metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(sulfato- κO)copper(II) ethanol monosolvate

Natthaya Meundaeng,^a Timothy J. Prior^b and Apinpus Rujiwatra^a*

^aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and ^bDepartment of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, England Correspondence e-mail: apinpus@gmail.com

Received 2 September 2013; accepted 21 September 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.012 Å; disorder in solvent or counterion; R factor = 0.058; wR factor = 0.160; data-to-parameter ratio = 17.4.

The crystal structure of the title compound, $[Cu(SO_4) (C_{12}H_8N_2)_2]\cdot C_2H_5OH$, arises from the assembly of the neutral complex $[Cu(SO_4)(C_{12}H_8N_2)_2]$ and an ethanol solvent molecule. The Cu^{II} ion is five-coordinate, surrounded by two pairs of N atoms from two independent N,N'-chelating 1,10phenanthroline ligands, and one O atom of monodentate sulfate ligand, in a distorted trigonal-bipyramidal fashion. Spatial orientation of the ligands and the assembly in the solid state are stabilized by the $C-H \cdots O$ hydrogen-bonding interactions, established between the O atoms (from the sulfate ligand and the ethanol molecule) and the neighbouring 1,10-phenanthroline molecules. There is also an offset face-toface $\pi - \pi$ stacking between the 1,10-phenanthroline ligands. The ethanol solvent molecule is disordered over two orientations in the ratio 0.663 (10):0.337 (10). The crystal examined was subject to racemic twinning and the refined twin fraction was 0.346 (19).

Related literature

Zhong has published many similar compounds with different solvent systems, see, for example: Zhong (2011*a*,*b*, 2012); Zhong & Cao (2013). For a similar centrosymmetric compound featuring 2,2'-bipyridine and bidentate sulfate, see: Wojciechowska *et al.* (2011). For similar compounds of different first-row transition metals, see, for example: Zhu *et al.* (2006); Zhong *et al.* (2009).

Experimental

Crystal data $[Cu(SO_4)(C_{12}H_8N_2)_2] \cdot C_2H_6O$ M_r = 564.06 Monoclinic, Cc a = 17.5488 (14) Å b = 11.9360 (11) Å c = 13.0663 (9) Å \beta = 120.664 (5)°

Data collection

Stoe IPDS2 diffractometer Absorption correction: numerical (X-AREA; Stoe & Cie, 2002) $T_{\min} = 0.727, T_{\max} = 0.883$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058\\ wR(F^2) &= 0.160\\ S &= 1.01\\ 5771 \text{ reflections}\\ 331 \text{ parameters}\\ 8 \text{ restraints}\\ \text{H-atom parameters constrained} \end{split}$$

Z = 4Mo K\alpha radiation $\mu = 1.06 \text{ mm}^{-1}$ T = 150 K $0.32 \times 0.24 \times 0.12 \text{ mm}$

V = 2354.2 (3) Å³

10087 measured reflections 5771 independent reflections 4259 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.070$

 $\begin{array}{l} \Delta \rho_{max} = 1.02 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -1.09 \ e \ \mathring{A}^{-3} \\ Absolute structure: Flack (1983), \\ 2594 \ Friedel \ pairs \\ Absolute structure \ parameter: \\ 0.346 \ (19) \end{array}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···O2 ⁱ	0.95	2.48	3.389 (9)	161
$C5-H5\cdots O1^{i}$	0.95	2.34	3.263 (9)	165
C6−H6···O2 ⁱⁱ	0.95	2.35	3.252 (11)	158
C9−H9···O4 ⁱⁱⁱ	0.95	2.28	3.188 (9)	161
C10−H10···O1	0.95	2.41	2.973 (8)	118
$C21 - H21 \cdots O1^{iv}$	0.95	2.44	3.175 (8)	134
$C25-H25\cdotsO1^{v}$	0.95	2.44	3.285 (11)	149
$C25-H25\cdots O4^{v}$	0.95	2.39	3.255 (11)	151
C26−H26···O3 ^{vi}	0.95	2.50	3.200 (8)	130
C28−H28····O4 ^{vi}	0.95	2.46	3.367 (10)	159
C30−H30···O41 ⁱⁱⁱ	0.95	2.45	3.165 (12)	132

