

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

m-Xylylenediaminium diaquabis[dihydrogen diphosphato(2—)]cobaltate(II) dihydrate

Adel Elboulali, Samah Akriche and Mohamed Rzaigui*

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisie Correspondence e-mail: mohamedrzaigui@yahoo.fr

Received 6 September 2013; accepted 12 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.090; data-to-parameter ratio = 33.6.

In the title complex, $(C_8H_{14}N_2)[Co(H_2P_2O_7)_2(H_2O)_2]\cdot 2H_2O$, the Co^{II} ion lies on an inversion center and is coordinated by two bidentate diphosphate ligands and two water molecules in a slightly distorted octahedral coordination geometry. The *m*xylylenediaminium cation is located on a twofold rotation axis. In the crystal, a three-dimensional supramolecular assembly is constructed by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds between the organic cations, complex anions and uncoordinated water molecules.

Related literature

For applications of diphosphate compounds containing transition metals, see: Erragh *et al.* (1998); Handizi *et al.* (1994); Dridi *et al.* (2000); Cheetham *et al.* (1999); Clearfield (1998). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For geometrical features in related structures, see: Selmi *et al.* (2006*a*,*b*, 2009); Gharbi *et al.* (1994); Gharbi & Jouini (2004); Nelson *et al.* (2007).

Experimental

 $R_{\rm int} = 0.019$

0.27 \times 0.21 \times 0.15 mm

 $\mu = 0.58 \text{ mm}^{-1}$ T = 293 K

Data collection

Enraf Nonius CAD4 diffractometer 7386 measured reflections 5609 independent reflections 4197 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.065609 reflections 167 parameters 6 restraints intensity decay: 2%

2 standard reflections every 120 min

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.87 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2O2\cdots O6^{i}$	0.82	1.74	2.5574 (18)	172
$O7 - H7 \cdot \cdot \cdot O3^{ii}$	0.82	1.74	2.5268 (18)	160
$O1W - H1W1 \cdots O6^{i}$	0.84(1)	1.99(1)	2.8289 (17)	174 (2)
$O1W - H2W1 \cdots O3^{iii}$	0.85 (1)	1.94 (1)	2.7891 (17)	174 (2)
$O2W - H1W2 \cdot \cdot \cdot O3^{iv}$	0.85(1)	2.15(1)	2.972 (2)	162 (2)
$O2W - H2W2 \cdots O6^{v}$	0.86 (1)	2.12 (1)	2.946 (2)	163 (2)
$N1 - H1A \cdots O2^{i}$	0.89	2.22	2.9694 (18)	142
$N1 - H1A \cdots O2W^{vi}$	0.89	2.36	2.969 (3)	126
$N1 - H1B \cdot \cdot \cdot O7^{iii}$	0.89	2.01	2.8893 (18)	167
$N1 - H1C \cdots O5$	0.89	1.99	2.8701 (19)	171

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x, y, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1996); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5650).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.
- Clearfield, A. (1998). Chem. Mater. 10, 2801-2810.
- Dridi, N., Boukhari, A., Réau, J. M., Arbib, E. & Holt, E. M. (2000). Solid State Ionics, 127, 141–149.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Erragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). Acta Cryst. C54, 1373–1376.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.
- Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.

Handizi, A., Boukhari, A., Holt, E. M., Aride, J., Belaiche, M. & Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. **31**, 123–135.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

metal-organic compounds

Nelson, J. H., Narducci Sarjeant, A. & Norquist, A. J. (2007). *Acta Cryst.* E63, m1442-m1444.

Selmi, A., Akriche, S. & Rzaigui, M. (2006a). Anal. Sci. 22, x135-x136.

