metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis((E)-2-{5,5-dimethyl-3-[4-(1H-1,2,4triazol-1-yl- κN^4)styryl]cyclohex-2-enylidene}malononitrile)diiodidomercury(II)

Lian-Ke Wang, Wei-Ju Zhu and Hong-Ping Zhou*

Deparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China and Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China Correspondence e-mail: zhpzhp@263.net

Received 29 July 2013; accepted 11 September 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean $\sigma(C-C) = 0.006$ Å; R factor = 0.027; wR factor = 0.071; data-to-parameter ratio = 16.2.

In the title complex, $[HgI_2(C_{21}H_{19}N_5)_2]$, the Hg^{II} ion is located on a twofold rotation axis and is coordinated by two I atoms and two N atoms from two (E)-2-{5,5-dimethyl-3-[4-(1H-1,2,4triazol-1-yl)styryl]cyclohex-2-enylidene}malononitrile ligands in a distorted tetrahedral geometry. In the crystal, the molecules are linked by intermolecular π - π interactions between the triazole and benzene rings [centroid-centroid distance = 3.794(3) Å] into a band extending in [010]. These bands are further connected by C-H···N hydrogen bonds into a two-dimensional network parallel to (100).

Related literature

For background to metal-organic complexes, see: Haneda et al. (2007); Li et al. (2006); Liu et al. (2010, 2011); Satapathy et al. (2012); Sun et al. (2012). For the organic ligand of the title compound, see: Zheng et al. (2013). For related structures, see: Jin, Wang et al. (2013); Jin, Zhang et al. (2013); Zhou et al. (2009).

Experimental

Crystal data

$[HgI_2(C_{21}H_{19}N_5)_2]$	$V = 4216.2 (10) \text{ Å}^3$
$M_r = 1137.21$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 38.9622 (16) Å	$\mu = 5.16 \text{ mm}^{-1}$
b = 5.5684 (12) Å	$T = 291 { m K}$
c = 21.9564 (14) Å	$0.30 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 117.738 \ (2)^{\circ}$	

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.307, T_{\max} = 0.457$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	251 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
4078 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

14961 measured reflections

 $R_{\rm int} = 0.032$

4078 independent reflections

3384 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C20-H20\cdots N2^{i}$	0.93	2.48	3.354 (7)	157
Symmetry code: (i) $r_{-\nu} \perp 1$ $z \perp \frac{1}{2}$				

metry code: (i) $x, -y + 1, z + \frac{1}{2}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the Program for New Century Excellent Talents in Universities (China), the Doctoral Program Foundation of the Ministry of Education of China (grant No. 20113401110004), the National Natural Science Foundation of China (grant Nos. 21271003 and 21271004), the Natural Science Foundation of the Education Committee of Anhui Province (grant No. KJ2012A024), the Natural Science Foundation of Anhui Province (grant No. 1208085MB22) and the 211 Project of Anhui University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2634).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA.
- Haneda, S., Gan, Z. B., Eda, K. & Hayashi, M. (2007). Organometallics, 26, 6551-6555
- Jin, F., Wang, H.-Z., Zhang, Y., Wang, Y., Zhang, J., Kong, L., Hao, F.-Y., Yang, J.-X., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). CrystEngComm, 15, 3687-3695
- Jin, F., Zhang, Y., Wang, H.-Z., Zhu, H.-Z., Yan, Y., Zhang, J., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). Cryst. Growth Des. 13, 1978-1987.

metal-organic compounds

- Li, Y.-Y., Lin, C.-K., Zheng, G.-L., Cheng, Z.-Y., You, H., Wang, W.-D. & Lin, J. (2006). *Chem. Mater.* **18**, 3463–3469.
- Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2010). J. Am. Chem. Soc. 132, 7005–7017.
- Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2011). Chem. Commun. 47, 12343–12345. Satapathy, R., Wu, Y. H. & Lin, H. C. (2012). Org. Lett. 14, 2564–2567.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Sun, L., Li, G.-Z., Xu, M.-H., Li, X.-J., Li, J. R. & Deng, H. (2012). Eur. J. Inorg. Chem. pp. 1764–1772.
- Zheng, Z., Yu, Z.-P., Yang, M.-D., Jin, F., Zhang, Q., Zhou, H.-P., Wu, J.-Y. & Tian, Y.-P. (2013). J. Org. Chem. **78**, 3222–3234. Zhou, H.-P., Yin, J.-H., Zheng, L.-X., Wang, P., Hao, F.-Y., Geng, W.-Q., Gan,
- Zhou, H.-P., Yin, J.-H., Zheng, L.-X., Wang, P., Hao, F.-Y., Geng, W.-Q., Gan, X.-P., Xu, G.-Y., Wu, J.-Y., Tian, Y.-P., Tao, X.-T., Jiang, M.-H. & Kan, Y.-H. (2009). Cryst. Growth Des. 9, 3789–3798.

