organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2yl)pentane-1,5-dione

Lixia Pan,^a Huaduan Shi^b and Zhen Ma^b*

^aState Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, People's Republic of China, and ^bSchool of Chemistry and Chemical Engeneering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China Correspondence e-mail: mzmz2009@sohu.com

Received 8 August 2013; accepted 13 September 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 11.5.

In the title molecule, $C_{21}H_{18}N_2O_3$, the pyridine rings make a dihedral angle of 13.1 (1)°. The phenyl ring is approximately perpendicular to both of them, forming dihedral angles of 87.4 (1)and 81.9 (1)°. In the crystal, pairs of O-H···N hydrogen bonds link the molecules into centrosymmetric dimers. Additional C-H···O, π - π [centroid-centroid distance = 3.971 (2) Å] and C-H··· π interactions consolidate the dimers into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Constable *et al.* (1990, 1998); He *et al.* (2006). For the syntheses of terpyridine compounds and their properties and applications, see: Ma *et al.* (2009, 2010, 2012, 2013). For standard bond lengths, see: Allen *et al.* (1987).

c = 11.0755 (8) Å

 $\alpha = 100.623 \ (6)^{\circ}$

 $\beta = 103.867 \ (6)^{\circ}$

 $\gamma = 110.550 \ (6)^{\circ}$

 $V = 866.05 (10) \text{ Å}^3$

Experimental

Crystal data

$C_{21}H_{18}N_2O_3$	
$M_r = 346.37$	
Triclinic, $P\overline{1}$	
a = 8.4392 (6) Å	
b = 10.6683 (7) Å	

Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*, Agilent, 2012) *T*_{min} = 0.813, *T*_{max} = 1.000

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 308 parameters $wR(F^2) = 0.119$ All H-atom parameters refinedS = 1.03 $\Delta \rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ 3544 reflections $\Delta \rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg3 is the centroid of the C16-C21 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H03A···N2 ⁱ	0.93 (2)	2.00 (2)	2.8940 (19)	160 (2)
$C12-H12A\cdots O2^{ii}$	0.96 (2)	2.48 (2)	3.312 (3)	145 (2)
C4a $-$ H4a \cdots Cg3 ⁱⁱⁱ	0.99 (2)	0.98 (2)	3.825 (2)	144 (2)
Symmetry codes: (i) $-x$	x + 1, -y + 1, -	-z; (ii) $-x + 2,$	-y + 2, -z + 1; (ii	i) $x, y - 1, z$.

T = 298 K

 $R_{\rm int} = 0.017$

 $0.39 \times 0.38 \times 0.22 \text{ mm}$

6339 measured reflections

3544 independent reflections

2661 reflections with $I > 2\sigma(I)$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors are grateful for financial support from the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2113).

References

- Agilent (2012). CrysAlis PRO., Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). *Inorg. Chim.* Acta, **178**, 47–54.
- Constable, E. C., Neuburger, M., Smith, D. R. & Zehnder, M. (1998). Inorg. Chim. Acta, 275, 359–365.
- He, G.-F., Huang, X.-Q., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, 04689–04690.
- Ma, Z., Cao, Y., Li, Q., da Guedes da Silva, M. F. C. F., Silva, J. J. R. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704–711.
- Ma, Z., Liang, B., Yang, M. & Lu, L. (2012). Acta Cryst. E68, m298-m299.
- Ma, Z., Lu, W., Liang, B. & Pombeiro, A. J. L. (2013). New J. Chem. 37, 1529– 1537.
- Ma, Z., Xing, Y., Yang, M., Hu, M., da Liu, B. G., Silva, M. F. C. & Pombeiro, A. J. L. (2009). *Inorg. Chim. Acta*, **362**, 2921–2926.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o1580 [doi:10.1107/S1600536813025518]

3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione

Lixia Pan, Huaduan Shi and Zhen Ma

S1. Comment

Metal terpyridene complexes is a topic of major current interest because they show very interesting properties, such as photoluminescence, catalytic and antibiological activities (Ma, Xing *et al.* 2009; Ma, Cao *et al.* 2010; Ma, Liang *et al.* 2012; Ma, Lu *et al.* 2013). Hence, the aim of our current work was to prepare a series of precursors to produce terpyridine ligands, investigate their coordination behavior toward metal ions and study their applications (Constable, Lewis *et al.* 1990; Constable, Neuburger *et al.* 1998). Here, we report the structure of a precursor compound for terpyridine synthesis, which was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a mixed water/ethanol solution of NaOH, and its structure was determined by X-ray crystal analysis.

The molecular structure is shown in Fig. 1. The average bond length C=O for two carbonyls is 1.1212 Å. Other averages are 1.336 Å for N-C bonds, 1.371 Å for C-C bonds of the pyridyl groups and 1.384 Å for C-C bonds of the aryl group. All bond lengths are within normal ranges (Allen *et al.*, 1987). The two pyridyl groups are not parallel, with a dihedral angle of 13.14 (10) °. The plane of aromatic ring with the hydroxyl group (with an r.m.s. deviation of 0.0041 Å) is approximately perpendicular to those of the two pyridyl groups, forming two dihedral angles of 87.36 (5) and 81.90 (6)°, respectively.

Each molecule forms hydrogen bonds (Table 1) involving its hydroxy group and a nitrogen pyridyl atom (N2ⁱⁱ) of a neighboring molecule [symmetry code: (ii) 1-*x*, 1-*y*, -*z*]) and also an H-bond between C(12)-H group and a carbonyl oxygen (O2ⁱⁱⁱ) of a neighboring molecule [symmetry code: (iii) 2-*x*, 2-*y*, 1-*z*] (Table 1). These hydrogen bonds account for the formation of centrosymmetric dimers (see Fig 2). The structure also has one intermolecular π ··· π interaction with a distance of 3.971 Å between two neighboring pyridyl groups (see Fig 2)[Cg1 and Cg2(iv) or Cg2 and Cg1(v); Cg2 and Cg1 are the two centroids of the two six membered pyridyl rings of C1-C5-N1 or C11-C15-N2, symmetry code: (iv) -1+*x*, -1+*y*, *z*; (v) 1+*x*, 1+*y*, *z*]. Further structural stabilization is provided by an intermolecular C—H··· π interaction between C(4)-H and its neighboring aryl group Cg3 (Fig 2) [H..Cg 2.98 Å; Cg(3) is the centroid of the six membered aromatic ring C16ⁱ-C21ⁱ, symmetry code: (i) *x*, -1+*y*-1, *z*]. These π ··· π and C—H··· π interactions help to consolidate the H-bonded dimers into a three-dimensional network (Fig 3).

S2. Experimental

The title compound was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a 1.5 *M* NaOH mixed aqueous/ethanol solution according to a reported procedure (Constable, *et al.* 1990). In a 250 cm³ flask fitted with a funnel, 4-hydroxybenzaldehyde (5.5 g, 45 m*M*) and 40 mL of the 1.5 M NaOH aqueous solution were mixed in 60 cm³ of ethanol. To this solution was added dropwise a stoichiometric quantity of 2-acetylpyridine (10 mL, 89 m*M*) for a period of half an hour with stirring. The mixture was then stirred for 24 h at room temperature. A white solid formed was obtained by filtration and being washed with two times with distilled water (yield 70 %). The product (25 mg) and distilled water (20 mL) were sealed in a 25-mL stainless steel reactor with Teflon liner and heated at 393 K for 1 d.

Colourless crystals were obtained, which were suitable for X-ray characterization.

S3. Refinement

All H atoms were positioned from a Difference Fourier series and refined.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the crystal packing to show the formation of centrosymmetric H-bonded dimers by the help of the hydrogen bonds and the $\pi \cdots \pi$ interactions between the pyridyl groups of the compound. The thin dashed lines are used to show the hydrogen bonds. The blue dotted lines are used to show $\pi \cdots \pi$ interactions between the pyridyl groups of the compound

Figure 3

A view of the crystal packing along the *a* axis to show the three-dimensional network.