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

The Thailand Research Fund is acknowledged for funding. NM thanks the Science Achievement Scholarship of Thailand and the Graduate School, Chiang Mai University for scholarships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2128).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wojciechowska, A., Jezierska, J., Bieńko, A. & Daszkiewicz, M. (2011). Polyhedron, 30, 1547–1554.
- Zhong, K.-L. (2011a). Z. Kristallogr. New Cryst. Struct. 226, 286-288.
- Zhong, K.-L. (2011b). Acta Cryst. E67, m1215-m1216.
- Zhong, K.-L. (2012). Acta Cryst. E68, m1555.
- Zhong, K.-L. & Cao, G.-Q. (2013). Acta Cryst. E69, m40-m41.
- Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.
- Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725-m2726.

supporting information

Acta Cryst. (2013). E69, m568-m569 [doi:10.1107/S1600536813026093]

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(sulfato- κO)copper(II) ethanol monosolvate

Natthaya Meundaeng, Timothy J. Prior and Apinpus Rujiwatra

S1. Comment

The crystal structure of the title complex, $[Cu(SO_4)(C_{12}H_8N_2)_2]\cdot C_2H_6O$ (**I**), is isostructural with the propane-1,2-diol and ethane-1,2-diol solvates, $Cu(C_{12}H_8N_2)_2(SO_4)\cdot C_3H_8O_2$ (Zhong, 2011*a*) and $[CuSO_4(C_{12}H_8N_2)_2]\cdot C_2H_6O_2$ (Zhong, 2011*b*). The neutral complex $[Cu(SO_4)(C_{12}H_8N_2)_2]$ in **I** is composed of a central Cu^{II} ion, coordinated by a single oxygen atom (O3) of the monodentate sulfato ligand, and two pairs of nitrogen atoms (N1, N2, N3 and N4) of two independent *N,N'*-chelating o-phen (see Fig. 1). Rather than the square pyramidal geometry described for some related complexes (Zhong, 2011*a*; Zhong, 2011*b*), the coordination about the Cu^{II} ion in **I** is better described as a trigonal bipyramid. In some previous reports, disorder of the sulfato ligand has introduced problems in the refinement. (*e.g* a Cu–O bond of length 1.4 Å (Zhong, 2011*a*)) We see no evidence for disorder in the sulfato ligand. The coordinating atoms N1, N4 and O3 are located in the trigonal bipyramidal plane with a summation of the three angles about the metal center close to 360°: O3—Cu1—N1 103.76 (18)°, O3—Cu1—N4 146.72 (19)° and N1—Cu1—N4 109.17 (14)°. The apical positions of the trigonal bipyramid are occupied by atoms N2 and N3 with the N2—Cu1—N3 angle of 170.74 (16)°. The Cu—O (1.947 (4) Å) and Cu—N (1.995 (5)–2.191 (6) Å) bond lengths in complex **I** are nontheless in good agreement with those reported for the relevant structures (Zhong, 2011*a*; Zhong, 2011*b*). The two independent chelating o-phen ligands anchored onto the same metal ion are oriented in a different planes with a slanting angle of 70.8 (1)° between the two molecular planes.

The spatial arrangement of each structural building motifs and the three–dimensional supramolecular assembly in I are regulated by the weak C—H···O hydrogen-bonding interactions (Fig. 2) in synergy with the π - π interactions (Fig. 3). Every oxygen atom, including those of the sulfato ligand, and the solvent molecule display C—H···O interactions with the chelating o–phen ligands, calculated by using the program *PLATON* (Spek, 2009). A close proximity between the sulfato oxygen atoms and the hydroxyl group of the solvent molecule suggests the possibility for the hydrogen bonding interactions between the two: O41···O2 2.8757 (89) Å and O42···O4 2.719 (16) Å. In addition to the hydrogen bonding interactions, the two adjacent *o*-phens exhibit the offset face-to-face π - π stacking with the inter–plane distance of 3.529 Å, centroid–to–centroid distance of 4.455 Å, and a displacement angle of 32.72°.

