organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-[(4'-Ethoxycarbonyl-[1,1'-biphenyl]-4yl)oxy]hexanoic acid

Delia López-Velázquez^a and Angel Mendoza^{b*}

^aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico, and ^bCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico Correspondence e-mail: angel.mendoza@correo.buap.mx

Received 7 September 2013; accepted 19 September 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.171; data-to-parameter ratio = 13.5.

In the title compound, $C_{21}H_{24}O_5$, the dihedral angle between the benzene rings is 19.57 (15)°. In the crystal, the molecular arrangement makes up head-to-head centrosymmetric dimers assembled by pairs of $O-H\cdots O$ bonds; this arrangement builds a graph-set ring motif of $R_2^2(8)$. The dimers are linked into a tape running along the *b*-axis direction through C- $H\cdots O$ interactions. The packing is further consolidated by $C-H\cdots \pi$ interactions, forming layers parallel to (10 $\overline{2}$).

Related literature

For hydrogen-bonding assemblies, see: Braga *et al.* (2004). For hydrogen-bonding packing modes and applications of hydrogen bonds, see: Jeong *et al.* (2006); Leiserowitz (1976). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{24}O_5 \\ M_r = 356.4 \\ \text{Monoclinic, } P2_1/c \\ a = 9.111 \ (2) \ \text{\AA} \\ b = 14.753 \ (3) \ \text{\AA} \\ c = 14.427 \ (2) \ \text{\AA} \\ \beta = 100.785 \ (14)^\circ \end{array}$

 $V = 1904.9 \text{ (6) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K $0.5 \times 0.5 \times 0.4 \text{ mm}$

1628 reflections with $I > 2\sigma(I)$

3 standard reflections every 97

intensity decay: 6%

 $R_{\rm int} = 0.031$

reflections

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.891, T_{max} = 0.911$ 4265 measured reflections 3217 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 238 parameters $wR(F^2) = 0.171$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.16$ e Å⁻³3217 reflections $\Delta \rho_{min} = -0.15$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C18 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	$\cdots A$
$\begin{array}{l} O1 - H1 \cdots O2^{i} \\ C18 - H18 \cdots O1^{ii} \\ C6 - H6A \cdots Cg1^{iii} \end{array}$	0.82 0.93 0.97	1.80 2.54 2.78	2.612 (3) 3.460 (4) 3.668 (4)	170 173 152	
Symmetry codes: $-x + 1$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.	(i) $-x + 2$	2, -y - 2, -z + 1;	(ii)	x, y + 1, z;	(iii)

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors acknowledge financial support from the VIEP-BUAP Project (LOVD-NAT12-1), PIFI-2012, Programa Anual de Cooperación Académica BUAP-UNAM 2012 and thank A. R. Hernández-Sosa for the crystal preparation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5302).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Braga, D., Grepioni, F., Hardie, M. J., Hubberstey, P., Maini, L., Poloto, M., Suksangpanya, U. & Vilar, R. (2004). *Structure and Bonding*, Vol. 111, edited by D. M. P. Mingos. Berlin: Springer.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Jeong, K. U., Knapp, B. S., Ge, J. J., Jin, S., Graham, M. J., Harris, F. W. & Cheng, S. Z. D. (2006). *Chem. Mater.* 18, 680–690.
- Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2013). E69, o1588 [doi:10.1107/S1600536813025877]

6-[(4'-Ethoxycarbonyl-[1,1'-biphenyl]-4-yl)oxy]hexanoic acid

Delia López-Velázquez and Angel Mendoza

S1. Comment

Hydrogen bonds are the strongest of the non-covalent interactions and have a high degree of directionality. Therefore, the design of molecules with hydrogen bonding capabilities is very important due to its numerous potential application (Braga *et al.*, 2004) in nanotechnology, in crystal engineering, in template synthesis of polymers and networks, as well as in templated processes in biology such as the replication and transcription of nucleic acids. It has long been known that monocarboxylic acid may be interlinked to form the cyclic hydrogen-bonded dimer. This kind of molecular dimer, is well known as supramolecular synthon in crystals of carboxylic acids (Jeong *et al.*, 2006; Leiserowitz *et al.*, 1976). It is also important to point out that the title compound **I** contains a polymerizable end-group. Therefore it is a precursor for polymeric materials.