3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione

Crystal data

 $\begin{array}{l} C_{21}H_{18}N_2O_3\\ M_r = 346.37\\ \text{Triclinic, } P1\\ \text{Hall symbol: -P 1}\\ a = 8.4392 \ (6) \text{ Å}\\ b = 10.6683 \ (7) \text{ Å}\\ c = 11.0755 \ (8) \text{ Å}\\ a = 100.623 \ (6)^\circ\\ \beta = 103.867 \ (6)^\circ\\ \gamma = 110.550 \ (6)^\circ\\ V = 866.05 \ (10) \text{ Å}^3 \end{array}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas)	$T_{\min} = 0.813, \ T_{\max} = 1.000$
diffractometer	6339 measured reflections
Radiation source: SuperNova (Mo) X-ray	3544 independent reflections
Source	2661 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.017$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrysAlis PRO, Agilent, 2012)	$l = -13 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	All H-atom parameters refined
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.1436P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3544 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
308 parameters	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL,
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.018 (3)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2

F(000) = 364

 $\theta = 3.2 - 26.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Prism, colourless

 $0.39 \times 0.38 \times 0.22 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.328 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6339 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.71359 (19)	0.30614 (12)	0.46604 (11)	0.0618 (4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~	0.01==0.(10)			
O3 0.08708 (17) 0.40522 (14) 0.08964 (13) 0.0592 (3) H03A 0.0644 (3) 0.351 (3) 0.003 (2) 0.1000 (3) N1 0.6613 (2) 0.06026 (14) 0.18572 (13) 0.0603 (4) N2 1.06938 (19) 0.81798 (14) 0.15318 (13) 0.0493 (4) C1 0.6711 (2) 0.10600 (15) 0.30835 (14) 0.0449 (4) C2 0.623 (3) 0.01932 (17) 0.38203 (17) 0.0545 (5) H2A 0.632 (2) 0.0607 (19) 0.4701 (18) 0.060 (5)* C3 0.5570 (3) -0.12308 (18) 0.32835 (19) 0.0639 (5) H3A 0.524 (3) -0.17259 (19) 0.20295 (19) 0.0680 (6) H4A 0.501 (3) -0.273 (2) 0.159 (2) 0.083 (6)* C5 0.5963 (4) -0.07886 (19) 0.1355 (2) 0.0791 (7) H5A 0.586 (3) -0.110 (2) 0.044 (2) 0.092 (7)* C6 0.3379 (2) 0.3108 (17) 0.2046 (16) 0.0494 (4)* C8	02	0.917/0 (19)	0.78344 (12)	0.42074 (12)	0.0667 (4)
H03A0.044 (3)0.351 (3)0.003 (2)0.100 (8)*N10.6613 (2)0.06026 (14)0.18572 (13)0.0603 (4)N21.06938 (19)0.81798 (14)0.15318 (13)0.0493 (4)C10.6711 (2)0.10690 (15)0.30835 (14)0.0493 (4)C20.6203 (3)0.01932 (17)0.38203 (17)0.0545 (5)H2A0.632 (2)0.0607 (19)0.4701 (18)0.0606 (5)*C30.5570 (3)-0.12308 (18)0.32835 (19)0.0639 (5)H3A0.524 (3)-0.17259 (19)0.20295 (19)0.0680 (6)H4A0.501 (3)-0.273 (2)0.159 (2)0.083 (6)*C50.5963 (4)-0.07886 (19)0.1355 (2)0.0791 (7)H5A0.586 (3)-0.110 (2)0.044 (2)0.092 (7)*C60.7379 (2)0.26254 (15)0.36597 (14)0.0414 (4)C70.8359 (2)0.3518 (16)0.29975 (17)0.0432 (4)H7A0.966 (3)0.3793 (18)0.3406 (17)0.060 (5)*H7B0.798 (2)0.3108 (17)0.2046 (16)0.049 (4)*C80.8128 (2)0.49738 (14)0.3222 (14)0.0378 (3)H8A0.847 (2)0.5387 (15)0.4188 (15)0.040 (4)*C90.9371 (2)0.6016 (15)0.27668 (16)0.0492 (4)H9A0.897 (2)0.5730 (17)0.1737 (17)0.052 (5)*H9A0.897 (2)0.5730 (17)0.32631 (15)0.0426 (4)C111.0436 (2)0.85928 (15)0.	03	0.08708 (17)	0.40522 (14)	0.08964 (13)	0.0592 (3)
N1 0.6613 (2) 0.06026 (14) 0.18572 (13) 0.0603 (4)N2 1.66938 (19) 0.81798 (14) 0.15318 (13) 0.0493 (4)C1 0.6711 (2) 0.10690 (15) 0.30835 (14) 0.0409 (4)C2 0.6203 (3) 0.01932 (17) 0.38203 (17) 0.0545 (5)H2A 0.632 (2) 0.0607 (19) 0.4701 (18) 0.0603 (5)G3 0.5570 (3) -0.12308 (18) 0.32835 (19) 0.0639 (5)H3A 0.524 (3) -0.17259 (19) 0.20295 (19) 0.0680 (6)C4 0.5449 (3) -0.17259 (19) 0.20295 (19) 0.0680 (6)H4A 0.501 (3) -0.273 (2) 0.155 (2) 0.0791 (7)H5A 0.586 (3) -0.110 (2) 0.044 (2) 0.092 (7)*C6 0.7379 (2) 0.26254 (15) 0.35597 (14) 0.0414 (4)C7 0.8359 (2) 0.35918 (16) 0.29975 (17) 0.0432 (4)H7A 0.966 (3) 0.3793 (18) 0.3406 (17) 0.060 (5)*H7B 0.798 (2) 0.3108 (17) 0.2466 (16) 0.049 (4)*C8 0.8128 (2) 0.49738 (14) 0.32322 (14) 0.0378 (3)H8A 0.847 (2) 0.5387 (15) 0.4188 (15) 0.0400 (4)H9B 1.059 (2) 0.6076 (17) 0.2993 (15) 0.052 (5)*H9A 0.897 (2) 0.7393 (17) 0.1737 (17) 0.052 (5)*C10 0.9588 (2) 0.74944 (15) 0.32261 (15) 0.0426 (4)<	H03A	0.044 (3)	0.351 (3)	0.003 (2)	0.100 (8)*
N21.06938 (19)0.81798 (14)0.1518 (13)0.0493 (4)C10.6711 (2)0.10690 (15)0.30835 (14)0.0409 (4)C20.6203 (3)0.01932 (17)0.38203 (17)0.0545 (5)H2A0.632 (2)0.0607 (19)0.4701 (18)0.0600 (5)*C30.5570 (3)-0.12308 (18)0.32835 (19)0.0680 (6)H3A0.524 (3)-0.17259 (19)0.20295 (19)0.0680 (6)H4A0.501 (3)-0.273 (2)0.159 (2)0.083 (6)*C50.5963 (4)-0.07886 (19)0.1355 (2)0.0791 (7)H5A0.586 (3)-0.110 (2)0.044 (2)0.092 (7)*C60.7379 (2)0.26254 (15)0.35597 (14)0.0414 (4)C70.8359 (2)0.35918 (16)0.29975 (17)0.0432 (4)H7A0.966 (3)0.3793 (18)0.3406 (17)0.060 (5)*H7B0.798 (2)0.3108 (17)0.2046 (16)0.049 (4)*C80.8128 (2)0.49738 (14)0.32322 (14)0.0378 (3)H8A0.847 (2)0.5387 (15)0.4188 (15)0.040 (4)*C90.9371 (2)0.6076 (17)0.2993 (15)0.052 (5)*H9A0.897 (2)0.5730 (17)0.1737 (17)0.052 (5)*C100.9588 (2)0.74944 (15)0.32631 (15)0.0426 (4)C111.0436 (2)0.8592 (15)0.26587 (15)0.0428 (4)C121.0904 (3)0.99903 (18)0.3296 (2)0.0756 (6)*C131.1764 (3)1.0996 (2)<	N1	0.6613 (2)	0.06026 (14)	0.18572 (13)	0.0603 (4)
C1 0.711 0.0690 0.03835 (14) 0.0409 (4) C2 0.6203 0.01932 0.38203 (17) 0.0545 (5) H2A 0.632 (2) 0.0607 (19) 0.4701 (18) 0.0600 (5) C3 0.5570 -0.12308 (18) 0.32835 (19) 0.0639 (5) H3A 0.524 -0.17259 (19) 0.2782 (19) 0.0680 (6) H4A 0.501 (3) -0.273 (2) 0.159 (2) 0.083 $(6)^*$ C5 0.5963 (4) -0.07886 (19) 0.1355 (2) 0.0791 (7) H5A 0.586 (3) -0.1729 0.26254 (15) 0.3697 (14) 0.0414 (4) C7 0.8359 (2) 0.3518 (16) 0.29975 (17) 0.0432 (4) H7A 0.966 (3) 0.3793 (18) 0.3406 (17) 0.060 $(5)^*$ H7B 0.798 (2) 0.3108 (17) 0.246 (16) 0.049 $(4)^*$ C8 0.8128 (2) 0.49738 (14) 0.32222 (14) 0.03783 (3) H8A 0.847 (2) 0.6076 (17) 0.2993 (15) 0.052 $(5)^*$ C10 0.9588 (2) 0.7796 (17) 0.052 $(5)^*$ H9A 0.897 (2) 0.7796 (17)	N2	1.06938 (19)	0.81798 (14)	0.15318 (13)	0.0493 (4)