Systematic absences indicated a choice of space groups: Cc or C2/c and statistics of normalized structure factors suggested the structure was non-centric. The |Z-1| value of 0.773 for all data is close to the expected value for a noncentrosymmetric structure of 0.736. Similarly the N(Z) distribution provides a further indication suggests the structure is non-centric. Detailed E-statistics are contained within Figure 4.

Refinements in the two possible space group choices were performed and these clearly indicated that C2/c was incorrect. In particular, the wR2 was substantially better in the non-centric case. (wR2 = 0.1595 for all data in Cc and 0.2498 for all data in C2/c.) The C—C bond precision was better in the non-centric case (0.0115 compared with 0.0130 Å). This would not be the case if a strict centre of symmetry was present. Cc was therefore retained as the space group. The comparison to other structure mentioned previously is important. Those similar structures reported in Cc (eg Zhong, 2011b and Zhong & Cai, 2013) have an ordered monodentate sulfate ligand. Those in C2/c (eg Wojciechowska et al., 2011; Zhu et al., 2006, and Zhong et al., 2009) have an ordered bidentate sulfate ligand. Here the stable model in Cc has a mondentate sulfate with no ligand disorder, but the model in C2/c displays a disordered monodentate sulfate in contrast to the other reports. The refinement in C2/c is contained within the CIF for completeness but the crystal data and refinements indicate this is not the correct space group.

The crystal examined displayed racemic twinning. The refined twin fraction of the second component was 0.346 (19). This value is significantly different from 1/2, the value that would be expected if the compound was truly centrosymmetric and incorrectly refined in the space group *Cc*.

The ethanol solvent molecule is disordered over two positions, related by a rotation of approximately 180° about the C —C bond. The atoms of each orientation were identified in difference Fourier maps. The presence of ethanol is clear from these and the existence of two molecules in different orientations is apparent. Figure 5 shows the relationship between two orientations of the ethanol. Figures 6 and 7 show F_{obs} Fourier maps calculated using all observed data. From these the molecule can clearly be identified as ethanol, precluding any inclusion of dimethylsulfoxide or thiourea from the reaction mixture. The two orientations are present in the ratio 66.3:33.7 (10) %. For the major orientation, O41 forms a hydrogen bond to O2 while for the minor orientation, O42 forms a hydrogen bond to O4.

S2. Experimental

The crystals of $[Cu(SO_4)(C_{12}H_8N_2)_2] \cdot C_2H_4O$ (I) were unexpectedly obtained as a by-product during an attempt to synthesize copper complexes using mixing ligands of 1,10–phenanthroline (o–phen) and thiourea by a bilayer-diffusion method. In a typical experiment, two immiscible solutions **A** and **B** were first prepared. Solution **A**: CuSO₄·5H₂O (0.0499 g, 0.2 mmol; Fisher Scientific 99.55%) was dissolved in 4.0 ml dimethylsulfoxide (Riedel-de Haën 99.5%) in a small test tube (diameter of *ca* 13 mm). Solution **B**: 1,10-phenanthroline (o–phen; 0.0793 g, 0.4 mmol; QRëC 99.5%) and thiourea (0.0305 g, 0.4 mmol; Merck 99.0%) were dissolved in 4.0 ml e thanol (Merck 99.9%). Solution **B** was then gently added onto the surface of solution **A**. After 24 h, blue block shaped crystals were crystallized and isolated for single-crystal *X*-ray diffraction experiment.

S3. Refinement

Hydrogen atoms were fitted using a riding model. The isotropic displacement factor for each hydrogen atom is 1.2 times that of the atom on which it rides.

The asymmetric unit of I drawn with 50% probability for displacement ellipsoids. Hydrogen atoms are omitted for clarity.

View of the hydrogen bonding interactions (dash lines). [Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x - 1/2, y - 1/2, z; (iii) x, -y + 1, z + 1/2; (iv)x, -y + 1, z - 1/2; (v) x + 1/2, y - 1/2, z; (vi) x + 1/2, -y + 1/2, z + 1/2]

Figure 3

View of the π - π interactions between the adjacent o-phen molecules.

Normalized structure factor statistics. The inset graph shows the N(Z) distribution.

Figure 5

Arrangement of the two orientations of the disordered ethanol molecule. The major orientation (66%) is O41 C41*a* C42*b*. The minor orientation (34%) is O42 C42*b* C41*b*.