In the title compound, the ASU shows a molecule with two non-coplanar phenyl rings bonded by C10 and C13, both rings with *p*-substitution. The dihedral angle between these planes is 19.57 (15)°. On the other hand, C2 to C6 show an aliphatic extended-chain probably due to intermolecular interactions. The crystal packing makes up a head to head dimer assembled by intermolecular O—H···O bonds between the carboxyl groups (Fig. 1). This arrangement builds a graph-set ring $R^2_2(8)$ (Etter *et al.*, 1990; Bernstein *et al.*, 1995). Two more interactions C—H···O and C—H··· π interactions, are identified, which stabilize the crystal packing. A tape of molecules from the C18—H18···O1 interaction is formed along the *b* axis. The C6—H6A···*Cg*1 interaction is building a layer of molecules parallel to (1 0 $\overline{2}$). (Table 1; *Cg*1 is the centroid of the ring composed of C13–C18.)

S2. Experimental

6.2 g (14 mmol) of benzyl 6-(ethyl 4'-oxydiphenyl-4-carboxylate)-hexanoate was added to 90 ml of dry ethyl acetate. 5% Pd—C (0.029 g) was then added with stirring. The hydrogenolisis was allowed to proceed for 8.5 h under hydrogen atmosphere at room temperature. After the removal of the catalyst by filtration and evaporation of the ethyl acetate under reduced pressure, the residue was then dissolved in hot methylene chloride and the solution was allowed to cool to -10 °C. It gave a white crystalline solid which was filtered off (4.8 g, 13.48 mmol, yield 97%). Crystals of I were grown from a solution of acetone by slow evaporation technique at room temperature. Anal. Calc. for $C_{21}H_{24}O_5$: C 70.79, H 6.74%. Found: C 70.86, H 6.92%. IR(solid state, cm⁻¹): v (C—H_{Ar}) 3028; v (C—H_{Aliph}) 2938; v (C= O, Aliph.) 1703; v (C=O, COOH) 1694; v (C=C, Ar) 1600. ¹H NMR [400 MHz; CDCl₃, (CH₃)₄Si) δ (p.p.m.)]: 1.40 (t, 3H₂₁, CH₃), 1.55 (m, 2H₄, CH₂), 1.74 (m, 2H₃, CH₂), 1.84 (m, 2H₅, CH₂), 2.41 (t, 2H₂, CH₂—COOH), 4.01 (t, 2H₆, O—CH₂), 4.38 (q, 2H₂₀ Me—CH₂—O), 6.98 (d, 2H), 7.55 (d, 2H), 7.62 (d, 2H), 8.07 (d, 2H). ¹³C NMR [100 MHz; CDCl₃, (CH₃)₄Si δ (p.p.m.)]: C₂₁ 14.61, C₄ 24.64, C₃ 25.82, C₅, 29.15, C₂ 34.05, C₂₀ 61.15, C₆ 67.93, C₁₂ and C₈ 115.11, C₁₅ and C₁₇ 126.63, C₁₄ and C₁₈ 128.57, C₉ and C₁₁ 130.29, C₁₀ 132.57, C₁₆ 145.36, C₁₃ 145.36, C₇ 159.48, C₁₉ 166.87, C₁ 179.41.

S3. Refinement

H atoms linked to C and O atoms were placed in geometrical idealized positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C_{methyl}, O)$.