C20.6203 (3)0.01932 (17)0.38203 (17)0.0545 (5)H2A0.632 (2)0.0607 (19)0.4701 (18)0.060 (5)*C30.5570 (3)-0.12308 (18)0.32835 (19)0.0639 (5)H3A0.524 (3)-0.17259 (19)0.20295 (19)0.0680 (6)H4A0.501 (3)-0.273 (2)0.159 (2)0.083 (6)*C50.5963 (4)-0.07886 (19)0.1355 (2)0.0791 (7)H5A0.586 (3)-0.110 (2)0.044 (2)0.092 (7)*C60.7379 (2)0.26254 (15)0.36597 (14)0.0414 (4)C70.8359 (2)0.35918 (16)0.29975 (17)0.0432 (4)H7A0.966 (3)0.3793 (18)0.3466 (17)0.060 (5)*H7B0.798 (2)0.3108 (17)0.2046 (16)0.049 (4)*C80.8128 (2)0.49738 (14)0.32322 (14)0.0378 (3)H8A0.847 (2)0.5730 (17)0.1737 (17)0.052 (5)*C100.9588 (2)0.74944 (15)0.32631 (15)0.0426 (4)C111.0436 (2)0.85928 (15)0.26587 (15)0.0428 (4)C121.0940 (3)0.99903 (18)0.3296 (2)0.0623 (5)H13A1.215 (3)1.203 (2)0.1033 (2)0.0408 (7)H13A1.215 (3)1.0292 (2)0.1633 (2)0.0688 (7)H13A1.215 (3)1.0292 (2)0.1633 (2)0.0623 (5)H14A1.263 (3)1.123 (3)0.322 (2)0.108 (8)*C151.1504 (3)0.9187 (2)0.1633 (2)	C1	0.6711 (2)	0.10690 (15)	0.30835 (14)	0.0409 (4)
H2A $0.632(2)$ $0.0607(19)$ $0.4701(18)$ $0.060(5)^*$ C3 $0.5570(3)$ $-0.12308(18)$ $0.32835(19)$ $0.0639(5)$ H3A $0.524(3)$ $-0.184(2)$ $0.3782(19)$ $0.069(5)^*$ C4 $0.5449(3)$ $-0.17259(19)$ $0.20295(19)$ $0.0680(6)^*$ H4A $0.501(3)$ $-0.273(2)$ $0.159(2)$ $0.083(6)^*$ C5 $0.5963(4)$ $-0.07886(19)$ $0.1355(2)$ $0.0791(7)$ H5A $0.586(3)$ $-0.110(2)$ $0.044(2)$ $0.092(7)^*$ C6 $0.7379(2)$ $0.26254(15)$ $0.36597(14)$ $0.0414(4)$ C7 $0.8359(2)$ $0.35918(16)$ $0.29975(17)$ $0.0432(4)$ H7A $0.966(3)$ $0.3793(18)$ $0.3406(17)$ $0.060(5)^*$ H7B $0.798(2)$ $0.3108(17)$ $0.2046(16)$ $0.049(4)^*$ C8 $0.8128(2)$ $0.49738(14)$ $0.32322(14)$ $0.0378(3)$ H8A $0.847(2)$ $0.537(15)$ $0.4188(15)$ $0.040(4)^*$ C9 $0.9371(2)$ $0.6076(17)$ $0.2993(15)$ $0.052(5)^*$ H9A $0.897(2)$ $0.5730(17)$ $0.1737(17)$ $0.052(5)^*$ C10 $0.9588(2)$ $0.74944(15)$ $0.32631(15)$ $0.0428(4)$ C11 $1.0436(2)$ $0.8592(2)$ $0.2766(2)$ $0.0798(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.058(3)$ $1.059(2)$ $0.1643(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ 0.068	C2	0.6203 (3)	0.01932 (17)	0.38203 (17)	0.0545 (5)
C3 0.5570 (3) -0.12308 (18) 0.32835 (19) 0.0639 (5)H3A 0.524 (3) -0.17259 (19) 0.078 (6)*C4 0.5449 (3) -0.17259 (19) 0.20295 (19) 0.0680 (6)H4A 0.501 (3) -0.273 (2) 0.159 (2) 0.0833 (6)*C5 0.5963 (4) -0.07886 (19) 0.1355 (2) 0.0791 (7)H5A 0.586 (3) -0.110 (2) 0.0444 (2) 0.0924 (7)*C6 0.7379 (2) 0.26254 (15) 0.36597 (14) 0.04144 (4)C7 0.8359 (2) 0.35918 (16) 0.29975 (17) 0.0432 (4)H7A 0.966 (3) 0.3793 (18) 0.3406 (17) 0.0432 (4)H7B 0.798 (2) 0.3108 (17) 0.20464 (16) 0.0494 (4)*C8 0.8128 (2) 0.49738 (14) 0.32322 (14) 0.0378 (3)H8A 0.847 (2) 0.50730 (17) 0.1737 (17) 0.052 (5)*(P)A 0.897 (2) 0.6730 (17) 0.2993 (15) 0.0426 (4)C11 1.0436 (2) 0.8928 (15) 0.26587 (15) 0.0428 (4)C12 1.0940 (3) 0.99903 (18) 0.3296 (2) 0.0756 (6)*C13 1.1764 (3) 1.0996 (2) 0.2766 (2) 0.0798 (7)H13A 1.215 (3) 1.023 (2) 0.1043 (2) 0.0665 (5)H14A 1.263 (3) 1.123 (3) 0.122 (2) 0.1008 (8)*C14 1.058 (2) 0.5549 (16) 0.4262 (16) 0.0477 (4)*C15 1.1504	H2A	0.632 (2)	0.0607 (19)	0.4701 (18)	0.060 (5)*
H3A 0.524 (3) -0.184 (2) 0.3782 (19) 0.078 (6)*C4 0.5449 (3) -0.17259 (19) 0.20295 (19) 0.0680 (6)H4A 0.501 (3) -0.273 (2) 0.159 (2) 0.083 (6)*C5 0.5963 (4) -0.07886 (19) 0.1355 (2) 0.0791 (7)H5A 0.586 (3) -0.110 (2) 0.044 (2) 0.092 (7)*C6 0.7379 (2) 0.26254 (15) 0.36597 (14) 0.0414 (4)C7 0.8359 (2) 0.35918 (16) 0.29975 (17) 0.0432 (4)H7A 0.966 (3) 0.3793 (18) 0.3406 (16) 0.049 (4)*C8 0.8128 (2) 0.49738 (14) 0.32322 (14) 0.0378 (3)H8A 0.847 (2) 0.5387 (15) 0.4188 (15) 0.040 (4)*C9 0.9371 (2) 0.6076 (17) 0.2993 (15) 0.052 (5)*C10 0.9588 (2) 0.7390 (17) 0.1737 (17) 0.052 (5)*C11 1.0436 (2) 0.85928 (15) 0.26587 (15) 0.0428 (4)C12 1.0940 (3) 0.99903 (18) 0.3296 (2) 0.0623 (5)H12A 1.072 (3) 1.023 (2) 0.1633 (2) 0.0886 (7)H14A 1.263 (3) 1.123 (3) 0.122 (2) 0.108 (8)*C14 1.2058 (3) 1.0592 (2) 0.1633 (2) 0.0625 (3)H12A 1.072 (3) 0.5150 (15) 0.3320 (15) 0.0423 (4)H13A 1.215 (3) 1.0292 (2) 0.1633 (2) 0.0686 (7)C13	C3	0.5570 (3)	-0.12308 (18)	0.32835 (19)	0.0639 (5)
C4 $0.5449 (3)$ $-0.17259 (19)$ $0.20295 (19)$ $0.0680 (6)$ H4A $0.501 (3)$ $-0.273 (2)$ $0.159 (2)$ $0.083 (6)^*$ C5 $0.5963 (4)$ $-0.07886 (19)$ $0.1355 (2)$ $0.0791 (7)$ H5A $0.586 (3)$ $-0.110 (2)$ $0.044 (2)$ $0.092 (7)^*$ C6 $0.7379 (2)$ $0.26254 (15)$ $0.36597 (14)$ $0.0414 (4)$ C7 $0.8359 (2)$ $0.35918 (16)$ $0.29975 (17)$ $0.0432 (4)$ H7A $0.966 (3)$ $0.3793 (18)$ $0.3406 (17)$ $0.060 (5)^*$ H7B $0.798 (2)$ $0.3108 (17)$ $0.2046 (16)$ $0.049 (4)^*$ C8 $0.8128 (2)$ $0.49738 (14)$ $0.32322 (14)$ $0.0378 (3)$ H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.0400 (4)^*$ C9 $0.9371 (2)$ $0.60196 (15)$ $0.27268 (16)$ $0.0409 (4)$ H9B $1.059 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0623 (5)$ H12A $1.072 (3)$ $1.023 (2)$ $0.1633 (2)$ $0.0808 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.1008 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0686 (5)$ <t< td=""><td>H3A</td><td>0.524 (3)</td><td>-0.184 (2)</td><td>0.3782 (19)</td><td>0.078 (6)*</td></t<>	H3A	0.524 (3)	-0.184 (2)	0.3782 (19)	0.078 (6)*
H4A $0.501 (3)$ $-0.273 (2)$ $0.159 (2)$ $0.083 (6)^*$ C5 $0.5963 (4)$ $-0.07886 (19)$ $0.1355 (2)$ $0.0791 (7)$ H5A $0.586 (3)$ $-0.110 (2)$ $0.044 (2)$ $0.092 (7)^*$ C6 $0.7379 (2)$ $0.26254 (15)$ $0.36597 (14)$ $0.0414 (4)$ C7 $0.8359 (2)$ $0.35918 (16)$ $0.29975 (17)$ $0.0432 (4)$ H7A $0.966 (3)$ $0.3793 (18)$ $0.3406 (17)$ $0.060 (5)^*$ H7B $0.798 (2)$ $0.3108 (17)$ $0.2046 (16)$ $0.049 (4)^*$ C8 $0.8128 (2)$ $0.49738 (14)$ $0.32322 (14)$ $0.0378 (3)$ H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.040 (4)^*$ C9 $0.9371 (2)$ $0.60196 (15)$ $0.27268 (16)$ $0.0409 (4)$ H9B $1.059 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0673 (5)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.078 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0608 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.1008 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H14A	C4	0.5449 (3)	-0.17259 (19)	0.20295 (19)	0.0680 (6)
C5 0.5963 (4) -0.07886 (19) 0.1355 (2) 0.0791 (7)H5A 0.586 (3) -0.110 (2) 0.044 (2) 0.092 (7)*C6 0.7379 (2) 0.26254 (15) 0.36597 (14) 0.0414 (4)C7 0.8359 (2) 0.35918 (16) 0.29975 (17) 0.0432 (4)H7A 0.966 (3) 0.3793 (18) 0.3406 (17) 0.060 (5)*H7B 0.798 (2) 0.3108 (17) 0.2046 (16) 0.049 (4)*C8 0.8128 (2) 0.49738 (14) 0.32322 (14) 0.0378 (3)H8A 0.847 (2) 0.5387 (15) 0.4188 (15) 0.040 (4)*C9 0.9371 (2) 0.60196 (15) 0.27268 (16) 0.0409 (4)H9B 1.059 (2) 0.6076 (17) 0.2993 (15) 0.052 (5)*C10 0.9588 (2) 0.74944 (15) 0.32631 (15) 0.0426 (4)C11 1.0436 (2) 0.85928 (15) 0.26587 (15) 0.0428 (4)C12 1.0940 (3) 0.99903 (18) 0.3296 (2) 0.0623 (5)H12A 1.072 (3) 1.023 (2) 0.1633 (2) 0.0808 (7)H13A 1.215 (3) 1.200 (3) 0.322 (2) 0.108 (8)*C14 1.2058 (3) 1.0592 (2) 0.1633 (2) 0.0686 (5)H13A 1.263 (3) 1.123 (3) 0.122 (2) 0.0065 (5)H13A 1.263 (3) 1.0592 (2) 0.1633 (2) 0.0808 (7)H13A 0.582 (2) 0.5159 (15) 0.33320 (15) 0.0436 (4)C15 <t< td=""><td>H4A</td><td>0.501 (3)</td><td>-0.273 (2)</td><td>0.159 (2)</td><td>0.083 (6)*</td></t<>	H4A	0.501 (3)	-0.273 (2)	0.159 (2)	0.083 (6)*