 F_{obs} map calculated in the plane defined by O41 C41*a* C42*a* using all observed data. The *x* and *y* axes are labelled in Å and the scale is in eÅ⁻³.

Fobs map calculated in the plane defined by O42 C42b C41b using all observed data. The x and y axes are labelled in Å and the scale is in eÅ⁻³.

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(sulfato- κO)copper(II) ethanol monosolvate

Crystal data	
$[Cu(SO_4)(C_{12}H_8N_2)_2] \cdot C_2H_6O$ $M_r = 564.06$ Monoclinic, <i>Cc</i> Hall symbol: C -2yc a = 17.5488 (14) Å b = 11.9360 (11) Å c = 13.0663 (9) Å $\beta = 120.664 (5)^{\circ}$ $V = 2354.2 (3) \text{ Å}^3$ Z = 4	F(000) = 1156 $D_x = 1.591 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11381 reflections $\theta = 1.8-29.5^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 150 K Block, blue $0.32 \times 0.24 \times 0.12 \text{ mm}$
Data collection	
Stoe IPDS2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 6.67 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>X</i> - <i>AREA</i> ; Stoe & Cie, 2002) $T_{\min} = 0.727, T_{\max} = 0.883$	10087 measured reflections 5771 independent reflections 4259 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -24 \rightarrow 23$ $k = -15 \rightarrow 16$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.160$	$w = 1/[\sigma^2(F_o^2) + (0.0966P)^2]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
5771 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
331 parameters	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
8 restraints	$\Delta \rho_{\rm min} = -1.09 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2594 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.346 (19)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
N1	0.9825 (4)	0.1792 (4)	0.0032 (4)	0.0321 (12)	
C11	0.9177 (5)	0.2042 (4)	0.1237 (6)	0.0314 (14)	
C9	0.9264 (5)	0.2899 (5)	0.3232 (7)	0.0358 (16)	
H9	0.9317	0.3189	0.3942	0.043*	
C8	0.8537 (6)	0.2293 (5)	0.2455 (7)	0.0388 (16)	
H8	0.8073	0.2179	0.2616	0.047*	
C12	0.9124 (4)	0.1580 (5)	0.0166 (5)	0.0270 (12)	
C7	0.8467 (5)	0.1836 (5)	0.1419 (6)	0.0322 (13)	
C1	0.9812 (5)	0.1396 (6)	-0.0927 (6)	0.0398 (15)	
H1	1.0303	0.1539	-0.1028	0.048*	
C4	0.8389 (5)	0.0977 (5)	-0.0645 (6)	0.0341 (14)	
C6	0.7713 (5)	0.1197 (6)	0.0568 (6)	0.0363 (14)	
H6	0.7240	0.1053	0.0705	0.044*	
C5	0.7675 (5)	0.0797 (5)	-0.0437 (6)	0.0369 (15)	
Н5	0.7166	0.0394	-0.1004	0.044*	
C2	0.9085 (6)	0.0763 (5)	-0.1810 (6)	0.0437 (19)	
H2	0.9091	0.0477	-0.2484	0.052*	
C10	0.9946 (5)	0.3089 (5)	0.2959 (6)	0.0346 (14)	
H10	1.0448	0.3526	0.3483	0.042*	
C3	0.8385 (5)	0.0578 (5)	-0.1665 (5)	0.0358 (14)	
H3	0.7886	0.0176	-0.2254	0.043*	
N4	1.1718 (4)	0.1823 (4)	0.2833 (4)	0.0291 (11)	
N3	1.1675 (4)	0.2753 (4)	0.0952 (5)	0.0289 (11)	

