Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3,4,5,6-Pentafluoro-trans-cinnamic acid

Angélica Navarrete, Ratnasamy Somanathan and Gerardo Aguirre*

Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico Correspondence e-mail: gaguirre777@gmail.com

Received 17 July 2013; accepted 2 September 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.104; data-to-parameter ratio = 16.6.

The title compound, $C_9H_3F_5O_2$, crystallizes as $O-H \cdots O$ hydrogen-bonded carboxylic acid dimers that, together with $C-H\cdots F$ interactions and $O\cdots F$ [2.8065 (13) and 2.9628 (13) Å] and $F \cdots F$ [2.6665 (11), 2.7049 (12) and 2.7314 (12) Å] contacts, form a sheet-like structure. The sheets are stacked via short $\pi - \pi$ interactions [centroid–centroid distance = 4.3198 (11) Å]. An intramolecular C–H···F interaction is also observed.

Related literature

For related structures, see: Goud et al. (1995); Quan & Sun, (2013). For the biological activity of N-alkenyl amides, see: Brettle & Mosedale (1988). For fluorinated N-alkenyl amides, see: Aguirre et al. (1998).

Experimental

Crystal data $C_9H_3F_5O_2$

 $M_r = 238.11$

OH

b = 7.4921 (17) Å c = 13.225 (3) Å $\alpha = 93.612 \ (12)^{\circ}$ $\beta = 93.912 (12)^{\circ}$ $\gamma = 103.769 (12)^{\circ}$

Data collection

Triclinic, $P\overline{1}$

Bruker APEXII CCD	11089 measured reflections
diffractometer	2405 independent reflections
Absorption correction: multi-scan	2000 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.026$
$T_{\min} = 0.931, T_{\max} = 0.982$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	145 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 0.70	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
2405 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots O1^{i}$	0.84	1.81	2.6485 (13)	179
$C7-H7\cdot\cdot\cdot F4^{ii}$	0.95	2.47	3.4074 (14)	169
$C8-H8 \cdot \cdot \cdot F5$	0.95	2.22	2.8434 (14)	123

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) x + 1, y + 1, z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge support for this project from the Dirección General de Educación Superior Tecnológica (DGEST) 2536.09-P.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2124).

References

Aguirre, G., Somanathan, R. & Hellberg, L. H. (1998). J. Fluorine Chem. 90, 5-8.

Brettle, R. & Mosedale, A. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2185-2195.

Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Goud, B. S., Reddy, P. K., Panneerselvam, K. & Desiraju, G. R. (1995). Acta Crvst. C51. 683-685.

Quan, J. & Sun, H.-S. (2013). Acta Cryst. E69, o30.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $\mu = 0.21 \text{ mm}^{-1}$

 $0.35 \times 0.30 \times 0.09 \text{ mm}$

T = 100 K

supporting information

Acta Cryst. (2013). E69, o1519 [doi:10.1107/S1600536813024513]

2,3,4,5,6-Pentafluoro-trans-cinnamic acid

Angélica Navarrete, Ratnasamy Somanathan and Gerardo Aguirre

S1. Comment

N-Alkenyl amides are a rapidly emerging class of naturally occurring substances, widely distributed in higher plants, marine and microorganisms, and they exhibit an array of biological properties, including antibiotic, protein kinase inhibition an antitumor activity (Brettle & Mosedale, 1988). In particular we are interested in the synthesis of fluorinated N-alkenyl amides from commercially available fluorocinnamic acids and aldehydes (Aguirre *et al.*, 1998). In our synthesis of pentafluorinated enamide, we used 2,3,4,5,6-Pentafluoro-*trans*-cinnamic acid as the starting material, which is commercially available and herein we report the crystal structure (Fig. 1).

In the crystal structure adjacent networks are linked together *via* intermolecular hydrogen bond interactions (Table 1). The molecules form typical carboxylic acid dimers (Fig. 2) and stack *via* π - π interactions.

S2. Experimental

2,3,4,5,6 Pentafluorocinnamic acid obtained from the Aldrich Chemical Company, was dissolved in chloroform. Slow evaporation at room temperature produces plates. One of which was cut provide the experimental sample. Melting point 154–156 °C.

