SXRD studies, were obtained after slow evaporation of the solution in air for a few days.

#### S3. Refinement

The atom H2' was located from a difference Fourier map and N—H3' distance was restrained to  $0.88\pm0.01$  Å. The H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93-0.96 Å. H atoms were assigned as  $U_{iso}(H)=1.2$ Ueq(carrier) or 1.5Ueq (methyl C). Omitted owing to bad disagreement were the reflections (0 0 2) and (-1 0 1).



**Figure 1** *ORTEP* view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.

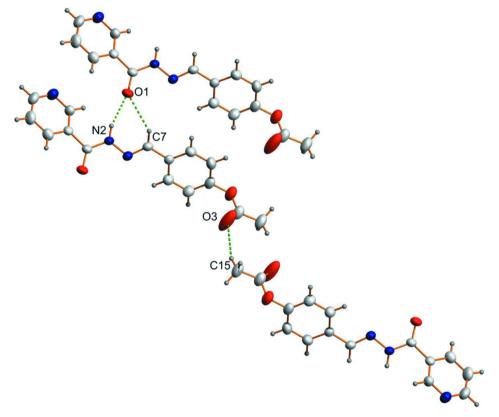



Figure 2  $\label{eq:Hydrogen-bonding} \mbox{ Hydrogen-bonding interactions in the crystal structure of $C_{15}H_{13}N_3O_3$.}$ 

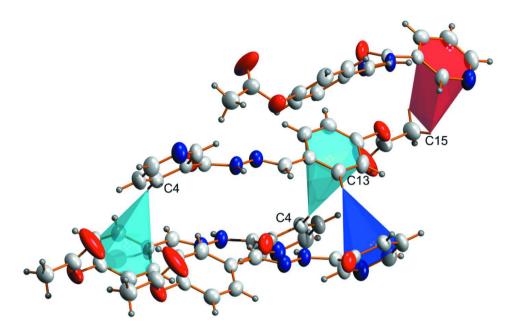
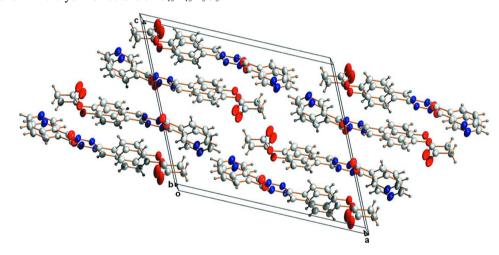




Figure 3  $\pi \cdots \pi \text{ interactions in the crystal structure of } C_{15}H_{13}N_3O_3.$ 



**Figure 4** Packing diagram of the compound along the *b* axis.

#### 4-{(E)-[2-(Pyridin-3-ylcarbonyl)hydrazinylidene]methyl}phenyl acetate

| Crystal data                  |
|-------------------------------|
| $C_{15}H_{13}N_3O_3$          |
| $M_r = 283.28$                |
| Monoclinic, $P2_1/n$          |
| Hall symbol: -P 2yn           |
| a = 16.347 (4)  Å             |
| b = 5.0859 (10)  Å            |
| c = 18.408 (5)  Å             |
| $\beta = 115.311 (9)^{\circ}$ |
| $V = 1383.6 (6) \text{ Å}^3$  |
| Z = 4                         |

F(000) = 592  $D_x = 1.360 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2983 reflections  $\theta = 2.8-26.9^{\circ}$   $\mu = 0.10 \text{ mm}^{-1}$  T = 296 KBlock, colorless  $0.50 \times 0.30 \times 0.25 \text{ mm}$ 

Acta Cryst. (2013). E**69**, o1549

#### Data collection

Bruker Kappa APEXII CCD diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 8.33 pixels mm<sup>-1</sup>

 $\omega$  and  $\varphi$  scan

Absorption correction: multi-scan (*SADABS*; Bruker, 2004)