C28	1.3163 (5)	0.0529 (6)	0.4483 (6)	0.0386 (14)	
H28	1.3636	0.0072	0.5043	0.046*	
C27	1.3163 (5)	0.0950 (5)	0.3475 (6)	0.0324 (14)	
C22	1.2237 (6)	0.3009 (6)	-0.0345 (6)	0.0389 (16)	
H22	1.2157	0.3323	-0.1061	0.047*	
C21	1.1627 (5)	0.3212 (6)	-0.0013 (6)	0.0382 (15)	
H21	1.1147	0.3701	-0.0489	0.046*	
C30	1.1765 (5)	0.1415 (5)	0.3818 (6)	0.0351 (14)	
H30	1.1291	0.1567	0.3951	0.042*	
C24	1.3057 (4)	0.1865 (5)	0.1399 (6)	0.0313 (13)	
C29	1.2464 (5)	0.0790 (6)	0.4645 (6)	0.0386 (16)	
H29	1.2469	0.0533	0.5336	0.046*	
C23	1.2969 (6)	0.2347 (6)	0.0355 (6)	0.0367 (15)	
H23	1.3404	0.2219	0.0140	0.044*	
O3	1.0467 (3)	0.4360 (3)	0.0884 (3)	0.0413 (10)	
O4	0.9925 (3)	0.6192 (4)	0.0848 (4)	0.0398 (10)	
C32	1.2395 (5)	0.2082 (5)	0.1656 (6)	0.0298 (13)	
C31	1.2409 (4)	0.1608 (5)	0.2672 (5)	0.0278 (12)	
C26	1.3840 (5)	0.0775 (6)	0.3205 (6)	0.0377 (15)	
H26	1.4338	0.0337	0.3737	0.045*	
C25	1.3812 (5)	0.1204 (6)	0.2219 (6)	0.0383 (14)	
H25	1.4282	0.1069	0.2075	0.046*	
Cul	1.07989 (4)	0.28399 (4)	0.14929 (5)	0.03031 (16)	
S2	1.06669 (9)	0.54426 (10)	0.15762 (10)	0.0283 (3)	
N2	0.9884 (4)	0.2662 (4)	0.1978 (5)	0.0306 (12)	
01	1.0717 (3)	0.5217 (3)	0.2709 (3)	0.0329 (8)	
O2	1.1491 (3)	0.5917 (4)	0.1765 (4)	0.0494 (13)	
C41A	1.0959 (9)	0.8927 (10)	0.1088 (12)	0.059 (3)*	0.695 (15)
H41A	1.0757	0.9478	0.0434	0.071*	0.695 (15)
H41B	1.1497	0.9256	0.1768	0.071*	0.695 (15)
C42A	1.0326 (8)	0.8986 (9)	0.1425 (11)	0.050 (2)*	0.695 (15)
H42A	1.0491	0.9641	0.1962	0.060*	0.695 (15)
H42B	0.9763	0.9186	0.0696	0.060*	0.695 (15)
C41B	1.132 (2)	0.890 (2)	0.158 (3)	0.059 (3)*	0.305 (15)
H41C	1.1178	0.9632	0.1164	0.071*	0.305 (15)
H41D	1.1954	0.8923	0.2192	0.071*	0.305 (15)
C42B	1.0858 (15)	0.8890 (19)	0.221 (2)	0.050 (2)*	0.305 (15)
H42C	1.1305	0.8718	0.3044	0.060*	0.305 (15)
H42D	1.0663	0.9671	0.2197	0.060*	0.305 (15)
O41	1.1240 (5)	0.8127 (6)	0.0766 (7)	0.0523 (15)*	0.663 (10)
O42	1.0135 (10)	0.8216 (12)	0.1916 (14)	0.0523 (15)*	0.337 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.044 (3)	0.028 (3)	0.030 (3)	0.001 (2)	0.023 (3)	0.001 (2)
C11	0.048 (4)	0.017 (3)	0.027 (3)	0.001 (3)	0.018 (3)	-0.002(2)
C9	0.049 (4)	0.031 (3)	0.035 (4)	-0.004 (3)	0.027 (4)	-0.003 (2)