¹H NMR (CDCl₃): δ 10.5 (s, 1H), 7.7 (d, J=16 Hz, 1H), 6.8 (d, J=16 Hz, 1H) p.p.m.; ¹³C NMR (CDCl₃): δ 171.0 (*s*), 145.6 (d, J_C_{-F}=253 Hz), 142.1 (d, J_C_{-F}=253 Hz), 137.8 (d, J_C_{-F}=252 Hz), 130.6 (*s*), 125.3 (t, J_C_{-F}=5.8 Hz), 109.6 (d, J_C_{-F}=17 Hz) p.p.m.; ¹⁹F NMR (CDCl₃): δ – 140.2 (dd, J=18,4 Hz), -151.3 (tt, J=20. 3 Hz), -162.4 (t,d, J=20,6 Hz) p.p.m.: EMIE m/e: [*M*]⁺ 238.

S3. Refinement

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.98 Å for methine CH. Isotropic U parameters were fixed to $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ for aromatic CH.

Figure 1

The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitrary radius.

Figure 2

A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

(E)-3-(2,3,4,5,6-Pentafluorophenyl)prop-2-enoic acid

Crystal data
$C_9H_3F_5O_2$
$M_r = 238.11$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 4.3198 (9) Å
<i>b</i> = 7.4921 (17) Å
c = 13.225 (3) Å
$\alpha = 93.612 (12)^{\circ}$
$\beta = 93.912 \ (12)^{\circ}$
$\gamma = 103.769 \ (12)^{\circ}$
$V = 413.37 (15) \text{ Å}^3$

Z = 2 F(000) = 236 $D_x = 1.913 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5831 reflections $\theta = 3.1-30.6^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 100 K Needle, colorless $0.35 \times 0.30 \times 0.09 \text{ mm}$ Data collection

	11000 1 0
Bruker APEXII CCD	11089 measured reflections
diffractometer	2405 independent reflections
Radiation source: fine-focus sealed tube	2000 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2008)	$k = -10 \rightarrow 10$
$T_{\min} = 0.931, \ T_{\max} = 0.982$	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 0.70	H-atom parameters constrained
2405 reflections	$w = 1/[\sigma^2(F_0^2) + (0.091P)^2 + 0.3271P]$
145 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