Figure 1

A view of the centrosymmetric dimer of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A crystal packing view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

6-[(4'-Ethoxycarbonyl-[1,1'-biphenyl]-4-yl)oxy]hexanoic acid

Crystal data	
$C_{21}H_{24}O_5$	F(000) = 760
$M_r = 356.4$	$D_{\rm x} = 1.243 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 43 reflections
a = 9.111 (2) Å	$\theta = 9.1 - 33.6^{\circ}$
b = 14.753 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 14.427 (2) Å	T = 298 K
$\beta = 100.785 \ (14)^{\circ}$	PRISM, colorless
V = 1904.9 (6) Å ³	$0.5 \times 0.5 \times 0.4 \text{ mm}$
Z = 4	

Data collection

Siemens P4 diffractometer Graphite monochromator ω scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.891, T_{\max} = 0.911$ 4265 measured reflections 3217 independent reflections <i>Refinement</i>	1628 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 24.7^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -1 \rightarrow 10$ $k = -17 \rightarrow 1$ $l = -16 \rightarrow 16$ 3 standard reflections every 97 reflections intensity decay: 6%
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.171$	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.9974P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
3217 reflections	$(\Delta/\sigma)_{max} < 0.001$
238 parameters	$\Delta\rho_{max} = 0.16$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.15$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXL</i>
direct methods	Extinction coefficient: 0.0013 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8791 (4)	-0.8969 (2)	0.4560 (2)	0.0645 (9)
C2	0.7761 (4)	-0.82076 (19)	0.4252 (2)	0.0672 (9)
H2A	0.6847	-0.8309	0.4491	0.081*
H2B	0.7504	-0.8216	0.3569	0.081*
C3	0.8346 (4)	-0.72759 (19)	0.4559 (3)	0.0712 (10)
H3A	0.9243	-0.7157	0.4309	0.085*
H3B	0.8608	-0.7256	0.5242	0.085*
C4	0.7197 (4)	-0.65502 (19)	0.4220 (2)	0.0721 (10)
H4A	0.6936	-0.6578	0.3538	0.087*
H4B	0.6301	-0.6678	0.4469	0.087*
C5	0.7716 (4)	-0.5605(2)	0.4506 (3)	0.0790 (11)
H5A	0.8617	-0.5473	0.4265	0.095*
H5B	0.7956	-0.5568	0.5189	0.095*
C6	0.6529 (4)	-0.4906 (2)	0.4133 (3)	0.0748 (10)
H6A	0.6288	-0.4933	0.345	0.09*
H6B	0.5626	-0.5026	0.4378	0.09*
C7	0.6196 (4)	-0.3305 (2)	0.4188 (2)	0.0666 (9)
C8	0.4757 (4)	-0.3335 (2)	0.3664 (2)	0.0688 (9)
H8	0.4334	-0.3885	0.3442	0.083*
C9	0.3949 (4)	-0.2531 (2)	0.3471 (2)	0.0639 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H9	0.2982	-0.2558	0.3121	0.077*
C10	0.4537 (3)	-0.16963 (19)	0.3782 (2)	0.0550 (8)
C11	0.5982 (4)	-0.1695 (2)	0.4320 (2)	0.0655 (9)
H11	0.6409	-0.1148	0.4551	0.079*
C12	0.6788 (4)	-0.2480 (2)	0.4516 (2)	0.0706 (10)
H12	0.7747	-0.2455	0.4876	0.085*
C13	0.3703 (3)	-0.08361 (19)	0.3554 (2)	0.0560 (8)
C14	0.2155 (4)	-0.0809 (2)	0.3260 (2)	0.0724 (10)
H14	0.1615	-0.1347	0.3219	0.087*
C15	0.1407 (4)	-0.0002 (2)	0.3031 (3)	0.0750 (10)
H15	0.0375	-0.0008	0.2835	0.09*
C16	0.2158 (3)	0.0809 (2)	0.3086 (2)	0.0598 (8)
C17	0.3689 (4)	0.0802 (2)	0.3380 (2)	0.0657 (9)
H17	0.4218	0.1345	0.3424	0.079*
C18	0.4447 (3)	-0.0007(2)	0.3611 (2)	0.0631 (9)
H18	0.5479	0.0004	0.3809	0.076*
C19	0.1335 (4)	0.1663 (2)	0.2828 (2)	0.0699 (9)
C20	0.1574 (4)	0.3263 (2)	0.2690 (3)	0.0835 (11)
H20A	0.0745	0.3366	0.3012	0.1*
H20B	0.1206	0.3301	0.2016	0.1*
C21	0.2767 (4)	0.3949 (2)	0.2988 (3)	0.0951 (13)
H21A	0.3595	0.3827	0.2681	0.143*
H21B	0.3095	0.392	0.366	0.143*
H21C	0.2381	0.4544	0.2815	0.143*
01	0.8276 (3)	-0.97632 (15)	0.42837 (19)	0.0836 (8)
H1	0.8874	-1.0153	0.4517	0.125*
O2	1.0048 (3)	-0.88595 (14)	0.50571 (18)	0.0784 (7)
O3	0.7090 (3)	-0.40416 (14)	0.44254 (17)	0.0856 (8)
O4	-0.0006 (3)	0.17132 (17)	0.2554 (2)	0.1023 (9)
O5	0.2228 (2)	0.23813 (15)	0.29348 (17)	0.0774 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.060 (2)	0.0473 (19)	0.085 (2)	0.0006 (17)	0.0096 (18)	0.0006 (18)
C2	0.068 (2)	0.0511 (18)	0.081 (2)	0.0086 (17)	0.0084 (18)	0.0084 (17)
C3	0.071 (2)	0.0500 (19)	0.093 (3)	0.0087 (17)	0.0146 (19)	0.0075 (18)
C4	0.085 (2)	0.0500 (19)	0.079 (2)	0.0125 (18)	0.0099 (19)	0.0045 (17)
C5	0.095 (3)	0.0496 (19)	0.089 (3)	0.0114 (19)	0.010 (2)	0.0040 (18)
C6	0.090 (3)	0.0483 (19)	0.086 (3)	0.0049 (18)	0.014 (2)	0.0031 (18)
C7	0.074 (2)	0.0485 (19)	0.075 (2)	0.0104 (18)	0.0078 (18)	-0.0006 (17)
C8	0.078 (2)	0.0464 (18)	0.079 (2)	0.0005 (17)	0.0067 (19)	-0.0051 (17)
C9	0.0571 (19)	0.0562 (19)	0.075 (2)	0.0030 (16)	0.0026 (16)	-0.0032 (17)
C10	0.0584 (19)	0.0447 (17)	0.0610 (19)	0.0020 (15)	0.0088 (15)	-0.0036 (14)
C11	0.066 (2)	0.0474 (18)	0.078 (2)	0.0013 (16)	0.0001 (17)	-0.0009 (16)
C12	0.064 (2)	0.054 (2)	0.086 (3)	0.0002 (17)	-0.0035 (18)	0.0006 (18)
C13	0.0538 (19)	0.0515 (18)	0.062 (2)	0.0040 (15)	0.0105 (15)	-0.0023 (15)
C14	0.056 (2)	0.058 (2)	0.102 (3)	-0.0038 (17)	0.0136 (19)	-0.0019 (19)