supporting information

Acta Cryst. (2013). E69, m556-m557 [doi:10.1107/S160053681302518X]

$Bis((E)-2-\{5,5-dimethyl-3-[4-(1H-1,2,4-triazol-1-yl-\kappa N^4)styryl]cyclohex-2-enyl-idene\}malononitrile)diiodidomercury(II)$

Lian-Ke Wang, Wei-Ju Zhu and Hong-Ping Zhou

S1. Comment

The design and synthesis of metal-organic hybrid complexes based on strong coordinate bonds and multiple weak noncovalent forces have become one of the most active fields in coordination chemistry and crystal engineering not only for their fascinating structural features but also for their interesting properties as new functional materials with tremendous potential applications in the areas of luminescence, catalysis, separation, adsorption, biological chemistry (Haneda *et al.*, 2007; Li *et al.*, 2006; Liu *et al.*, 2010, 2011; Satapathy *et al.*, 2012; Sun *et al.*, 2012). The organic ligand of the title compound had been investigated for its optical properties (Zheng *et al.*, 2013). A variety of mercury(II) complexes have been reported (Jin, Wang *et al.*, 2013). Besides, triazole and isophorone-malononitrile complexes have been reported (Jin, Zhang *et al.*, 2013; Zhou *et al.*, 2009). In this paper, we report the synthesis and crystal structure of the title complex (Fig. 1). In the crystal, intermolecular π - π interactions between the triazole and benzene rings [centroid–centroid distance = 3.794 (3) Å] link the molecules into a band extending in [010] (Fig. 2). The neighboring bands are further linked into a two-dimensional network parallel to (100) through C—H···N hydrogen bonds (Fig.3).

S2. Experimental

For the preparation of the title complex, (E)-2-(3-(4-(1*H*-1,2,4-triazol-1-yl)styryl)- 5,5-dimethylcyclohex-2-enylidene)malononitrile (0.341 g, 1 mmol) in 25 ml of dichloromethane was added into a 50 ml colorimeter tube, carefully layered with a clear acetonitrile and benzene solution (25 ml) of HgI₂ (0.227 g, 0.5 mmol). Crystals were obtained by slow interlayer diffusion (yield: 0.427 g, 75.1%).

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (CH), 0.97 (CH₂) and 0.96 (CH₃) Å and with U_{iso} (H) = 1.2(1.5 for methyl) U_{eq} (C).

Figure 1

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, y, 3/2-z.]

Figure 2

The one-dimensional structure of the title complex, showing π - π interactions (dashed lines).

Figure 3

The two-dimensional structure of the title complex, showing C-H···N hydrogen bonds (dashed lines).

Bis((*E*)-2-{5,5-dimethyl-3-[4-(1*H*-1,2,4-triazol-1-yl- κN^4)styryl]cyclohex-2-envlidene}malononitrile)diiodidomercury(II)

Crystal data

[HgI₂(C₂₁H₁₉N₅)₂] $M_r = 1137.21$ Monoclinic, C2/c a = 38.9622 (16) Å b = 5.5684 (12) Å c = 21.9564 (14) Å $\beta = 117.738$ (2)° V = 4216.2 (10) Å³ Z = 4

Data collection

Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.307, T_{\max} = 0.457$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.071$ S = 1.014078 reflections 251 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2184 $D_x = 1.792 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3126 reflections $\theta = 2.1-23.6^{\circ}$ $\mu = 5.16 \text{ mm}^{-1}$ T = 291 KNeedle, yellow $0.30 \times 0.20 \times 0.18 \text{ mm}$