H5A $0.586 (3)$ $-0.110 (2)$ $0.044 (2)$ $0.092 (7)^*$ C6 $0.7379 (2)$ $0.26254 (15)$ $0.36597 (14)$ $0.0414 (4)$ C7 $0.8359 (2)$ $0.35918 (16)$ $0.29975 (17)$ $0.0432 (4)$ H7A $0.966 (3)$ $0.3793 (18)$ $0.3406 (17)$ $0.060 (5)^*$ H7B $0.798 (2)$ $0.3108 (17)$ $0.2046 (16)$ $0.049 (4)^*$ C8 $0.8128 (2)$ $0.49738 (14)$ $0.32322 (14)$ $0.0378 (3)$ H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.040 (4)^*$ C9 $0.9371 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0672 (5)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.075 (6)^*$ C14 $1.205 (3)$ $1.220 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.205 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.5150 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.5150 (15)$ $0.33320 (15)$ $0.0439 (4)$ H1	C5	0.5963 (4)	-0.07886 (19)	0.1355 (2)	0.0791 (7)
C6 $0.7379 (2)$ $0.26254 (15)$ $0.36597 (14)$ $0.0414 (4)$ C7 $0.8359 (2)$ $0.35918 (16)$ $0.29975 (17)$ $0.0432 (4)$ H7A $0.966 (3)$ $0.3793 (18)$ $0.3406 (17)$ $0.060 (5)^*$ H7B $0.798 (2)$ $0.3108 (17)$ $0.2046 (16)$ $0.049 (4)^*$ C8 $0.8128 (2)$ $0.49738 (14)$ $0.32322 (14)$ $0.0378 (3)$ H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.040 (4)^*$ C9 $0.9371 (2)$ $0.60196 (15)$ $0.27268 (16)$ $0.0409 (4)$ H9B $1.059 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0623 (5)$ H12A $1.072 (3)$ $1.023 (2)$ $0.410 (2)$ $0.075 (6)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.0798 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.0226 (19)$ $0.0685 (5)^*$ C16	H5A	0.586 (3)	-0.110 (2)	0.044 (2)	0.092 (7)*
C7 $0.8359(2)$ $0.35918(16)$ $0.29975(17)$ $0.0432(4)$ H7A $0.966(3)$ $0.3793(18)$ $0.3406(17)$ $0.060(5)^*$ H7B $0.798(2)$ $0.3108(17)$ $0.2046(16)$ $0.049(4)^*$ C8 $0.8128(2)$ $0.49738(14)$ $0.32322(14)$ $0.0378(3)$ H8A $0.847(2)$ $0.5387(15)$ $0.4188(15)$ $0.040(4)^*$ C9 $0.9371(2)$ $0.60196(15)$ $0.27268(16)$ $0.0409(4)$ H9B $1.059(2)$ $0.6076(17)$ $0.2993(15)$ $0.052(5)^*$ H9A $0.897(2)$ $0.5730(17)$ $0.1737(17)$ $0.052(5)^*$ C10 $0.9588(2)$ $0.74944(15)$ $0.32631(15)$ $0.0426(4)$ C11 $1.0436(2)$ $0.85928(15)$ $0.26587(15)$ $0.0428(4)$ C12 $1.0940(3)$ $0.99903(18)$ $0.3296(2)$ $0.0675(6)^*$ C13 $1.1764(3)$ $1.0996(2)$ $0.2766(2)$ $0.075(6)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.0668(6)^*$ C16 $0.6193(2)$ $0.5150(18)$ $0.33220(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5150(18)$ $0.3262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.5150(18)$ $0.3262(16)$ $0.0432(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.12346(14)$ <td>C6</td> <td>0.7379 (2)</td> <td>0.26254 (15)</td> <td>0.36597 (14)</td> <td>0.0414 (4)</td>	C6	0.7379 (2)	0.26254 (15)	0.36597 (14)	0.0414 (4)
H7A $0.966(3)$ $0.3793(18)$ $0.3406(17)$ $0.060(5)^*$ H7B $0.798(2)$ $0.3108(17)$ $0.2046(16)$ $0.049(4)^*$ C8 $0.8128(2)$ $0.49738(14)$ $0.32322(14)$ $0.0378(3)$ H8A $0.847(2)$ $0.5387(15)$ $0.4188(15)$ $0.040(4)^*$ C9 $0.9371(2)$ $0.60196(15)$ $0.27268(16)$ $0.0409(4)$ H9B $1.059(2)$ $0.6076(17)$ $0.2933(15)$ $0.052(5)^*$ C10 $0.9588(2)$ $0.730(17)$ $0.1737(17)$ $0.052(5)^*$ C11 $1.0436(2)$ $0.85928(15)$ $0.26587(15)$ $0.0426(4)$ C12 $1.0940(3)$ $0.99903(18)$ $0.3296(2)$ $0.0673(5)$ H12A $1.072(3)$ $1.023(2)$ $0.410(2)$ $0.075(6)^*$ C13 $1.1764(3)$ $1.0996(2)$ $0.2766(2)$ $0.0798(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H14A $1.263(3)$ $1.123(3)$ $0.122(2)$ $0.100(8)^*$ C15 $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.0625(3)$ C16 $0.6193(2)$ $0.5199(15)$ $0.33320(15)$ $0.0444(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.549(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.0437(4)$ C19 $0.2610(2)$ $0.3426(16)$ $0.06964(15)$ 0.0431	C7	0.8359 (2)	0.35918 (16)	0.29975 (17)	0.0432 (4)
H7B $0.798 (2)$ $0.3108 (17)$ $0.2046 (16)$ $0.049 (4)^*$ C8 $0.8128 (2)$ $0.49738 (14)$ $0.32322 (14)$ $0.0378 (3)$ H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.040 (4)^*$ C9 $0.9371 (2)$ $0.60196 (15)$ $0.27268 (16)$ $0.0409 (4)$ H9B $1.059 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0623 (5)$ H12A $1.072 (3)$ $1.023 (2)$ $0.410 (2)$ $0.075 (6)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.0798 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.100 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.5549 (16)$ $0.226132 (13)$ $0.0352 (3)$ C17 $0.5210 (2)$ $0.5190 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.5150 (18)$ $0.3262 (16)$ $0.055 (5)^*$ <t< td=""><td>H7A</td><td>0.966 (3)</td><td>0.3793 (18)</td><td>0.3406 (17)</td><td>0.060 (5)*</td></t<>	H7A	0.966 (3)	0.3793 (18)	0.3406 (17)	0.060 (5)*
C8 0.8128 (2) 0.49738 (14) 0.32322 (14) 0.0378 (3)H8A 0.847 (2) 0.5387 (15) 0.4188 (15) 0.040 (4)*C9 0.9371 (2) 0.60196 (15) 0.27268 (16) 0.0409 (4)H9B 1.059 (2) 0.6076 (17) 0.2993 (15) 0.052 (5)*H9A 0.897 (2) 0.5730 (17) 0.1737 (17) 0.052 (5)*C10 0.9588 (2) 0.74944 (15) 0.32631 (15) 0.0426 (4)C11 1.0436 (2) 0.85928 (15) 0.26587 (15) 0.0428 (4)C12 1.0940 (3) 0.99903 (18) 0.3296 (2) 0.0623 (5)H12A 1.072 (3) 1.023 (2) 0.410 (2) 0.075 (6)*C13 1.1764 (3) 1.0996 (2) 0.2766 (2) 0.0798 (7)H13A 1.215 (3) 1.200 (3) 0.322 (2) 0.108 (8)*C14 1.2058 (3) 1.0592 (2) 0.1633 (2) 0.0808 (7)H14A 1.263 (3) 1.123 (3) 0.122 (2) 0.100 (8)*C15 1.1504 (3) 0.9187 (2) 0.0226 (19) 0.0688 (6)*C16 0.6193 (2) 0.51095 (15) 0.33320 (15) 0.0404 (4)H17A 0.582 (2) 0.5549 (16) 0.4262 (16) 0.0477 (4)*C18 0.3451 (2) 0.48794 (16) 0.27609 (15) 0.0439 (4)H18A 0.281 (2) 0.5150 (18) 0.3262 (16) 0.055 (5)*C19 0.2610 (2) 0.42459 (15) 0.14348 (15) 0.0412 (4)C2	H7B	0.798 (2)	0.3108 (17)	0.2046 (16)	0.049 (4)*
H8A $0.847 (2)$ $0.5387 (15)$ $0.4188 (15)$ $0.040 (4)^*$ C9 $0.9371 (2)$ $0.60196 (15)$ $0.27268 (16)$ $0.0409 (4)$ H9B $1.059 (2)$ $0.6076 (17)$ $0.2993 (15)$ $0.052 (5)^*$ H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0623 (5)$ H12A $1.072 (3)$ $1.023 (2)$ $0.410 (2)$ $0.075 (6)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.0798 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.51095 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.48794 (16)$ $0.27609 (15)$ $0.0439 (4)$ H18A $0.281 (2)$ $0.5150 (18)$ $0.3262 (16)$ $0.055 (5)^*$ C19 $0.2610 (2)$ $0.34460 (16)$ $0.06964 (15)$ $0.0431 (4)$ <td< td=""><td>C8</td><td>0.8128 (2)</td><td>0.49738 (14)</td><td>0.32322 (14)</td><td>0.0378 (3)</td></td<>	C8	0.8128 (2)	0.49738 (14)	0.32322 (14)	0.0378 (3)