C15	0.0468 (19)	0.068 (2)	0.109 (3)	0.0068 (18)	0.0090 (19)	0.000 (2)
C16	0.0518 (19)	0.0542 (19)	0.073 (2)	0.0053 (15)	0.0115 (16)	-0.0018 (16)
C17	0.057 (2)	0.0541 (19)	0.082 (2)	0.0047 (16)	0.0026 (17)	-0.0025 (17)
C18	0.0499 (18)	0.0530 (19)	0.083 (2)	0.0054 (16)	0.0033 (16)	-0.0031 (17)
C19	0.059 (2)	0.066 (2)	0.084 (3)	0.0098 (19)	0.0146 (19)	0.0019 (19)
C20	0.079 (2)	0.061 (2)	0.109 (3)	0.019 (2)	0.016 (2)	0.017 (2)
C21	0.099 (3)	0.063 (2)	0.118 (3)	0.004 (2)	0.008 (3)	0.010(2)
01	0.0658 (15)	0.0533 (14)	0.121 (2)	0.0020 (12)	-0.0096 (14)	-0.0037 (14)
O2	0.0587 (14)	0.0538 (14)	0.1133 (19)	0.0005 (11)	-0.0082 (13)	-0.0025 (13)
O3	0.0923 (18)	0.0503 (13)	0.1049 (19)	0.0138 (13)	-0.0050 (15)	-0.0019 (13)
O4	0.0565 (15)	0.0853 (19)	0.160 (3)	0.0175 (14)	0.0074 (16)	0.0118 (18)
05	0.0668 (15)	0.0565 (14)	0.1050 (19)	0.0122 (12)	0.0063 (13)	0.0084 (13)