14961 measured reflections 4078 independent reflections 3384 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -47 \rightarrow 47$ $k = -6 \rightarrow 6$ $l = -26 \rightarrow 26$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.22P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.0000	1.49817 (4)	0.7500	0.04679 (9)	
I1	0.06739 (2)	1.65983 (6)	0.84809 (2)	0.06479 (11)	
C19	0.11064 (13)	0.4748 (8)	0.6784 (2)	0.0541 (11)	
H19	0.1329	0.4209	0.7164	0.065*	
C15	0.06588 (13)	0.4500 (8)	0.5599 (2)	0.0560 (11)	
H15	0.0575	0.3788	0.5170	0.067*	
C16	0.04479 (12)	0.6381 (8)	0.5667 (2)	0.0540 (10)	
H16	0.0227	0.6937	0.5288	0.065*	
N5	0.01215 (9)	1.2154 (6)	0.67843 (16)	0.0452 (7)	
N3	0.03392 (9)	0.9312 (6)	0.63805 (16)	0.0409 (7)	
C13	0.12305 (12)	0.1699 (7)	0.6110 (2)	0.0485 (9)	
H13	0.1406	0.1013	0.6525	0.058*	
C21	-0.01308 (12)	1.1596 (8)	0.6130 (2)	0.0590 (11)	
H21	-0.0370	1.2354	0.5892	0.071*	
C20	0.04150 (12)	1.0708 (7)	0.6927 (2)	0.0447 (9)	
H20	0.0641	1.0659	0.7344	0.054*	
C17	0.05698 (10)	0.7431 (6)	0.63072 (19)	0.0401 (8)	
C14	0.09914 (11)	0.3646 (7)	0.6153 (2)	0.0439 (9)	
N4	-0.00144 (11)	0.9900 (6)	0.58534 (19)	0.0614 (10)	
C18	0.08964 (12)	0.6650 (8)	0.6862 (2)	0.0528 (10)	
H18	0.0979	0.7374	0.7290	0.063*	
C10	0.14855 (11)	-0.1065 (7)	0.5526 (2)	0.0430 (9)	
C9	0.17746 (11)	-0.2203 (7)	0.61823 (19)	0.0481 (9)	
H9A	0.1640	-0.3332	0.6333	0.058*	
H9B	0.1885	-0.0966	0.6532	0.058*	
C11	0.14662 (11)	-0.1692 (7)	0.4915 (2)	0.0468 (9)	
H11	0.1295	-0.0878	0.4520	0.056*	
C12	0.12256 (12)	0.0798 (7)	0.5548 (2)	0.0490 (10)	
H12	0.1040	0.1402	0.5129	0.059*	
C6	0.21068 (11)	-0.3527 (6)	0.61357 (19)	0.0451 (9)	
C5	0.19376 (13)	-0.5051 (6)	0.5484 (2)	0.0504 (10)	
H5A	0.2147	-0.5826	0.5437	0.061*	
H5B	0.1775	-0.6298	0.5524	0.061*	
C4	0.17029 (11)	-0.3582 (7)	0.4857 (2)	0.0448 (9)	
C1	0.19109 (13)	-0.6083 (9)	0.4172 (2)	0.0556 (10)	
C2	0.17018 (12)	-0.4045 (8)	0.4249 (2)	0.0493 (10)	
C3	0.14937 (13)	-0.2621 (9)	0.3649 (2)	0.0566 (11)	
N2	0.13295 (13)	-0.1425 (8)	0.3170 (2)	0.0772 (12)	
N1	0.20731 (13)	-0.7689 (8)	0.4121 (2)	0.0824 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.24041 (12)	-0.1776 (7)	0.6121 (2)	0.0580 (11)	
H8A	0.2609	-0.2658	0.6095	0.087*	