Selmi, A., Akriche, S. & Rzaigui, M. (2006b). Acta Cryst. E62, m1796–m1798.
Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2013). E69, m545-m546 [doi:10.1107/S160053681302535X]

m-Xylylenediaminium diaquabis[dihydrogen diphosphato(2–)]cobaltate(II) dihydrate

Adel Elboulali, Samah Akriche and Mohamed Rzaigui

S1. Comment

Among a variety of organic inorganic hybrid materials, diphosphate compounds containing transition metals showed promising properties in diverse areas such as catalysis (Erragh *et al.*, 1998), magnetism (Handizi *et al.*, 1994), conductivity (Dridi *et al.*, 2000), ion-exchange or second-order non-linear optics (Cheetham *et al.*, 1999; Clearfield, 1998). Here, we report a new diphosphate of mixed organic-metal cations: $(C_8H_{14}N_2)[Co(H_2P_2O_7)_2(H_2O)_2] \cdot 2(H_2O)$ (I). The asymmetric unit of (I) is made up of a half of mononuclear $[Co(H_2P_2O_7)_2(H_2O)_2]^2$ - moiety, a half of organic cation and one water of crystallization. As the Co^{II} ion and C3 and C4 atoms are located respectively on inversion center and twofold rotation axis, the complete formula unit is generated by these crystallographic elements of symmetry (Fig. 1).

Each Co^{II} ion is coordinated by four oxygen atoms from two chelating diphosphate ligands and two oxygen atoms from two coordinated (O1W) water molecules to form a slightly distorted CoO₆ octahedron. The valence bond calculation (Brown & Altermatt, 1985) based on these six oxygen distances gives an effective bond valence of 2.0185 consistent with the cationic charge of +2. The bond lengths and angles around the Co^{II} ion 2.0695 (11)—2.1044 (11) Å (Co—O) and 85.99 (5)—180.00 (8)° (O—Co—O) are close to those reported for Co metals in (C₉H₁₁NH₃)₂[Co(H₂P₂O₇)₂(H₂O)₂] (Selmi *et al.*, 2006*a*), (C₈H₁₂N)₂[Co(H₂P₂O₇)₂(H₂O)₂] (Selmi *et al.*, 2006*b*) and (C₇H₁₀N)₂[Co(H₂P₂O₇)₂(H₂O)₂] (Selmi *et al.*, 2009) in related structures. The discrete CoO₆ entities are isolated in the structure with Co···Co separations of over 7 Å. In addition, the chelating P₂O₇ group has a quasi-eclipsed conformation with O—P—P—O torsion angles averaging 18.8 ° and bridges the Co atom through O1—P1 and O5—P2 linkages thus producing a bent P₂O₇ group, with a P1—O4—P2 angle of 132.91 (7)° as observed in other M^{II}–organic diphosphate frameworks (Selmi *et al.*, 2006*a*, 2006*b* and 2009; Gharbi *et al.*, 2004,1994). With regards to the geometrical features of organic cations, the main bond lengths are comparable to those observed in the *p*-xylylenediaminium cations in $\{[C_8H_{14}N_2]_3[Mo_9O_{30}]\cdot 2H_2O_1$ (Nelson *et al.*, 2007).

As shown in Fig.2 and reported in Table 1, the $[Co(H_2P_2O_7)_2(H_2O)_2]^{2-}$ clusters are interconnected *via* O—H···O hydrogen bonding interactions involving the hydroxyl groups of $[H_2P_2O_7]^{2-}$ and OW1 water molecules into anionic layers along *c*axis at z = 0 and 1/2. The remaining uncoordinated O2W water molecules further link these layers so as to contribute to their cohesion with O···O separations ranging from 2.946 (2)to 2.972 (2) Å (Table 1). The so-obtained two-dimensionalsubnetworks stack together by means NH₃ groups of the diprotonated *m*-xylylenediaminium cations via moderate N— H···O hydrogen bonds (mean N···O = 2.924 Å, Table 1) and electrostatic interactions so as to build a three-dimensional supramolecular network.

S2. Experimental

Pink prismatic shaped crystals of the title compound were synthesized by the reaction of diphosphoric acid $H_4P_2O_7$ (2 mmol), $CoCl_2 \cdot 6H_2O$ (0.24 g; 1 mmol)and *m*-xylylenediamine (0.14 g; 1 mmol) carried out in water–ethanol (5:1) at rt. The diphosphoric acid, $H_4P_2O_7$, was obtained from $Na_4P_2O_7$ by using an ion-exchange resin (Amberlite IR 120).