Geometric parameters (Å, °)

C1—02	1.243 (4)	C10—C13	1.484 (4)	
C101	1.296 (3)	C11—C12	1.371 (4)	
C1—C2	1.478 (4)	C11—H11	0.93	
C2—C3	1.511 (4)	C12—H12	0.93	
C2—H2A	0.97	C13—C18	1.393 (4)	
C2—H2B	0.97	C13—C14	1.395 (4)	
C3—C4	1.513 (4)	C14—C15	1.381 (4)	
С3—НЗА	0.97	C14—H14	0.93	
С3—Н3В	0.97	C15—C16	1.373 (4)	
C4—C5	1.505 (4)	C15—H15	0.93	
C4—H4A	0.97	C16—C17	1.380 (4)	
C4—H4B	0.97	C16—C19	1.478 (4)	
C5—C6	1.519 (4)	C17—C18	1.388 (4)	
С5—Н5А	0.97	C17—H17	0.93	
С5—Н5В	0.97	C18—H18	0.93	
С6—О3	1.408 (4)	C19—O4	1.214 (4)	
С6—Н6А	0.97	C19—O5	1.327 (4)	
С6—Н6В	0.97	C20—O5	1.446 (4)	
С7—ОЗ	1.364 (3)	C20—C21	1.489 (5)	
C7—C12	1.378 (4)	C20—H20A	0.97	
С7—С8	1.386 (4)	C20—H20B	0.97	
С8—С9	1.396 (4)	C21—H21A	0.96	
С8—Н8	0.93	C21—H21B	0.96	
C9—C10	1.384 (4)	C21—H21C	0.96	
С9—Н9	0.93	O1—H1	0.82	
C10—C11	1.398 (4)			
02—C1—O1	122.4 (3)	C11—C10—C13	120.8 (3)	
02 - C1 - C2	122.6 (3)	C12-C11-C10	121.7(3)	
01 - C1 - C2	114.9 (3)	C12—C11—H11	119.1	
C1-C2-C3	115.7 (3)	C10—C11—H11	119.1	
C1—C2—H2A	108.3	$C_{11} - C_{12} - C_{7}$	120.9 (3)	
C3—C2—H2A	108.3	C11—C12—H12	119.5	