 $T_{\min} = 0.953, T_{\max} = 0.976$ 

Refinement

Refinement on  $F^2$ 

Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.049$ 

 $wR(F^2) = 0.140$ 

S = 1.04

3325 reflections

195 parameters

1 restraint

Primary atom site location: structure-invariant

direct methods

9585 measured reflections 3325 independent reflections

2288 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.023$ 

 $\theta_{\text{max}} = 28.0^{\circ}, \, \theta_{\text{min}} = 2.2^{\circ}$ 

 $h = -21 \rightarrow 19$ 

 $k = -6 \rightarrow 6$ 

 $l = -23 \rightarrow 24$ 

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0632P)^2 + 0.3098P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$ 

 $\Delta \rho_{\rm max} = 0.31 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\min} = -0.25 \text{ e Å}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|    | x            | y           | Z             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|-------------|---------------|-----------------------------|--|
| O1 | 0.62319 (9)  | -0.2235 (2) | -0.00860 (7)  | 0.0554 (4)                  |  |
| O2 | 0.64307 (10) | 0.4099 (3)  | 0.44141 (7)   | 0.0639 (4)                  |  |
| N1 | 0.72016 (12) | 0.3431 (3)  | -0.15907 (10) | 0.0597 (4)                  |  |
| N2 | 0.62677 (10) | 0.2123 (3)  | 0.01908 (8)   | 0.0427 (3)                  |  |
| N3 | 0.62691 (10) | 0.1739(3)   | 0.09359 (8)   | 0.0420(3)                   |  |
| C1 | 0.70076 (13) | 0.2839 (3)  | -0.09748(10)  | 0.0477 (4)                  |  |
| H1 | 0.7253       | 0.3894      | -0.0519       | 0.057*                      |  |
| C2 | 0.68290 (15) | 0.1905 (4)  | -0.22385(11)  | 0.0603 (5)                  |  |
| H2 | 0.6949       | 0.2292      | -0.2677       | 0.072*                      |  |
| C3 | 0.62814 (14) | -0.0194(4)  | -0.22982 (11) | 0.0596 (5)                  |  |
| Н3 | 0.6035       | -0.1191     | -0.2766       | 0.071*                      |  |
| C4 | 0.61008 (12) | -0.0806(4)  | -0.16510(10)  | 0.0493 (4)                  |  |
| H4 | 0.5741       | -0.2244     | -0.1671       | 0.059*                      |  |
| C5 | 0.64659 (11) | 0.0761 (3)  | -0.09706(9)   | 0.0365 (4)                  |  |
| C6 | 0.63100 (11) | 0.0061 (3)  | -0.02519 (10) | 0.0380 (4)                  |  |