H8B	0.2510	-0.0819	0.6531	0.087*	
H8C	0.2280	-0.0748	0.5726	0.087*	
C7	0.23118 (16)	-0.5185 (7)	0.6758 (3)	0.0698 (14)	
H7A	0.2131	-0.6351	0.6761	0.105*	
H7B	0.2411	-0.4252	0.7173	0.105*	
H7C	0.2522	-0.5992	0.6732	0.105*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Hg1	0.05187 (14)	0.04752 (14)	0.04360 (14)	0.000	0.02444 (11)	0.000
I1	0.0631 (2)	0.0737 (2)	0.05467 (19)	-0.01842 (15)	0.02500 (15)	-0.00968 (15)
C19	0.056 (3)	0.069 (3)	0.043 (2)	0.019 (2)	0.027 (2)	0.012 (2)
C15	0.053 (3)	0.064 (3)	0.050 (3)	0.000 (2)	0.023 (2)	-0.023 (2)
C16	0.044 (2)	0.066 (3)	0.046 (2)	0.008 (2)	0.0154 (18)	-0.016 (2)
N5	0.0489 (19)	0.0457 (18)	0.0442 (18)	0.0023 (15)	0.0242 (16)	-0.0050 (15)
N3	0.0427 (18)	0.0461 (17)	0.0376 (17)	0.0000 (14)	0.0219 (15)	-0.0028 (14)
C13	0.056 (2)	0.045 (2)	0.053 (2)	0.0027 (18)	0.032 (2)	0.0038 (19)
C21	0.048 (2)	0.077 (3)	0.048 (2)	0.014 (2)	0.019 (2)	-0.007 (2)
C20	0.049 (2)	0.047 (2)	0.039 (2)	0.0000 (18)	0.0210 (18)	-0.0038 (17)
C17	0.046 (2)	0.0409 (19)	0.043 (2)	-0.0022 (17)	0.0285 (18)	-0.0026 (17)
C14	0.049 (2)	0.045 (2)	0.049 (2)	-0.0011 (18)	0.0314 (19)	-0.0004 (18)
N4	0.050 (2)	0.082 (3)	0.044 (2)	0.0147 (18)	0.0156 (17)	-0.0155 (18)
C18	0.064 (3)	0.065 (3)	0.035 (2)	0.016 (2)	0.028 (2)	-0.001 (2)
C10	0.047 (2)	0.0361 (19)	0.051 (2)	-0.0018 (17)	0.0268 (19)	-0.0027 (18)
C9	0.057 (2)	0.041 (2)	0.051 (2)	-0.0002 (18)	0.029 (2)	-0.0021 (19)
C11	0.050 (2)	0.045 (2)	0.045 (2)	0.0068 (18)	0.0219 (19)	-0.0007 (18)
C12	0.048 (2)	0.048 (2)	0.055 (3)	0.0043 (19)	0.027 (2)	-0.004 (2)
C6	0.055 (2)	0.0315 (19)	0.045 (2)	0.0024 (17)	0.0202 (18)	0.0003 (17)
C5	0.061 (3)	0.032 (2)	0.061 (3)	0.0023 (18)	0.031 (2)	-0.0009 (19)
C4	0.042 (2)	0.042 (2)	0.053 (2)	-0.0049 (17)	0.0240 (18)	-0.0077 (18)
C1	0.056 (3)	0.056 (3)	0.060 (3)	-0.002 (2)	0.031 (2)	-0.014 (2)
C2	0.047 (2)	0.045 (2)	0.054 (3)	-0.0012 (19)	0.023 (2)	-0.012 (2)
C3	0.053 (3)	0.070 (3)	0.045 (3)	0.000 (2)	0.021 (2)	-0.018 (2)
N2	0.081 (3)	0.087 (3)	0.055 (3)	0.007 (2)	0.024 (2)	-0.007 (2)
N1	0.082 (3)	0.075 (3)	0.103 (3)	0.003 (2)	0.053 (3)	-0.028 (3)
C8	0.051 (2)	0.047 (2)	0.071 (3)	-0.0008 (19)	0.024 (2)	-0.002 (2)
C7	0.091 (4)	0.048 (3)	0.062 (3)	0.014 (2)	0.028 (3)	0.009 (2)