C9 $0.9371(2)$ $0.60196(15)$ $0.27268(16)$ $0.0409(4)$ H9B $1.059(2)$ $0.6076(17)$ $0.2993(15)$ $0.052(5)^*$ H9A $0.897(2)$ $0.5730(17)$ $0.1737(17)$ $0.052(5)^*$ C10 $0.9588(2)$ $0.74944(15)$ $0.32631(15)$ $0.0426(4)$ C11 $1.0436(2)$ $0.85928(15)$ $0.26587(15)$ $0.0428(4)$ C12 $1.0940(3)$ $0.99903(18)$ $0.3296(2)$ $0.0623(5)$ H12A $1.072(3)$ $1.023(2)$ $0.410(2)$ $0.075(6)^*$ C13 $1.1764(3)$ $1.0996(2)$ $0.2766(2)$ $0.0798(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H14A $1.263(3)$ $1.123(3)$ $0.122(2)$ $0.100(8)^*$ C15 $1.1504(3)$ $0.9187(2)$ $0.1043(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.068(6)^*$ C16 $0.6193(2)$ $0.5199(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3226(16)$ $0.055(5)^*$ C19 $0.2610(2)$ $0.42459(15)$ $0.14348(15)$ $0.0412(4)$ C20 $0.3557(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.3486(12)$ $0.0786(14)$	H8A	0.847 (2)	0.5387 (15)	0.4188 (15)	0.040 (4)*
H9B $1.059(2)$ $0.6076(17)$ $0.2993(15)$ $0.052(5)^*$ H9A $0.897(2)$ $0.5730(17)$ $0.1737(17)$ $0.052(5)^*$ C10 $0.9588(2)$ $0.74944(15)$ $0.32631(15)$ $0.0426(4)$ C11 $1.0436(2)$ $0.85928(15)$ $0.26587(15)$ $0.0428(4)$ C12 $1.0940(3)$ $0.99903(18)$ $0.3296(2)$ $0.0623(5)$ H12A $1.072(3)$ $1.023(2)$ $0.410(2)$ $0.075(6)^*$ C13 $1.1764(3)$ $1.0996(2)$ $0.2766(2)$ $0.0798(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H14A $1.263(3)$ $1.123(3)$ $0.122(2)$ $0.100(8)^*$ C15 $1.1504(3)$ $0.9187(2)$ $0.1043(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.068(6)^*$ C16 $0.6193(2)$ $0.47157(13)$ $0.26132(13)$ $0.0352(3)$ C17 $0.5210(2)$ $0.51095(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.0412(4)$ C20 $0.3557(2)$ $0.38460(16)$ $0.06964(15)$ $0.0431(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.3486(15)$ $0.12346(14)$ <t< td=""><td>C9</td><td>0.9371 (2)</td><td>0.60196 (15)</td><td>0.27268 (16)</td><td>0.0409 (4)</td></t<>	C9	0.9371 (2)	0.60196 (15)	0.27268 (16)	0.0409 (4)
H9A $0.897 (2)$ $0.5730 (17)$ $0.1737 (17)$ $0.052 (5)^*$ C10 $0.9588 (2)$ $0.74944 (15)$ $0.32631 (15)$ $0.0426 (4)$ C11 $1.0436 (2)$ $0.85928 (15)$ $0.26587 (15)$ $0.0428 (4)$ C12 $1.0940 (3)$ $0.99903 (18)$ $0.3296 (2)$ $0.0623 (5)$ H12A $1.072 (3)$ $1.023 (2)$ $0.410 (2)$ $0.075 (6)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.0798 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.5199 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.5549 (15)$ $0.3262 (16)$ $0.055 (5)^*$ C19 $0.2610 (2)$ $0.42459 (15)$ $0.14348 (15)$ $0.0412 (4)$ C20 $0.3557 (2)$ $0.38460 (16)$ $0.06964 (15)$ $0.0431 (4)$ H20A $0.297 (2)$ $0.3412 (18)$ $-0.0231 (17)$ $0.056 (5)^*$ C21 $0.5317 (2)$ $0.40803 (15)$ $0.0732 (16)$ $0.052 (4)^*$	H9B	1.059 (2)	0.6076 (17)	0.2993 (15)	0.052 (5)*
C10 0.9588 (2) 0.74944 (15) 0.32631 (15) 0.0426 (4)C11 1.0436 (2) 0.85928 (15) 0.26587 (15) 0.0428 (4)C12 1.0940 (3) 0.99903 (18) 0.3296 (2) 0.0623 (5)H12A 1.072 (3) 1.023 (2) 0.410 (2) 0.075 (6)*C13 1.1764 (3) 1.0996 (2) 0.2766 (2) 0.0798 (7)H13A 1.215 (3) 1.200 (3) 0.3222 (2) 0.108 (8)*C14 1.2058 (3) 1.0592 (2) 0.1633 (2) 0.0808 (7)H14A 1.263 (3) 1.123 (3) 0.122 (2) 0.100 (8)*C15 1.1504 (3) 0.9187 (2) 0.1043 (2) 0.0665 (5)H15A 1.167 (3) 0.886 (2) 0.0226 (19) 0.068 (6)*C16 0.6193 (2) 0.51095 (15) 0.33320 (15) 0.0404 (4)H17A 0.582 (2) 0.5549 (16) 0.4262 (16) 0.047 (4)*C18 0.3451 (2) 0.48794 (16) 0.27609 (15) 0.0439 (4)H18A 0.281 (2) 0.5150 (18) 0.3262 (16) 0.055 (5)*C19 0.2610 (2) 0.42459 (15) 0.14348 (15) 0.0412 (4)C20 0.3557 (2) 0.38460 (16) 0.06964 (15) 0.0431 (4)H20A 0.297 (2) 0.3412 (18) -0.0231 (17) 0.056 (5)*C21 0.5317 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	H9A	0.897 (2)	0.5730 (17)	0.1737 (17)	0.052 (5)*
C11 $1.0436(2)$ $0.85928(15)$ $0.26587(15)$ $0.0428(4)$ C12 $1.0940(3)$ $0.99903(18)$ $0.3296(2)$ $0.0623(5)$ H12A $1.072(3)$ $1.023(2)$ $0.410(2)$ $0.075(6)^*$ C13 $1.1764(3)$ $1.0996(2)$ $0.2766(2)$ $0.0798(7)$ H13A $1.215(3)$ $1.200(3)$ $0.322(2)$ $0.108(8)^*$ C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H14A $1.263(3)$ $1.123(3)$ $0.122(2)$ $0.100(8)^*$ C15 $1.1504(3)$ $0.9187(2)$ $0.1043(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.068(6)^*$ C16 $0.6193(2)$ $0.47157(13)$ $0.26132(13)$ $0.0352(3)$ C17 $0.5210(2)$ $0.5199(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.0412(4)$ C20 $0.3557(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.0412(4)$	C10	0.9588 (2)	0.74944 (15)	0.32631 (15)	0.0426 (4)
C121.0940 (3)0.99903 (18)0.3296 (2)0.0623 (5)H12A1.072 (3)1.023 (2)0.410 (2)0.075 (6)*C131.1764 (3)1.0996 (2)0.2766 (2)0.0798 (7)H13A1.215 (3)1.200 (3)0.322 (2)0.108 (8)*C141.2058 (3)1.0592 (2)0.1633 (2)0.0808 (7)H14A1.263 (3)1.123 (3)0.122 (2)0.100 (8)*C151.1504 (3)0.9187 (2)0.1043 (2)0.0665 (5)H15A1.167 (3)0.886 (2)0.0226 (19)0.068 (6)*C160.6193 (2)0.47157 (13)0.26132 (13)0.0352 (3)C170.5210 (2)0.51095 (15)0.33320 (15)0.0404 (4)H17A0.582 (2)0.5549 (16)0.4262 (16)0.0477 (4)*C180.3451 (2)0.42150 (18)0.3262 (16)0.0439 (4)H18A0.281 (2)0.5150 (18)0.3262 (16)0.055 (5)*C190.2610 (2)0.42459 (15)0.14348 (15)0.0412 (4)C200.3557 (2)0.38460 (16)0.06964 (15)0.0431 (4)H20A0.297 (2)0.3412 (18) $-0.0231 (17)$ 0.056 (5)*C210.5317 (2)0.40803 (15)0.12846 (14)0.0412 (4)	C11	1.0436 (2)	0.85928 (15)	0.26587 (15)	0.0428 (4)
H12A $1.072 (3)$ $1.023 (2)$ $0.410 (2)$ $0.075 (6)^*$ C13 $1.1764 (3)$ $1.0996 (2)$ $0.2766 (2)$ $0.0798 (7)$ H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.47157 (13)$ $0.26132 (13)$ $0.0352 (3)$ C17 $0.5210 (2)$ $0.51095 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.48794 (16)$ $0.27609 (15)$ $0.0439 (4)$ H18A $0.281 (2)$ $0.5150 (18)$ $0.3262 (16)$ $0.055 (5)^*$ C19 $0.2610 (2)$ $0.42459 (15)$ $0.14348 (15)$ $0.0412 (4)$ C20 $0.3557 (2)$ $0.38460 (16)$ $0.06964 (15)$ $0.0431 (4)$ H20A $0.297 (2)$ $0.3412 (18)$ $-0.0231 (17)$ $0.056 (5)^*$ C21 $0.5317 (2)$ $0.40803 (15)$ $0.12846 (14)$ $0.0412 (4)$	C12	1.0940 (3)	0.99903 (18)	0.3296 (2)	0.0623 (5)
C13 1.1764 (3) 1.0996 (2) 0.2766 (2) 0.0798 (7)H13A 1.215 (3) 1.200 (3) 0.322 (2) 0.108 (8)*C14 1.2058 (3) 1.0592 (2) 0.1633 (2) 0.0808 (7)H14A 1.263 (3) 1.123 (3) 0.122 (2) 0.100 (8)*C15 1.1504 (3) 0.9187 (2) 0.1043 (2) 0.0665 (5)H15A 1.167 (3) 0.886 (2) 0.0226 (19) 0.068 (6)*C16 0.6193 (2) 0.47157 (13) 0.26132 (13) 0.0352 (3)C17 0.5210 (2) 0.51095 (15) 0.33320 (15) 0.0404 (4)H17A 0.582 (2) 0.5549 (16) 0.4262 (16) 0.0477 (4)*C18 0.3451 (2) 0.5150 (18) 0.3262 (16) 0.0439 (4)H18A 0.281 (2) 0.5150 (18) 0.3262 (16) 0.0412 (4)C20 0.3557 (2) 0.38460 (16) 0.06964 (15) 0.0431 (4)H20A 0.297 (2) 0.3412 (18) -0.0231 (17) 0.056 (5)*C21 0.5317 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	H12A	1.072 (3)	1.023 (2)	0.410 (2)	0.075 (6)*