| C7   | 0.60960 (11) | 0.3795 (3) | 0.12422 (10) | 0.0403 (4)  |
|------|--------------|------------|--------------|-------------|
| H7   | 0.5928       | 0.5334     | 0.0942       | 0.048*      |
| C8   | 0.61583 (10) | 0.3768 (3) | 0.20592 (9)  | 0.0373 (4)  |
| C9   | 0.66527 (12) | 0.1856 (3) | 0.26163 (10) | 0.0457 (4)  |
| H9   | 0.6934       | 0.0516     | 0.2464       | 0.055*      |
| C10  | 0.67294 (12) | 0.1932 (4) | 0.33914 (10) | 0.0510(4)   |
| H10  | 0.7064       | 0.0660     | 0.3762       | 0.061*      |
| C11  | 0.63065 (12) | 0.3906 (4) | 0.36095 (10) | 0.0477 (4)  |
| C12  | 0.58098 (13) | 0.5817 (4) | 0.30759 (12) | 0.0537 (5)  |
| H12  | 0.5522       | 0.7130     | 0.3232       | 0.064*      |
| C13  | 0.57459 (13) | 0.5752 (3) | 0.23019 (11) | 0.0485 (4)  |
| H13  | 0.5422       | 0.7056     | 0.1939       | 0.058*      |
| C14  | 0.59039 (13) | 0.2668 (4) | 0.46456 (11) | 0.0568 (5)  |
| C15  | 0.61036 (14) | 0.3114 (5) | 0.55032 (11) | 0.0647 (6)  |
| H15A | 0.6115       | 0.4968     | 0.5605       | 0.097*      |
| H15B | 0.6681       | 0.2362     | 0.5840       | 0.097*      |
| H15C | 0.5643       | 0.2299     | 0.5619       | 0.097*      |
| H2'  | 0.6234 (12)  | 0.369 (2)  | -0.0002 (10) | 0.048 (5)*  |
| O3   | 0.53569 (15) | 0.1229 (5) | 0.41928 (11) | 0.1332 (10) |
|      |              |            |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|           | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----------|-------------|-------------|-------------|--------------|-------------|--------------|
| 01        | 0.0910 (10) | 0.0271 (6)  | 0.0590(8)   | -0.0011 (6)  | 0.0423 (7)  | 0.0038 (5)   |
| O2        | 0.0756 (9)  | 0.0812 (10) | 0.0411 (7)  | -0.0283 (8)  | 0.0308 (7)  | -0.0160(7)   |
| N1        | 0.0870 (12) | 0.0523 (9)  | 0.0551 (9)  | -0.0080(8)   | 0.0450 (9)  | 0.0004(8)    |
| N2        | 0.0680 (9)  | 0.0283 (7)  | 0.0422 (8)  | 0.0018 (6)   | 0.0335 (7)  | 0.0051 (6)   |
| N3        | 0.0589 (9)  | 0.0354(7)   | 0.0401(7)   | -0.0009(6)   | 0.0292 (6)  | 0.0034(6)    |
| C1        | 0.0674 (11) | 0.0391 (9)  | 0.0435 (9)  | -0.0065(8)   | 0.0304 (9)  | -0.0046(7)   |
| C2        | 0.0835 (14) | 0.0644 (12) | 0.0435 (10) | 0.0063 (11)  | 0.0373 (10) | 0.0064 (9)   |
| C3        | 0.0724 (13) | 0.0663 (13) | 0.0356 (9)  | 0.0018 (10)  | 0.0189 (9)  | -0.0102(9)   |
| C4        | 0.0540 (10) | 0.0445 (9)  | 0.0458 (10) | -0.0027(8)   | 0.0180(8)   | -0.0067(8)   |
| <b>C5</b> | 0.0452 (8)  | 0.0296 (7)  | 0.0353 (8)  | 0.0060(6)    | 0.0178 (7)  | 0.0034(6)    |
| C6        | 0.0484 (9)  | 0.0280(8)   | 0.0399(8)   | 0.0014(6)    | 0.0209(7)   | 0.0037 (6)   |
| <b>C7</b> | 0.0502 (9)  | 0.0336(8)   | 0.0426 (9)  | -0.0010(7)   | 0.0252 (7)  | 0.0053 (7)   |
| C8        | 0.0429 (8)  | 0.0349 (8)  | 0.0403 (8)  | -0.0055(6)   | 0.0237 (7)  | -0.0007(6)   |
| <b>C9</b> | 0.0494 (9)  | 0.0449 (9)  | 0.0471 (10) | 0.0039 (7)   | 0.0248 (8)  | 0.0017 (8)   |
| C10       | 0.0560 (10) | 0.0550 (11) | 0.0404 (9)  | 0.0027 (8)   | 0.0190(8)   | 0.0061 (8)   |
| C11       | 0.0543 (10) | 0.0549 (11) | 0.0384 (9)  | -0.0167(8)   | 0.0240(8)   | -0.0100(8)   |
| C12       | 0.0691 (12) | 0.0469 (10) | 0.0570 (11) | -0.0012(9)   | 0.0384 (10) | -0.0091(9)   |
| C13       | 0.0602 (11) | 0.0388 (9)  | 0.0513 (10) | 0.0034 (8)   | 0.0285 (8)  | 0.0018 (8)   |
| C14       | 0.0563 (11) | 0.0758 (13) | 0.0406 (9)  | -0.0116 (10) | 0.0230 (8)  | -0.0064(9)   |
| C15       | 0.0679 (13) | 0.0904 (16) | 0.0411 (10) | -0.0038 (11) | 0.0282 (9)  | -0.0026 (10) |
| )3        | 0.1493 (18) | 0.203(2)    | 0.0656 (11) | -0.1225(18)  | 0.0636 (12) | -0.0513(13)  |