Acta Cryst. (2013). E69, m568-m569

C8	0.052 (4)	0.032 (3)	0.048 (4)	0.006 (3)	0.037 (4)	0.007 (3)
C12	0.034 (3)	0.023 (3)	0.020 (2)	0.002 (2)	0.011 (3)	0.001 (2)
C7	0.042 (4)	0.024 (3)	0.032 (3)	0.008 (3)	0.021 (3)	0.008 (2)
C1	0.055 (4)	0.037 (4)	0.030 (3)	0.003 (3)	0.024 (3)	-0.001 (3)
C4	0.044 (4)	0.029 (3)	0.027 (3)	-0.001 (3)	0.017 (3)	0.003 (2)
C6	0.038 (4)	0.036 (3)	0.036 (3)	-0.002 (3)	0.020 (3)	0.004 (3)
C5	0.043 (4)	0.030 (3)	0.028 (3)	-0.003 (3)	0.011 (3)	0.000 (2)
C2	0.073 (6)	0.031 (3)	0.028 (3)	-0.008 (3)	0.027 (4)	-0.009 (3)
C10	0.048 (4)	0.027 (3)	0.027 (3)	-0.004 (3)	0.017 (3)	-0.007 (2)
C3	0.047 (4)	0.027 (3)	0.021 (3)	-0.001 (3)	0.008 (3)	-0.003 (2)
N4	0.039 (3)	0.024 (2)	0.017 (2)	0.001 (2)	0.009 (2)	0.0012 (18)
N3	0.031 (3)	0.029 (3)	0.027 (3)	0.009 (2)	0.015 (3)	0.0079 (19)
C28	0.045 (4)	0.034 (3)	0.024 (3)	0.002 (3)	0.007 (3)	0.000 (2)
C27	0.037 (4)	0.024 (3)	0.024 (3)	-0.004 (2)	0.006 (3)	-0.006 (2)
C22	0.053 (4)	0.042 (4)	0.027 (3)	0.001 (3)	0.024 (4)	0.006 (3)
C21	0.050 (4)	0.037 (3)	0.038 (4)	0.006 (3)	0.029 (4)	0.009 (3)
C30	0.048 (4)	0.031 (3)	0.031 (3)	0.008 (3)	0.023 (3)	0.009 (2)
C24	0.031 (3)	0.031 (3)	0.028 (3)	0.002 (2)	0.012 (3)	-0.001 (2)
C29	0.049 (4)	0.039 (4)	0.021 (3)	0.004 (3)	0.013 (3)	0.008 (3)
C23	0.046 (4)	0.037 (3)	0.030 (3)	0.001 (3)	0.021 (3)	0.000 (3)
O3	0.069 (3)	0.0277 (18)	0.030 (2)	0.0063 (19)	0.027 (2)	-0.0005 (15)
O4	0.041 (3)	0.036 (2)	0.027 (2)	0.0091 (19)	0.007 (2)	0.0044 (18)
C32	0.031 (3)	0.030 (3)	0.023 (3)	-0.003 (2)	0.010 (3)	-0.006 (2)
C31	0.033 (3)	0.023 (3)	0.020 (2)	0.000 (2)	0.008 (3)	-0.002 (2)
C26	0.034 (4)	0.040 (4)	0.028 (3)	0.004 (3)	0.008 (3)	0.000 (3)
C25	0.035 (4)	0.035 (3)	0.037 (3)	0.001 (3)	0.012 (3)	-0.004 (3)
Cu1	0.0389 (3)	0.0257 (2)	0.0295 (3)	0.0021 (4)	0.0197 (3)	0.0019 (3)
S2	0.0318 (8)	0.0280 (5)	0.0221 (6)	-0.0002 (6)	0.0116 (6)	0.0000 (5)
N2	0.040 (3)	0.029 (3)	0.027 (3)	-0.001 (2)	0.020 (3)	-0.0030 (19)
01	0.038 (2)	0.0352 (18)	0.0220 (17)	0.0030 (17)	0.0128 (18)	0.0037 (15)
O2	0.034 (3)	0.075 (4)	0.040 (3)	-0.013 (2)	0.020 (2)	0.002 (2)

Geometric parameters (Å, °)

N1—C1	1.329 (7)	C22—C21	1.366 (10)
N1-C12	1.352 (8)	C22—C23	1.383 (11)
N1—Cu1	2.191 (6)	C22—H22	0.9500
C11—N2	1.342 (9)	C21—H21	0.9500
C11—C7	1.405 (10)	C30—C29	1.370 (10)
C11—C12	1.462 (8)	С30—Н30	0.9500
С9—С8	1.364 (11)	C24—C32	1.389 (9)
C9—C10	1.431 (10)	C24—C23	1.415 (9)
С9—Н9	0.9500	C24—C25	1.441 (10)
C8—C7	1.406 (9)	C29—H29	0.9500
С8—Н8	0.9500	C23—H23	0.9500
C12—C4	1.382 (10)	O3—S2	1.513 (4)
С7—С6	1.437 (10)	O3—Cu1	1.947 (4)
C1—C2	1.424 (11)	O4—S2	1.462 (5)