C1 $C2$ $U2D$	109.2	C7 C12 U12	110 5
$C_1 = C_2 = H_2 B$	108.5	$C_{1} = C_{12} = C_{14}$	119.3
$C_3 - C_2 - H_2 B$	108.5	C18 - C13 - C14	110.5(3)
$H_2A = C_2 = H_2B$	107.4		120.9 (3)
$C_2 = C_3 = C_4$	111.4 (3)		122.6 (3)
С2—С3—НЗА	109.4	C15—C14—C13	121.6 (3)
С4—С3—НЗА	109.4	C15—C14—H14	119.2
С2—С3—Н3В	109.4	C13—C14—H14	119.2
C4—C3—H3B	109.4	C16—C15—C14	121.3 (3)
НЗА—СЗ—НЗВ	108	C16—C15—H15	119.4
C5—C4—C3	113.9 (3)	C14—C15—H15	119.4
C5—C4—H4A	108.8	C15—C16—C17	118.4 (3)
C3—C4—H4A	108.8	C15—C16—C19	120.3 (3)
C5—C4—H4B	108.8	C17—C16—C19	121.3 (3)
C3—C4—H4B	108.8	C16—C17—C18	120.6 (3)
H4A—C4—H4B	107.7	С16—С17—Н17	119.7
C4—C5—C6	111.5 (3)	C18—C17—H17	119.7
С4—С5—Н5А	109.3	C17—C18—C13	121.7 (3)
С6—С5—Н5А	109.3	C17—C18—H18	119.1
C4—C5—H5B	109.3	C13—C18—H18	119.1
С6—С5—Н5В	109.3	O4—C19—O5	123.2 (3)
H5A—C5—H5B	108	O4—C19—C16	124.5 (3)
O3—C6—C5	108.3 (3)	O5—C19—C16	112.4 (3)
O3—C6—H6A	110	O5—C20—C21	107.2 (3)
C5—C6—H6A	110	05—C20—H20A	110.3
03—C6—H6B	110	C21—C20—H20A	110.3
C5-C6-H6B	110	05-C20-H20B	110.3
H6A—C6—H6B	108.4	C21—C20—H20B	110.3
03-C7-C12	116.1 (3)	H_{20}^{-} $H_{$	108.5
03 - C7 - C8	124.8 (3)	C_{20} C_{21} H_{21A}	109.5
C_{12} C_{7} C_{8}	124.0(3)	C_{20} C_{21} H_{21R}	109.5
$C_{12} = C_{12} = C_{12}$	119.0(3) 110.4(3)	H_{21} H	109.5
C7 C8 H8	119.4 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{1} = C_{2} = H_{2}$	120.3	$\begin{array}{c} 120 \\ 121$	109.5
C_{9} C_{0} C_{0} C_{0}	120.3	$H_2 IA = C_2 I = H_2 IC$	109.5
C10 - C9 - C8	122.2 (5)		109.5
C_{10} C_{9} H_{9}	118.9		109.5
C8-C9-H9	118.9	C/C_{0}	118.7 (3)
	116.6 (3)	C19 - 05 - C20	118.3 (3)
C9—C10—C13	122.5 (3)		
O2—C1—C2—C3	1.4 (5)	C18—C13—C14—C15	0.6(5)
01-C1-C2-C3	-1794(3)	C10-C13-C14-C15	-1785(3)
C1 - C2 - C3 - C4	-179 1 (3)	C13 - C14 - C15 - C16	-0.3(6)
$C_{2} = C_{3} = C_{4} = C_{5}$	179.9 (3)	C14 - C15 - C16 - C17	-0.1(5)
$C_2 = C_3 = C_4 = C_5 = C_6$	179.1 (3)	C14 - C15 - C16 - C19	170 A (2)
$C_{4} = C_{5} = C_{6} = C_{6}$	-1700(3)	$C_{14} - C_{15} - C_{10} - C_{17}$	1/2.7(3)
$C_{-} C_{-} C_{0} C_{0}$	179.7(3)	$C_{10} = C_{10} = C_{17} = C_{10}$	-170.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/3.7(3)	$C_{19} - C_{10} - C_{17} - C_{18}$	-1/9.3(3)
$C_1 = C_1 = C_2 = C_2$	0.7(5)	$C_{10} - C_{17} - C_{18} - C_{13}$	0.2(3)
C/C8C9C10	0.3 (5)	C14—C13—C18—C17	-0.5 (5)

C8—C9—C10—C11	-1.2 (5)	C10-C13-C18-C17	178.6 (3)
C8—C9—C10—C13	178.0 (3)	C15—C16—C19—O4	-0.4 (6)
C9—C10—C11—C12	1.1 (5)	C17—C16—C19—O4	179.1 (4)
C13—C10—C11—C12	-178.1 (3)	C15—C16—C19—O5	179.1 (3)
C10-C11-C12-C7	-0.1 (5)	C17—C16—C19—O5	-1.4 (5)
O3—C7—C12—C11	-179.9 (3)	C12—C7—O3—C6	178.2 (3)
C8—C7—C12—C11	-0.9 (5)	C8—C7—O3—C6	-0.8 (5)
C9—C10—C13—C18	-159.7 (3)	C5—C6—O3—C7	-178.5 (3)
C11—C10—C13—C18	19.4 (5)	O4—C19—O5—C20	-1.6 (5)
C9—C10—C13—C14	19.3 (5)	C16—C19—O5—C20	178.9 (3)
C11—C10—C13—C14	-161.5 (3)	C21—C20—O5—C19	173.0 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···O2 ⁱ	0.82	1.80	2.612 (3)	170
C18—H18····O1 ⁱⁱ	0.93	2.54	3.460 (4)	173
C6—H6 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.97	2.78	3.668 (4)	152

Symmetry codes: (i) -*x*+2, -*y*-2, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2.