Geometric parameters (Å, °)

Hg1—N5	2.422 (3)	С10—С9	1.495 (5)	
Hg1—I1	2.6606 (8)	С9—С6	1.533 (5)	
C19—C14	1.385 (6)	С9—Н9А	0.9700	
C19—C18	1.397 (5)	С9—Н9В	0.9700	
C19—H19	0.9300	C11—C4	1.444 (5)	

C15—C16	1.381 (5)	C11—H11	0.9300
C15—C14	1.384 (6)	C12—H12	0.9300
C15—H15	0.9300	C6—C5	1.524 (5)
C16—C17	1.386 (5)	C6—C8	1.526 (5)
C16—H16	0.9300	C6—C7	1.531 (6)
N5—C20	1.312 (5)	C5—C4	1.494 (6)
N5—C21	1.346 (5)	C5—H5A	0.9700
N3—C20	1.342 (5)	C5—H5B	0.9700
N3—N4	1.364 (5)	C4—C2	1.357 (5)
N3—C17	1437(5)	C1 - N1	1 131 (5)
C_{13} C_{12}	1.324(5)	C1 - C2	1.452 (6)
C_{13} C_{14}	1.321(5)	$C^2 - C^3$	1.424 (6)
C13 H13	0.9300	$C_2 = C_3$	1.424(0) 1 153(5)
C_{13} M_{13}	1 313 (5)	C_{3} H_{8A}	0.9600
C_{21} H21	1.515(5)		0.9000
C20_U20	0.9300		0.9000
C20—H20	0.9300		0.9600
	1.360 (5)		0.9600
C18—H18	0.9300	C/—H/B	0.9600
	1.354 (5)	С/—Н/С	0.9600
C10—C12	1.466 (5)		
N5 ⁱ —Hg1—N5	98.89 (15)	С10—С9—Н9А	108.6
N5 ⁱ —Hg1—I1	96.43 (8)	С6—С9—Н9А	108.6
N5—Hg1—I1	109.14 (7)	С10—С9—Н9В	108.6
N5 ⁱ —Hg1—I1 ⁱ	109.15 (7)	C6—C9—H9B	108.6
N5—Hg1—I1 ⁱ	96.43 (8)	H9A—C9—H9B	107.5
I1—Hg1—I1 ⁱ	140.450 (19)	C10-C11-C4	122.2 (4)
C14—C19—C18	121.6 (4)	C10—C11—H11	118.9
C14—C19—H19	119.2	C4—C11—H11	118.9
C18—C19—H19	119.2	C13—C12—C10	126.0 (4)
C16—C15—C14	121.7 (4)	C13—C12—H12	117.0
С16—С15—Н15	119.1	C10—C12—H12	117.0
C14—C15—H15	119.1	C5—C6—C8	109.7 (3)
C15—C16—C17	119.3 (4)	C5—C6—C7	108.7 (3)
C15—C16—H16	120.4	C8—C6—C7	108.6 (4)
C17—C16—H16	120.4	C5-C6-C9	108.7(3)
$C_{20} - N_{5} - C_{21}$	103.6 (3)	C8—C6—C9	111.5 (3)
C_{20} N5 Hg1	1310(3)	C7 - C6 - C9	109.6(4)
C_{21} N5—Hg1	125.2(3)	C4-C5-C6	103.0(1) 111.9(3)
C_{20} N3 N_4	109.6(3)	C4	109.2
$C_{20} = N_{3} = C_{17}$	109.0(3)	C6	109.2
N4 - N3 - C17	129.3(3)	C4-C5-H5B	109.2
C_{12} C_{13} C_{14}	127.1(3) 127.5(4)	C6-C5-H5B	109.2
C12_C13_H13	1163	H5A-C5-H5B	107.9
C14_C13_H13	116.3	$C_2 - C_4 - C_{11}$	107.5
N4_C21_N5	115.0 (4)	$C_2 = C_4 = C_5$	121.1 (+)
N4 - C21 - H21	122.5	$C_{2} = C_{1} = C_{3}$	121.0(7) 1173(3)
N5-C21-H21	122.5	N1-C1-C2	178 8 (5)
110 021 1121	144.0	111 01 02	1/0.0(5)