C1—H1	0.9500	C32—C31	1.431 (8)
C4—C3	1.412 (9)	C26—C25	1.363 (10)
C4—C5	1.429 (10)	C26—H26	0.9500
C6—C5	1.366 (9)	С25—Н25	0.9500
С6—Н6	0.9500	Cu1—N2	2.015 (5)
С5—Н5	0.9500	S2—O2	1.453 (5)
C2—C3	1.354 (11)	S2—O1	1.463 (3)
С2—Н2	0.9500	C41A—O41	1.242 (11)
C10—N2	1.331 (8)	C41A—C42A	1.391 (12)
C10—H10	0.9500	C41A—H41A	0.9900
С3—Н3	0.9500	C41A—H41B	0.9900
N4—C30	1.340 (7)	C42A—O42	1.260 (13)
N4—C31	1.356 (8)	C42A—H42A	0.9900
N4—Cu1	2.064 (5)	C42A—H42B	0.9900
N3—C21	1.337 (8)	C41B—O41	1.360 (17)
N3—C32	1.378 (9)	C41B—C42B	1.411 (18)
N3—Cu1	1.995 (5)	C41B—H41C	0.9900
C28—C29	1.382 (10)	C41B—H41D	0.9900
C28—C27	1.410 (9)	C42B—O42	1.384 (17)
C28—H28	0.9500	C42B—H42C	0.9900
C27—C26	1.416 (10)	C42B—H42D	0.9900
C27—C31	1.433 (9)		
C1—N1—C12	118.4 (6)	C30—C29—C28	120.7 (6)
C1—N1—Cu1	131.0 (5)	С30—С29—Н29	119.7
C12—N1—Cu1	110.5 (4)	С28—С29—Н29	119.7
N2—C11—C7	123.2 (6)	C22—C23—C24	118.5 (6)
N2—C11—C12	118.9 (6)	С22—С23—Н23	120.7
C7—C11—C12	117.9 (6)	C24—C23—H23	120.7
C8—C9—C10	118.9 (6)	S2—O3—Cu1	128.5 (2)
С8—С9—Н9	120.6	N3—C32—C24	122.9 (6)
С10—С9—Н9	120.6	N3—C32—C31	115.2 (5)
C9—C8—C7	120.8 (7)	C24—C32—C31	121.9 (6)
С9—С8—Н8	119.6	N4—C31—C32	118.3 (6)
С7—С8—Н8	119.6	N4—C31—C27	123.7 (5)
N1-C12-C4	123.6 (5)	C32—C31—C27	118.0 (6)
N1-C12-C11	115.8 (6)	C25—C26—C27	123.4 (7)
C4—C12—C11	120.6 (6)	C25—C26—H26	118.3
C11—C7—C8	116.5 (6)	C27—C26—H26	118.3
C11—C7—C6	120.5 (6)	C26—C25—C24	119.0 (7)
C8—C7—C6	123.0 (6)	С26—С25—Н25	120.5
N1—C1—C2	122.0 (7)	C24—C25—H25	120.5
N1—C1—H1	119.0	O3—Cu1—N3	91.59 (18)
C2—C1—H1	119.0	O3—Cu1—N2	96.1 (2)
C12—C4—C3	116.9 (6)	N3—Cu1—N2	170.74 (16)
C12—C4—C5	119.9 (6)	O3—Cu1—N4	146.72 (19)
C3—C4—C5	123.1 (7)	N3—Cu1—N4	81.9 (2)
C5—C6—C7	120.3 (6)	N2—Cu1—N4	94.3 (2)