H13A $1.215 (3)$ $1.200 (3)$ $0.322 (2)$ $0.108 (8)^*$ C14 $1.2058 (3)$ $1.0592 (2)$ $0.1633 (2)$ $0.0808 (7)$ H14A $1.263 (3)$ $1.123 (3)$ $0.122 (2)$ $0.100 (8)^*$ C15 $1.1504 (3)$ $0.9187 (2)$ $0.1043 (2)$ $0.0665 (5)$ H15A $1.167 (3)$ $0.886 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.47157 (13)$ $0.26132 (13)$ $0.0352 (3)$ C17 $0.5210 (2)$ $0.51095 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.48794 (16)$ $0.27609 (15)$ $0.0439 (4)$ H18A $0.281 (2)$ $0.5150 (18)$ $0.3262 (16)$ $0.055 (5)^*$ C19 $0.2610 (2)$ $0.42459 (15)$ $0.14348 (15)$ $0.0412 (4)$ C20 $0.3557 (2)$ $0.38460 (16)$ $0.06964 (15)$ $0.0431 (4)$ H20A $0.297 (2)$ $0.3412 (18)$ $-0.0231 (17)$ $0.056 (5)^*$ C21 $0.5317 (2)$ $0.4788 (17)$ $0.0732 (16)$ $0.052 (4)^*$	C13	1.1764 (3)	1.0996 (2)	0.2766 (2)	0.0798 (7)
C14 $1.2058(3)$ $1.0592(2)$ $0.1633(2)$ $0.0808(7)$ H14A $1.263(3)$ $1.123(3)$ $0.122(2)$ $0.100(8)^*$ C15 $1.1504(3)$ $0.9187(2)$ $0.1043(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.068(6)^*$ C16 $0.6193(2)$ $0.47157(13)$ $0.26132(13)$ $0.0352(3)$ C17 $0.5210(2)$ $0.51095(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.0412(4)$ C20 $0.3557(2)$ $0.38460(16)$ $0.06964(15)$ $0.0431(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)^*$	H13A	1.215 (3)	1.200 (3)	0.322 (2)	0.108 (8)*
H14A1.263 (3)1.123 (3)0.122 (2)0.100 (8)*C151.1504 (3)0.9187 (2)0.1043 (2)0.0665 (5)H15A1.167 (3)0.886 (2)0.0226 (19)0.068 (6)*C160.6193 (2)0.47157 (13)0.26132 (13)0.0352 (3)C170.5210 (2)0.51095 (15)0.33320 (15)0.0404 (4)H17A0.582 (2)0.5549 (16)0.4262 (16)0.047 (4)*C180.3451 (2)0.48794 (16)0.27609 (15)0.0439 (4)H18A0.281 (2)0.5150 (18)0.3262 (16)0.055 (5)*C190.2610 (2)0.42459 (15)0.14348 (15)0.0412 (4)H20A0.297 (2)0.3412 (18) $-0.0231 (17)$ 0.056 (5)*C210.5317 (2)0.40803 (15)0.12846 (14)0.0412 (4)H21A0.598 (2)0.3788 (17)0.0732 (16)0.052 (4)*	C14	1.2058 (3)	1.0592 (2)	0.1633 (2)	0.0808 (7)
C15 $1.1504(3)$ $0.9187(2)$ $0.1043(2)$ $0.0665(5)$ H15A $1.167(3)$ $0.886(2)$ $0.0226(19)$ $0.0668(6)^*$ C16 $0.6193(2)$ $0.47157(13)$ $0.26132(13)$ $0.0352(3)$ C17 $0.5210(2)$ $0.51095(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.055(5)^*$ C19 $0.2610(2)$ $0.42459(15)$ $0.14348(15)$ $0.0412(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)^*$	H14A	1.263 (3)	1.123 (3)	0.122 (2)	0.100 (8)*
H15A1.167 (3) $0.886 (2)$ $0.0226 (19)$ $0.068 (6)^*$ C16 $0.6193 (2)$ $0.47157 (13)$ $0.26132 (13)$ $0.0352 (3)$ C17 $0.5210 (2)$ $0.51095 (15)$ $0.33320 (15)$ $0.0404 (4)$ H17A $0.582 (2)$ $0.5549 (16)$ $0.4262 (16)$ $0.047 (4)^*$ C18 $0.3451 (2)$ $0.48794 (16)$ $0.27609 (15)$ $0.0439 (4)$ H18A $0.281 (2)$ $0.5150 (18)$ $0.3262 (16)$ $0.055 (5)^*$ C19 $0.2610 (2)$ $0.42459 (15)$ $0.14348 (15)$ $0.0412 (4)$ C20 $0.3557 (2)$ $0.38460 (16)$ $0.06964 (15)$ $0.0431 (4)$ H20A $0.297 (2)$ $0.3412 (18)$ $-0.0231 (17)$ $0.056 (5)^*$ C21 $0.5317 (2)$ $0.40803 (15)$ $0.12846 (14)$ $0.0412 (4)$ H21A $0.598 (2)$ $0.3788 (17)$ $0.0732 (16)$ $0.052 (4)^*$	C15	1.1504 (3)	0.9187 (2)	0.1043 (2)	0.0665 (5)
C16 $0.6193(2)$ $0.47157(13)$ $0.26132(13)$ $0.0352(3)$ C17 $0.5210(2)$ $0.51095(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.055(5)^*$ C19 $0.2610(2)$ $0.42459(15)$ $0.14348(15)$ $0.0412(4)$ C20 $0.3557(2)$ $0.38460(16)$ $0.06964(15)$ $0.0431(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)^*$	H15A	1.167 (3)	0.886 (2)	0.0226 (19)	0.068 (6)*
C17 $0.5210(2)$ $0.51095(15)$ $0.33320(15)$ $0.0404(4)$ H17A $0.582(2)$ $0.5549(16)$ $0.4262(16)$ $0.047(4)^*$ C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.055(5)^*$ C19 $0.2610(2)$ $0.42459(15)$ $0.14348(15)$ $0.0412(4)$ C20 $0.3557(2)$ $0.38460(16)$ $0.06964(15)$ $0.0431(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)^*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)^*$	C16	0.6193 (2)	0.47157 (13)	0.26132 (13)	0.0352 (3)
H17A 0.582 (2) 0.5549 (16) 0.4262 (16) 0.047 (4)*C18 0.3451 (2) 0.48794 (16) 0.27609 (15) 0.0439 (4)H18A 0.281 (2) 0.5150 (18) 0.3262 (16) 0.055 (5)*C19 0.2610 (2) 0.42459 (15) 0.14348 (15) 0.0412 (4)C20 0.3557 (2) 0.38460 (16) 0.06964 (15) 0.0431 (4)H20A 0.297 (2) 0.3412 (18) -0.0231 (17) 0.056 (5)*C21 0.5317 (2) 0.40803 (15) 0.12846 (14) 0.0412 (4)H21A 0.598 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	C17	0.5210(2)	0.51095 (15)	0.33320 (15)	0.0404 (4)
C18 $0.3451(2)$ $0.48794(16)$ $0.27609(15)$ $0.0439(4)$ H18A $0.281(2)$ $0.5150(18)$ $0.3262(16)$ $0.055(5)*$ C19 $0.2610(2)$ $0.42459(15)$ $0.14348(15)$ $0.0412(4)$ C20 $0.3557(2)$ $0.38460(16)$ $0.06964(15)$ $0.0431(4)$ H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)*$	H17A	0.582 (2)	0.5549 (16)	0.4262 (16)	0.047 (4)*
H18A 0.281 (2) 0.5150 (18) 0.3262 (16) 0.055 (5)*C19 0.2610 (2) 0.42459 (15) 0.14348 (15) 0.0412 (4)C20 0.3557 (2) 0.38460 (16) 0.06964 (15) 0.0431 (4)H20A 0.297 (2) 0.3412 (18) -0.0231 (17) 0.056 (5)*C21 0.5317 (2) 0.40803 (15) 0.12846 (14) 0.0412 (4)H21A 0.598 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	C18	0.3451 (2)	0.48794 (16)	0.27609 (15)	0.0439 (4)
C190.2610 (2)0.42459 (15)0.14348 (15)0.0412 (4)C200.3557 (2)0.38460 (16)0.06964 (15)0.0431 (4)H20A0.297 (2)0.3412 (18)-0.0231 (17)0.056 (5)*C210.5317 (2)0.40803 (15)0.12846 (14)0.0412 (4)H21A0.598 (2)0.3788 (17)0.0732 (16)0.052 (4)*	H18A	0.281 (2)	0.5150 (18)	0.3262 (16)	0.055 (5)*
C20 0.3557 (2) 0.38460 (16) 0.06964 (15) 0.0431 (4) H20A 0.297 (2) 0.3412 (18) -0.0231 (17) 0.056 (5)* C21 0.5317 (2) 0.40803 (15) 0.12846 (14) 0.0412 (4) H21A 0.598 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	C19	0.2610(2)	0.42459 (15)	0.14348 (15)	0.0412 (4)
H20A $0.297(2)$ $0.3412(18)$ $-0.0231(17)$ $0.056(5)*$ C21 $0.5317(2)$ $0.40803(15)$ $0.12846(14)$ $0.0412(4)$ H21A $0.598(2)$ $0.3788(17)$ $0.0732(16)$ $0.052(4)*$	C20	0.3557 (2)	0.38460 (16)	0.06964 (15)	0.0431 (4)
C21 0.5317 (2) 0.40803 (15) 0.12846 (14) 0.0412 (4)H21A 0.598 (2) 0.3788 (17) 0.0732 (16) 0.052 (4)*	H20A	0.297 (2)	0.3412 (18)	-0.0231 (17)	0.056 (5)*
$H_{214} = 0.598(2) = 0.3788(17) = 0.0732(16) = 0.052(4)*$	C21	0.5317 (2)	0.40803 (15)	0.12846 (14)	0.0412 (4)
112111 0.576(2) 0.5766(17) 0.0752(10) 0.052(4)	H21A	0.598 (2)	0.3788 (17)	0.0732 (16)	0.052 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0992 (11)	0.0463 (6)	0.0503 (7)	0.0314 (7)	0.0388 (7)	0.0165 (5)