| Geometric parameters (Å, | °)          |               |             |
|--------------------------|-------------|---------------|-------------|
| O1—C6                    | 1.2277 (18) | C7—C8         | 1.463 (2)   |
| O2—C14                   | 1.329 (2)   | C7—H7         | 0.9300      |
| O2—C11                   | 1.410 (2)   | C8—C13        | 1.389 (2)   |
| N1—C2                    | 1.332 (3)   | C8—C9         | 1.394 (2)   |
| N1—C1                    | 1.336 (2)   | C9—C10        | 1.378 (2)   |
| N2—C6                    | 1.348 (2)   | С9—Н9         | 0.9300      |
| N2—N3                    | 1.3844 (19) | C10—C11       | 1.373 (3)   |
| N2—H2'                   | 0.866 (9)   | C10—H10       | 0.9300      |
| N3—C7                    | 1.276 (2)   | C11—C12       | 1.374 (3)   |
| C1—C5                    | 1.381 (2)   | C12—C13       | 1.384 (3)   |
| C1—H1                    | 0.9300      | C12—H12       | 0.9300      |
| C2—C3                    | 1.367 (3)   | C13—H13       | 0.9300      |
| C2—H2                    | 0.9300      | C14—O3        | 1.180 (2)   |
| C3—C4                    | 1.380(3)    | C14—C15       | 1.486 (3)   |
| C3—H3                    | 0.9300      | C15—H15A      | 0.9600      |
| C4—C5                    | 1.386 (2)   | C15—H15B      | 0.9600      |
| C4—H4                    | 0.9300      | C15—H15C      | 0.9600      |
| C5—C6                    | 1.493 (2)   |               |             |
| C14—O2—C11               | 118.47 (14) | C13—C8—C9     | 118.60 (16) |
| C2—N1—C1                 | 116.41 (17) | C13—C8—C7     | 119.60 (15) |
| C6—N2—N3                 | 120.70 (13) | C9—C8—C7      | 121.75 (15) |
| C6—N2—H2'                | 118.8 (12)  | C10—C9—C8     | 120.64 (16) |
| N3—N2—H2'                | 120.5 (12)  | C10—C9—H9     | 119.7       |
| C7—N3—N2                 | 114.55 (13) | C8—C9—H9      | 119.7       |
| N1—C1—C5                 | 124.26 (16) | C11—C10—C9    | 119.27 (17) |
| N1—C1—H1                 | 117.9       | C11—C10—H10   | 120.4       |
| C5—C1—H1                 | 117.9       | C9—C10—H10    | 120.4       |
| N1—C2—C3                 | 124.06 (18) | C10—C11—C12   | 121.74 (16) |
| N1—C2—H2                 | 118.0       | C10—C11—O2    | 119.60 (17) |
| C3—C2—H2                 | 118.0       | C12—C11—O2    | 118.53 (17) |
| C2—C3—C4                 | 118.76 (17) | C11—C12—C13   | 118.72 (17) |
| C2—C3—H3                 | 120.6       | C11—C12—H12   | 120.6       |
| C4—C3—H3                 | 120.6       | C13—C12—H12   | 120.6       |
| C3—C4—C5                 | 118.82 (18) | C12—C13—C8    | 121.02 (17) |
| C3—C4—H4                 | 120.6       | C12—C13—H13   | 119.5       |
| C5—C4—H4                 | 120.6       | C8—C13—H13    | 119.5       |
| C1—C5—C4                 | 117.67 (16) | O3—C14—O2     | 120.82 (18) |
| C1—C5—C6                 | 122.69 (14) | O3—C14—C15    | 126.92 (19) |
| C4—C5—C6                 | 119.53 (15) | O2—C14—C15    | 112.26 (17) |
| O1—C6—N2                 | 123.50 (15) | C14—C15—H15A  | 109.5       |
| O1—C6—C5                 | 121.50 (14) | C14—C15—H15B  | 109.5       |
| N2—C6—C5                 | 115.00 (13) | H15A—C15—H15B | 109.5       |
| N3—C7—C8                 | 121.05 (14) | C14—C15—H15C  | 109.5       |
| N3—C7—H7                 | 119.5       | H15A—C15—H15C | 109.5       |
| C8—C7—H7                 | 119.5       | H15B—C15—H15C | 109.5       |
|                          |             |               |             |