r	12	7	II. */II	
X	y	2	U _{1S0} / U _{eq}	
0.6800(2)	0.93946 (14)	0.75051 (8)	0.0134 (2)	
0.9181 (2)	0.96009 (14)	0.83065 (8)	0.0144 (2)	
0.9520 (2)	0.81768 (15)	0.88834 (8)	0.0157 (2)	
0.7427 (3)	0.64649 (14)	0.86844 (8)	0.0163 (2)	
0.5033 (2)	0.62006 (14)	0.79029 (8)	0.0159 (2)	
0.4761 (2)	0.76388 (14)	0.73261 (8)	0.0142 (2)	
0.6612 (2)	1.09717 (14)	0.69294 (8)	0.0144 (2)	
0.8193	1.2081	0.7125	0.017*	
0.4473 (3)	1.10410 (14)	0.61580 (8)	0.0154 (2)	
0.2826	0.9980	0.5926	0.018*	
0.4709 (2)	1.27831 (14)	0.56750 (8)	0.0147 (2)	
1.12678 (16)	1.12300 (9)	0.85325 (5)	0.01929 (16)	
1.18772 (16)	0.84479 (10)	0.96299 (5)	0.02165 (17)	
0.76994 (18)	0.50721 (10)	0.92323 (5)	0.02419 (18)	
0.29659 (17)	0.45665 (9)	0.77171 (6)	0.02230 (17)	
0.23906 (16)	0.72905 (9)	0.65828 (5)	0.01916 (16)	
	x 0.6800 (2) 0.9181 (2) 0.9520 (2) 0.7427 (3) 0.5033 (2) 0.4761 (2) 0.6612 (2) 0.8193 0.4473 (3) 0.2826 0.4709 (2) 1.12678 (16) 1.18772 (16) 0.76994 (18) 0.29659 (17) 0.23906 (16)	xy $0.6800 (2)$ $0.93946 (14)$ $0.9181 (2)$ $0.96009 (14)$ $0.9520 (2)$ $0.81768 (15)$ $0.7427 (3)$ $0.64649 (14)$ $0.5033 (2)$ $0.62006 (14)$ $0.4761 (2)$ $0.76388 (14)$ $0.6612 (2)$ $1.09717 (14)$ 0.8193 1.2081 $0.4473 (3)$ $1.10410 (14)$ 0.2826 0.9980 $0.4709 (2)$ $1.27831 (14)$ $1.12678 (16)$ $1.12300 (9)$ $1.18772 (16)$ $0.84479 (10)$ $0.76994 (18)$ $0.50721 (10)$ $0.23906 (16)$ $0.72905 (9)$	xyz $0.6800 (2)$ $0.93946 (14)$ $0.75051 (8)$ $0.9181 (2)$ $0.96009 (14)$ $0.83065 (8)$ $0.9520 (2)$ $0.81768 (15)$ $0.88834 (8)$ $0.7427 (3)$ $0.64649 (14)$ $0.86844 (8)$ $0.5033 (2)$ $0.62006 (14)$ $0.79029 (8)$ $0.4761 (2)$ $0.76388 (14)$ $0.73261 (8)$ $0.6612 (2)$ $1.09717 (14)$ $0.69294 (8)$ 0.8193 1.2081 0.7125 $0.4473 (3)$ $1.10410 (14)$ $0.61580 (8)$ 0.2826 0.9980 0.5926 $0.4709 (2)$ $1.27831 (14)$ $0.56750 (8)$ $1.12678 (16)$ $1.12300 (9)$ $0.85325 (5)$ $1.18772 (16)$ $0.84479 (10)$ $0.92323 (5)$ $0.29659 (17)$ $0.45665 (9)$ $0.77171 (6)$ $0.23906 (16)$ $0.72905 (9)$ $0.65828 (5)$	xyz $U_{iso}*/U_{eq}$ 0.6800 (2)0.93946 (14)0.75051 (8)0.0134 (2)0.9181 (2)0.96009 (14)0.83065 (8)0.0144 (2)0.9520 (2)0.81768 (15)0.88834 (8)0.0157 (2)0.7427 (3)0.64649 (14)0.86844 (8)0.0163 (2)0.5033 (2)0.62006 (14)0.79029 (8)0.0159 (2)0.4761 (2)0.76388 (14)0.73261 (8)0.0144 (2)0.6612 (2)1.09717 (14)0.69294 (8)0.0144 (2)0.81931.20810.71250.017*0.4473 (3)1.10410 (14)0.61580 (8)0.0154 (2)0.28260.99800.59260.018*0.4709 (2)1.27831 (14)0.56750 (8)0.0147 (2)1.12678 (16)1.12300 (9)0.85325 (5)0.012165 (17)0.76994 (18)0.50721 (10)0.92323 (5)0.02419 (18)0.29659 (17)0.45665 (9)0.77171 (6)0.02230 (17)0.23906 (16)0.72905 (9)0.65828 (5)0.01916 (16)

supporting information

O1	0.6780 (2)	1.41951 (11)	0.59342 (6)	0.01988 (18)
O2	0.2455 (2)	1.26544 (11)	0.49321 (6)	0.01934 (18)
H2A	0.2724	1.3661	0.4664	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0131 (4)	0.0122 (4)	0.0147 (4)	0.0025 (3)	0.0006 (3)	0.0021 (3)
C2	0.0135 (4)	0.0125 (4)	0.0157 (4)	0.0004 (3)	0.0002 (3)	0.0007 (4)
C3	0.0139 (4)	0.0190 (5)	0.0137 (4)	0.0040 (4)	-0.0018 (3)	0.0017 (4)
C4	0.0180 (5)	0.0144 (5)	0.0179 (5)	0.0052 (4)	0.0011 (4)	0.0067 (4)
C5	0.0155 (5)	0.0105 (4)	0.0204 (5)	0.0008 (4)	0.0005 (4)	0.0026 (4)
C6	0.0131 (4)	0.0136 (4)	0.0152 (4)	0.0022 (3)	-0.0016 (3)	0.0023 (3)
C7	0.0151 (4)	0.0109 (4)	0.0167 (4)	0.0019 (3)	0.0012 (4)	0.0028 (3)
C8	0.0168 (4)	0.0113 (4)	0.0175 (5)	0.0022 (3)	0.0006 (4)	0.0032 (3)
C9	0.0161 (4)	0.0129 (4)	0.0157 (4)	0.0043 (4)	0.0012 (3)	0.0023 (3)
F1	0.0182 (3)	0.0145 (3)	0.0207 (3)	-0.0033 (2)	-0.0033 (2)	0.0010 (2)
F2	0.0195 (3)	0.0258 (4)	0.0182 (3)	0.0046 (3)	-0.0065 (3)	0.0033 (3)
F3	0.0281 (4)	0.0184 (3)	0.0267 (4)	0.0059 (3)	-0.0029 (3)	0.0122 (3)
F4	0.0220 (3)	0.0117 (3)	0.0294 (4)	-0.0028 (2)	-0.0029 (3)	0.0058 (3)
F5	0.0165 (3)	0.0153 (3)	0.0223 (3)	-0.0008(2)	-0.0077(2)	0.0037 (2)
01	0.0215 (4)	0.0132 (4)	0.0223 (4)	0.0002 (3)	-0.0048 (3)	0.0050 (3)
02	0.0205 (4)	0.0137 (4)	0.0220 (4)	0.0017 (3)	-0.0059 (3)	0.0056 (3)