supporting information

O2	0.0913 (11)	0.0402 (6)	0.0726 (8)	0.0205 (6)	0.0498 (8)	0.0096 (6)
03	0.0476 (8)	0.0696 (8)	0.0573 (8)	0.0270 (6)	0.0158 (6)	0.0081 (6)
N1	0.0922 (13)	0.0422 (8)	0.0493 (8)	0.0227 (8)	0.0355 (8)	0.0142 (6)
N2	0.0491 (9)	0.0450 (7)	0.0508 (8)	0.0142 (6)	0.0180 (6)	0.0160 (6)
C1	0.0478 (10)	0.0381 (8)	0.0402 (8)	0.0191 (7)	0.0162 (7)	0.0144 (6)
C2	0.0769 (13)	0.0433 (9)	0.0463 (9)	0.0213 (9)	0.0281 (9)	0.0168 (8)
C3	0.0923 (16)	0.0427 (9)	0.0621 (11)	0.0231 (10)	0.0357 (11)	0.0241 (9)
C4	0.0978 (17)	0.0371 (9)	0.0669 (12)	0.0208 (10)	0.0369 (11)	0.0125 (9)
C5	0.132 (2)	0.0432 (10)	0.0587 (12)	0.0238 (11)	0.0485 (13)	0.0097 (9)
C6	0.0495 (10)	0.0409 (8)	0.0380 (8)	0.0218 (7)	0.0156 (7)	0.0135 (7)
C7	0.0499 (11)	0.0369 (8)	0.0492 (9)	0.0206 (7)	0.0211 (8)	0.0152 (7)
C8	0.0438 (9)	0.0325 (7)	0.0377 (8)	0.0152 (6)	0.0161 (7)	0.0093 (6)
C9	0.0419 (10)	0.0329 (7)	0.0491 (9)	0.0140 (7)	0.0199 (7)	0.0108 (7)
C10	0.0423 (9)	0.0346 (7)	0.0472 (8)	0.0126 (7)	0.0172 (7)	0.0075 (7)
C11	0.0404 (9)	0.0348 (7)	0.0496 (9)	0.0133 (7)	0.0132 (7)	0.0110 (7)
C12	0.0771 (14)	0.0387 (9)	0.0689 (12)	0.0200 (9)	0.0284 (11)	0.0131 (9)
C13	0.1020 (18)	0.0371 (10)	0.0973 (16)	0.0189 (11)	0.0391 (14)	0.0247 (11)
C14	0.0974 (18)	0.0550 (12)	0.0934 (16)	0.0188 (11)	0.0427 (14)	0.0405 (12)
C15	0.0765 (15)	0.0599 (11)	0.0652 (12)	0.0200 (10)	0.0317 (11)	0.0285 (10)
C16	0.0438 (9)	0.0261 (6)	0.0379 (7)	0.0128 (6)	0.0182 (6)	0.0112 (6)
C17	0.0494 (10)	0.0371 (7)	0.0351 (8)	0.0163 (7)	0.0183 (7)	0.0092 (6)
C18	0.0475 (10)	0.0432 (8)	0.0465 (9)	0.0205 (7)	0.0246 (8)	0.0102 (7)
C19	0.0417 (9)	0.0358 (7)	0.0475 (8)	0.0154 (7)	0.0174 (7)	0.0133 (7)
C20	0.0466 (10)	0.0410 (8)	0.0366 (8)	0.0135 (7)	0.0153 (7)	0.0071 (7)
C21	0.0464 (10)	0.0385 (8)	0.0405 (8)	0.0164 (7)	0.0222 (7)	0.0078 (6)