C5 C6 H6	110.0	$O_2 = C_{11} = N_1$	102 76 (19)
С3—С0—Н0	119.9	$N_{2} = C_{11} = N_{1}$	103.70(10)
C = C = C = C	119.9	$N_2 = C_{11} = N_1$	95.5(2)
C6 C5 H5	120.8 (7)	N_{2} C_{u1} N_{1}	79.7(2)
$C_0 = C_3 = H_3$	119.0	N4 = Cu1 = N1	109.17(14)
$C_4 = C_3 = C_1$	119.0	02 - 52 - 04	110.3(3)
$C_3 = C_2 = C_1$	118.4 (0)	02 - 52 - 01	111.1(3)
$C_3 - C_2 - H_2$	120.8	04 - 52 - 01	110.2 (2)
C1—C2—H2	120.8	02-82-03	110.0 (3)
N2—C10—C9	120.8 (6)	04—\$2—03	106.0 (3)
N2—C10—H10	119.6	O1—S2—O3	108.9 (2)
C9—C10—H10	119.6	C10—N2—C11	119.8 (6)
C2—C3—C4	120.6 (7)	C10—N2—Cu1	125.1 (5)
С2—С3—Н3	119.7	C11—N2—Cu1	115.0 (4)
С4—С3—Н3	119.7	O41—C41A—C42A	131.8 (11)
C30—N4—C31	117.3 (6)	O41—C41A—H41A	104.3
C30—N4—Cu1	131.8 (4)	C42A—C41A—H41A	104.3
C31—N4—Cu1	110.7 (4)	O41—C41A—H41B	104.3
C21—N3—C32	117.6 (5)	C42A—C41A—H41B	104.3
C21—N3—Cu1	128.5 (5)	H41A—C41A—H41B	105.6
C32—N3—Cu1	113.8 (4)	O42—C42A—C41A	126.0 (13)
C29—C28—C27	119.0 (6)	O42—C42A—H42A	105.8
C29—C28—H28	120.5	C41A—C42A—H42A	105.8
C27—C28—H28	120.5	O42—C42A—H42B	105.8
C28—C27—C26	125.5 (7)	C41A—C42A—H42B	105.8
C28—C27—C31	116.1 (6)	H42A—C42A—H42B	106.2
C26—C27—C31	118.4 (6)	O41—C41B—C42B	126 (2)
C21—C22—C23	120.4 (6)	O41—C41B—H41C	105.8
C21—C22—H22	119.8	C42B—C41B—H41C	105.8
C23—C22—H22	119.8	O41—C41B—H41D	105.8
N3—C21—C22	122.9 (7)	C42B—C41B—H41D	105.8
N3—C21—H21	118.5	H41C—C41B—H41D	106.2
C22—C21—H21	118.5	O42—C42B—C41B	124 (2)
N4—C30—C29	123.1 (6)	O42—C42B—H42C	106.3
N4—C30—H30	118.4	C41B—C42B—H42C	106.3
С29—С30—Н30	118.4	O42—C42B—H42D	106.3
C32—C24—C23	117.6 (6)	C41B—C42B—H42D	106.3
C32—C24—C25	119.2 (6)	H42C—C42B—H42D	106.4
C23—C24—C25	123.1 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A	
C3—H3…O2 ⁱ	0.95	2.48	3.389 (9)	161	
C5—H5···O1 ⁱ	0.95	2.34	3.263 (9)	165	
С6—Н6…О2 ^{іі}	0.95	2.35	3.252 (11)	158	
C9—H9····O4 ⁱⁱⁱ	0.95	2.28	3.188 (9)	161	
C10—H10…O1	0.95	2.41	2.973 (8)	118	
C21—H21…O1 ^{iv}	0.95	2.44	3.175 (8)	134	

supporting information

C25—H25…O1 ^v	0.95	2.44	3.285 (11)	149
C25—H25····O4 ^v	0.95	2.39	3.255 (11)	151
C26—H26···O3 ^{vi}	0.95	2.50	3.200 (8)	130
C28—H28…O4 ^{vi}	0.95	2.46	3.367 (10)	159
C30—H30…O41 ⁱⁱⁱ	0.95	2.45	3.165 (12)	132

Symmetry codes: (i) *x*-1/2, *-y*+1/2, *z*-1/2; (ii) *x*-1/2, *y*-1/2, *z*; (iii) *x*, *-y*+1, *z*+1/2; (iv) *x*, *-y*+1, *z*-1/2; (v) *x*+1/2, *y*-1/2, *z*; (vi) *x*+1/2, *-y*+1/2, *z*+1/2.