Geometric parameters (Å, °)

C1—C2	1.4000 (14)	C5—C6	1.3814 (14)	
C1—C6	1.3941 (14)	C6—F5	1.3363 (12)	
C1—C7	1.4606 (14)	C7—C8	1.3408 (15)	
C2—F1	1.3360 (12)	С7—Н7	0.9500	
C2—C3	1.3797 (15)	C8—C9	1.4740 (15)	
C3—F2	1.3388 (12)	С8—Н8	0.9500	
C3—C4	1.3800 (15)	C9—O1	1.2244 (13)	
C4—F3	1.3304 (12)	C9—O2	1.3172 (13)	
C4—C5	1.3814 (15)	O2—H2A	0.8400	
C5—F4	1.3298 (12)			
C6-C1-C2	115.35 (9)	C4—C5—C6	120.03 (10)	
C6—C1—C7	125.16 (9)	F5—C6—C5	116.98 (9)	
C2—C1—C7	119.49 (9)	F5—C6—C1	120.37 (9)	
F1—C2—C3	117.27 (9)	C5—C6—C1	122.65 (9)	
F1-C2-C1	119.82 (9)	C8—C7—C1	127.75 (10)	
C3—C2—C1	122.91 (10)	С8—С7—Н7	116.1	
F2—C3—C4	120.01 (10)	C1—C7—H7	116.1	
F2—C3—C2	120.26 (10)	C7—C8—C9	119.20 (10)	
C4—C3—C2	119.73 (10)	С7—С8—Н8	120.4	
F3—C4—C3	120.83 (10)	С9—С8—Н8	120.4	
F3—C4—C5	119.85 (10)	O1—C9—O2	123.66 (10)	

C6-C1-C2-F1 179.53 (9) $C3-C4-C5-C6$ 0.34 (16) $C7-C1-C2-F1$ -0.46 (15) $E4-C5-C6-F5$ -0.89 (1)))
C1 - C2 - C1C2 - C1C3 - C0 - C1C4 - C5 - C6 - F5-179.94C6 - C1 - C2 - C30.18 (16)C4 - C5 - C6 - C1178.10 (9)F1 - C2 - C3 - F2-0.48 (15)C4 - C5 - C6 - C1-0.94 (17)C1 - C2 - C3 - F2178.88 (9)C2 - C1 - C6 - F5179.63 (9)F1 - C2 - C3 - C4179.89 (9)C7 - C1 - C6 - F5-0.38 (14)C1 - C2 - C3 - C4-0.74 (17)C2 - C1 - C6 - F5-0.38 (14)C1 - C2 - C3 - C4-0.74 (17)C2 - C1 - C6 - C50.67 (16)F2 - C3 - C4 - F30.59 (16)C7 - C1 - C6 - C5-179.34C2 - C3 - C4 - F3-179.78 (9)C6 - C1 - C7 - C81.45 (18)F2 - C3 - C4 - C50.47 (16)C1 - C7 - C8-178.56C2 - C3 - C4 - C50.47 (16)C1 - C7 - C8 - C9-179.90F3 - C4 - C5 - F41.54 (16)C7 - C8 - C9 - O10.40 (17)C3 - C4 - C5 - F4-178.71 (9)C7 - C8 - C9 - O2-179.81F3 - C4 - C5 - C6-179.41 (9)C7 - C8 - C9 - O2-179.81	5) (9))) 7))) 5) (10) (10) (10) (10) (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
O2—H2A···O1 ⁱ	0.84	1.81	2.6485 (13)	179
C7—H7···F4 ⁱⁱ	0.95	2.47	3.4074 (14)	169
C8—H8…F5	0.95	2.22	2.8434 (14)	123

Symmetry codes: (i) -*x*+1, -*y*+3, -*z*+1; (ii) *x*+1, *y*+1, *z*.