Geometric parameters (Å, °)

O1—C6	1.2135 (17)	C8—H8A	0.996 (15)
O2—C10	1.2114 (18)	C9—C10	1.504 (2)
O3—C19	1.3689 (19)	С9—Н9В	0.975 (18)
O3—H03A	0.93 (2)	С9—Н9А	1.017 (17)
N1—C1	1.3295 (19)	C10—C11	1.504 (2)
N1—C5	1.338 (2)	C11—C12	1.387 (2)
N2—C15	1.339 (2)	C12—C13	1.372 (3)
N2—C11	1.340 (2)	C12—H12A	0.96 (2)
C1—C2	1.375 (2)	C13—C14	1.360 (3)
C1—C6	1.504 (2)	C13—H13A	0.99 (3)
C2—C3	1.375 (2)	C14—C15	1.376 (3)
C2—H2A	0.960 (18)	C14—H14A	0.95 (3)
C3—C4	1.357 (3)	C15—H15A	0.966 (19)
С3—НЗА	0.94 (2)	C16—C21	1.389 (2)
C4—C5	1.368 (3)	C16—C17	1.391 (2)
C4—H4A	0.99 (2)	C17—C18	1.378 (2)
C5—H5A	0.99 (2)	C17—H17A	0.971 (16)
С6—С7	1.502 (2)	C18—C19	1.384 (2)
С7—С8	1.538 (2)	C18—H18A	0.938 (18)
С7—Н7А	1.006 (19)	C19—C20	1.384 (2)

С7—Н7В	1.001 (16)	C20—C21	1.381 (2)
C8—C16	1.513 (2)	C20—H20A	0.967 (17)
C8—C9	1.532 (2)	C21—H21A	0.998 (17)
С19—О3—Н03А	109.1 (15)	Н9В—С9—Н9А	104.6 (13)
C1—N1—C5	116.28 (15)	O2—C10—C9	121.67 (14)
C15—N2—C11	116.90 (15)	O2—C10—C11	119.15 (13)
N1—C1—C2	122.88 (14)	C9—C10—C11	119.08 (13)
N1—C1—C6	117.47 (13)	N2—C11—C12	122.63 (15)
C2—C1—C6	119.64 (14)	N2-C11-C10	118.46 (13)
C1—C2—C3	119.43 (16)	C12—C11—C10	118.91 (15)
C1—C2—H2A	118.1 (11)	C13—C12—C11	119.0 (2)
C3—C2—H2A	122.4 (11)	C13—C12—H12A	121.8 (12)
C4—C3—C2	118.47 (17)	C11—C12—H12A	119.2 (12)
С4—С3—Н3А	121.3 (12)	C14—C13—C12	118.97 (19)
С2—С3—НЗА	120.2 (12)	C14—C13—H13A	121.0 (15)
$C_{3}-C_{4}-C_{5}$	118.65 (17)	C12—C13—H13A	120.0 (15)
C3—C4—H4A	122.3 (12)	C13 - C14 - C15	119.1 (2)
C5-C4-H4A	119 1 (12)	C13—C14—H14A	123.3(14)
N1-C5-C4	124 27 (18)	C15— $C14$ — $H14A$	123.5(11) 117.6(15)
N1-C5-H5A	1144(13)	N_{2} C15 C14	1234(2)
C4-C5-H5A	121 3 (13)	N2—C15—H15A	125.1(2) 115.5(12)
01 - C6 - C7	127.05(13)	C_{14} C_{15} H_{15A}	121.1(12)
01 - C6 - C1	122.03(14) 118 79 (14)	C_{21} C_{16} C_{17}	121.1(12) 116.72(14)
C7 - C6 - C1	110.79 (14)	$C_{21} - C_{10} - C_{17}$	110.72(14) 121.07(13)
C_{1}^{-}	112.14(13) 112.24(13)	$C_{17} C_{16} C_{8}$	121.07(13) 122.21(13)
$C_{0} = C_{7} = C_{8}$	112.24(13) 104.7(10)	C17 - C10 - C8	122.21(13) 121.03(14)
$C_0 - C_7 - H_7 A$	104.7(10) 100.2(10)	$C_{18} = C_{17} = C_{10}$	121.93(14)
C_{0} C_{1} C_{1	109.5(10) 110.5(0)	$C_{16} - C_{17} - H_{17A}$	121.3(9) 116.7(10)
C^{0} C^{7} U^{7} D^{7}	110.5 (9)	C10 - C17 - H1/A	110.7(10)
	111.5 (9)	C17 - C18 - C19	120.22(15)
H/A - C / - H/B	108.3 (14)	C10 - C18 - H18A	120.7(10)
C16 - C8 - C9	110.96 (12)	C19—C18—H18A	119.0 (11)
C16 - C8 - C7	110.90 (12)	03-019-020	122.26 (14)
C9—C8—C7	110.75 (12)	03-019-018	118.70 (14)
C16—C8—H8A	107.9 (9)	C20—C19—C18	119.04 (15)
C9—C8—H8A	108.1 (9)	C21—C20—C19	119.99 (14)
С7—С8—Н8А	108.1 (8)	С21—С20—Н20А	121.1 (10)
C10—C9—C8	112.42 (13)	C19—C20—H20A	118.9 (10)
С10—С9—Н9В	104.4 (10)	C20—C21—C16	122.10 (14)
С8—С9—Н9В	112.2 (10)	C20—C21—H21A	118.6 (9)
С10—С9—Н9А	110.8 (9)	C16—C21—H21A	119.3 (10)
С8—С9—Н9А	111.9 (10)		
C5—N1—C1—C2	0.8 (3)	C9-C10-C11-N2	11.1 (2)
C5—N1—C1—C6	-178.05 (18)	O2—C10—C11—C12	8.4 (3)
N1—C1—C2—C3	0.3 (3)	C9—C10—C11—C12	-168.07 (16)
C6—C1—C2—C3	179.14 (17)	N2-C11-C12-C13	-1.1 (3)
C1—C2—C3—C4	-0.7 (3)	C10-C11-C12-C13	178.02 (18)
	× /		~ /

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 \ (3) \\ -1.6 \ (4) \\ 1.1 \ (4) \\ 164.80 \ (16) \\ -14.1 \ (2) \\ -16.5 \ (2) \\ 164.56 \ (16) \\ -30.0 \ (2) \\ 151.38 \ (14) \\ -65.15 \ (17) \\ 171.20 \ (13) \\ 72.76 \ (16) \\ -163.62 \ (14) \\ 16.4 \ (2) \\ -167.22 \ (13) \\ 1.2 \ (3) \\ -177.89 \ (16) \end{array}$	C11—C12—C13—C14 C12—C13—C14—C15 C11—N2—C15—C14 C13—C14—C15—N2 C9—C8—C16—C21 C7—C8—C16—C21 C9—C8—C16—C17 C7—C8—C16—C17 C21—C16—C17—C18 C8—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—O3 C17—C18—C19—C20 O3—C19—C20—C21 C18—C19—C20—C21 C19—C20—C21—C16 C17—C16—C21—C20	$\begin{array}{c} 0.1 \ (4) \\ 0.7 \ (4) \\ -0.4 \ (3) \\ -0.6 \ (4) \\ 64.71 \ (16) \\ -58.83 \ (17) \\ -114.63 \ (14) \\ 121.83 \ (14) \\ 0.2 \ (2) \\ 179.58 \ (13) \\ -0.3 \ (2) \\ -179.03 \ (13) \\ 0.2 \ (2) \\ 179.21 \ (13) \\ 0.0 \ (2) \\ -0.1 \ (2) \\ 0.0 \ (2) \end{array}$
C15—N2—C11—C10	-177.89 (16)	C17—C16—C21—C20	0.0 (2)
O2—C10—C11—N2	-172.47 (15)	C8—C16—C21—C20	-179.38 (13)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C16–C21 ring.

D—H···A	D—H	H···A	D··· A	D—H··· A	
O3—H03A····N2 ⁱ	0.93 (2)	2.00 (2)	2.8940 (19)	160 (2)	
C12—H12A····O2 ⁱⁱ	0.96 (2)	2.48 (2)	3.312 (3)	145 (2)	
C4a—H4a····Cg3 ⁱⁱⁱ	0.99 (2)	0.98 (2)	3.825 (2)	144 (2)	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*.