Acta Cryst. (2013). E69, o1549

| C6—N2—N3—C7 C2—N1—C1—C5 C1—N1—C2—C3 N1—C2—C3—C4 C2—C3—C4—C5 N1—C1—C5—C4 N1—C1—C5—C6 | -170.37 (15) | N3—C7—C8—C13    | -163.02 (16) |
|-------------------------------------------------------------------------------------|--------------|-----------------|--------------|
|                                                                                     | 0.9 (3)      | N3—C7—C8—C9     | 19.6 (2)     |
|                                                                                     | -0.7 (3)     | C13—C8—C9—C10   | 0.1 (2)      |
|                                                                                     | -0.4 (3)     | C7—C8—C9—C10    | 177.51 (15)  |
|                                                                                     | 1.3 (3)      | C8—C9—C10—C11   | 0.5 (3)      |
|                                                                                     | 0.0 (3)      | C9—C10—C11—C12  | -0.2 (3)     |
|                                                                                     | 176.14 (16)  | C9—C10—C11—O2   | -175.82 (15) |
| C3—C4—C5—C1                                                                         | -1.1 (2)     | C14—O2—C11—C10  | -85.1 (2)    |
| C3—C4—C5—C6                                                                         | -177.41 (16) | C14—O2—C11—C12  | 99.2 (2)     |
| N3—N2—C6—O1                                                                         | 9.9 (3)      | C10—C11—C12—C13 | -0.7 (3)     |
| N3—N2—C6—C5                                                                         | -169.77 (13) | O2—C11—C12—C13  | 174.95 (16)  |
| C1—C5—C6—O1                                                                         | -144.25 (18) | C11—C12—C13—C8  | 1.3 (3)      |
| C4—C5—C6—O1                                                                         | 31.8 (2)     | C9—C8—C13—C12   | -1.0 (3)     |
| C1—C5—C6—N2                                                                         | 35.5 (2)     | C7—C8—C13—C12   | -178.50 (16) |
| C4—C5—C6—N2                                                                         | -148.44 (16) | C11—O2—C14—O3   | 1.5 (3)      |
| N2—N3—C7—C8                                                                         | -174.03 (14) | C11—O2—C14—C15  | -179.02 (17) |

### Hydrogen-bond geometry (Å, $^{o}$ )

Cg1 and Cg2 are the centroids of the C8–C13 and C1–C5/N1 rings, respectively.

| <i>D</i> —H··· <i>A</i>                        | <i>D</i> —H | $H\cdots A$ | $D \cdots A$ | D— $H$ ··· $A$ |
|------------------------------------------------|-------------|-------------|--------------|----------------|
| N2—H2′···O1 <sup>i</sup>                       | 0.87(1)     | 2.08(1)     | 2.9107 (18)  | 162 (2)        |
| C7—H7···O1 <sup>i</sup>                        | 0.93        | 2.48        | 3.251 (2)    | 140            |
| C15—H15 <i>C</i> ···O3 <sup>ii</sup>           | 0.96        | 2.55        | 3.469 (4)    | 161            |
| C4—H4··· <i>Cg</i> 1 <sup>iii</sup>            | 0.93        | 3.13        | 3.821 (2)    | 133            |
| C13—H13··· <i>Cg</i> 2 <sup>iii</sup>          | 0.93        | 3.28        | 3.860(3)     | 122            |
| C15—H15 <i>A</i> ··· <i>Cg</i> 2 <sup>iv</sup> | 0.96        | 3.39        | 3.734(3)     | 104            |
| C15—H15 <i>B</i> ··· <i>Cg</i> 2 <sup>iv</sup> | 0.96        | 3.20        | 3.734 (3)    | 117            |

Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) -x+3/2, y+1/2, -z+1/2.