N5-C20-N3	109.7 (4)	C4 - C2 - C3	122.9 (4)
N5-C20-H20	125.1	C4-C2-C1	121.2(4)
N3-C20-H20	125.1	$C_3 - C_2 - C_1$	115.9 (4)
C_{18} C_{17} C_{16}	120.7 (3)	N2—C3—C2	178.6 (5)
C18 - C17 - N3	120.7(3)	C6-C8-H8A	109.5
C16 - C17 - N3	120.5(3) 1190(3)	C6-C8-H8B	109.5
C_{15} C_{14} C_{19}	117.5 (3)	H8A - C8 - H8B	109.5
C_{15} C_{14} C_{13}	124 2 (4)	C6 - C8 - H8C	109.5
C19 - C14 - C13	121.2(1) 1183(4)	H8A - C8 - H8C	109.5
$C_{1} = N_{1} = N_{2}$	1021(3)	H8B - C8 - H8C	109.5
C_{17} C_{18} C_{19}	102.1(5) 119.2(4)	C6-C7-H7A	109.5
C17 - C18 - H18	119.2 (4)	C6-C7-H7B	109.5
$C_{10} = C_{10} = H_{10}$	120.4	$H_{7A} = C_7 = H_{7B}$	109.5
C_{11} C_{10} C_{12}	119 6 (4)	C_{6}	109.5
$C_{11} = C_{10} = C_{12}$	117.0(4)	$H_{7A} = C_7 + H_7C$	109.5
C_{12} C_{10} C_{9}	121.0(3) 1104(3)	H7B C7 H7C	109.5
$C_{12} - C_{10} - C_{9}$	119.4(3) 114.0(3)	п/в—е/—п/с	109.5
0-09-00	114.9 (3)		
C14—C15—C16—C17	-0.6(7)	N3—C17—C18—C19	177.2 (3)
C20—N5—C21—N4	-0.1 (5)	C14—C19—C18—C17	0.4 (6)
Hg1—N5—C21—N4	-175.7 (3)	C11—C10—C9—C6	16.2 (5)
C21—N5—C20—N3	-0.8 (4)	C12—C10—C9—C6	-162.3 (3)
Hg1—N5—C20—N3	174.5 (2)	C12—C10—C11—C4	-177.3 (4)
N4—N3—C20—N5	1.4 (5)	C9—C10—C11—C4	4.1 (6)
C17—N3—C20—N5	-178.0 (3)	C14—C13—C12—C10	176.2 (4)
C15—C16—C17—C18	1.0 (6)	C11—C10—C12—C13	-175.1 (4)
C15—C16—C17—N3	-177.2 (4)	C9-C10-C12-C13	3.4 (6)
C20-N3-C17-C18	8.1 (6)	C10-C9-C6-C5	-45.2 (4)
N4—N3—C17—C18	-171.2 (4)	C10-C9-C6-C8	75.8 (4)
C20-N3-C17-C16	-173.8 (4)	C10—C9—C6—C7	-163.9 (4)
N4—N3—C17—C16	6.9 (5)	C8—C6—C5—C4	-66.4 (4)
C16—C15—C14—C19	0.1 (6)	C7—C6—C5—C4	175.1 (4)
C16—C15—C14—C13	-178.7 (4)	C9—C6—C5—C4	55.8 (4)
C18—C19—C14—C15	0.0 (6)	C10-C11-C4-C2	-174.5 (4)
C18—C19—C14—C13	178.9 (4)	C10-C11-C4-C5	7.5 (6)
C12—C13—C14—C15	15.6 (7)	C6—C5—C4—C2	143.5 (4)
C12—C13—C14—C19	-163.3 (4)	C6-C5-C4-C11	-38.5 (5)
N5-C21-N4-N3	0.9 (5)	C11—C4—C2—C3	4.7 (6)
C20—N3—N4—C21	-1.3 (4)	C5—C4—C2—C3	-177.4 (4)
C17—N3—N4—C21	178.1 (3)	C11—C4—C2—C1	-174.2 (4)
C16—C17—C18—C19	-0.9 (6)	C5—C4—C2—C1	3.7 (6)
Symmetry code: (i) $-x$, y , $-z+3/2$.			
Hydrogen-bond geometry (Å, °)			

 $\mathrm{H}{\cdots}{A}$

 $D \cdots A$

D—Н

D—H···A

D—H···A

supporting information

C20—H20…N2 ⁱⁱ	0.93	2.48	3.354 (7)	157

Symmetry code: (ii) x, -y+1, z+1/2.