S3. Refinement

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ for the aromatic ring and C—H = 0.97 Å and N—H = 0.89 Å respectively for CH₂ and NH₃ cation groups and O—H = 0.82 Å for diphosphoric anion with $U_{iso}(H) = 1.5U_{eq}(C, O \text{ or } N)$. The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H…H = 1.44 (2) A ° and $U_{iso}(H) = 1.5U_{eq}(O)$].

Figure 1

An *ORTEP* view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. A hydrogen bond is represented as a dotted line [Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, -y+1/2, -z+1].

Figure 2

A projection of (I) along the [110] direction. The H-atoms not involved in H-bonding are omitted. Hydrogen bonds are shown as dashed lines.

m-Xylylenediaminium diaquabis[dihydrogen diphosphato(2-)]cobaltate(II) dihydrate

Crystal data

$(C_8H_{14}N_2)[Co(H_2P_2O_7)_2(H_2O)_2] \cdot 2H_2O$ $M_r = 621.12$ Monoclinic, C2/c Hall symbol: -C 2yc a = 11.933 (2) Å b = 9.132 (4) Å c = 21.441 (3) Å $\beta = 101.20$ (2)° V = 2291.8 (11) Å ³ Z = 4	F(000) = 1276 $D_x = 1.800 \text{ Mg m}^{-3}$ Ag Ka radiation, $\lambda = 0.56087 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-11^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 293 K Prism, pink $0.27 \times 0.21 \times 0.15 \text{ mm}$
Data collection	
Enraf Nonius CAD4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator non-profiled ω scans 7386 measured reflections 5609 independent reflections 4197 reflections with $I > 2\sigma(I)$	$R_{int} = 0.019$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -19 \rightarrow 19$ $k = -2 \rightarrow 15$ $l = -2 \rightarrow 35$ 2 standard reflections every 120 min intensity decay: 2%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
5609 reflections	and constrained refinement
167 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 1.174P]$
6 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.87 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.2500	0.2500	0.5000	0.01705 (6)
P1	0.02843 (3)	0.22128 (4)	0.571350 (18)	0.01809 (7)
P2	-0.02421 (3)	0.29251 (4)	0.435477 (17)	0.01764 (7)
01	0.14860 (8)	0.19560 (13)	0.56463 (5)	0.0244 (2)
02	0.01855 (10)	0.34054 (12)	0.62180 (6)	0.0295 (2)
H2O2	0.0510	0.4153	0.6137	0.044*
03	-0.03555 (9)	0.08962 (12)	0.58755 (6)	0.0272 (2)
04	-0.04173 (9)	0.29279 (16)	0.50765 (6)	0.0343 (3)
05	0.10009 (8)	0.30371 (12)	0.43469 (5)	0.02264 (19)
06	-0.10026 (8)	0.41352 (11)	0.40494 (5)	0.0240 (2)
07	-0.07639 (9)	0.14643 (13)	0.40722 (7)	0.0373 (3)
H7	-0.0275	0.0822	0.4135	0.056*
O1W	0.25749 (9)	0.47229 (13)	0.52445 (7)	0.0317 (3)
H1W1	0.2077 (14)	0.501 (3)	0.5446 (10)	0.050*
H2W1	0.3230 (10)	0.503 (3)	0.5427 (10)	0.050*
O2W	0.31653 (13)	0.3286 (2)	0.17868 (8)	0.0503 (4)
H1W2	0.3666 (14)	0.365 (3)	0.1596 (10)	0.050*
H2W2	0.2488 (10)	0.355 (3)	0.1618 (10)	0.050*
N1	0.20006 (11)	0.51928 (16)	0.36481 (7)	0.0286 (3)
H1A	0.1506	0.5933	0.3594	0.043*
H1B	0.2686	0.5518	0.3836	0.043*
H1C	0.1768	0.4511	0.3891	0.043*
C1	0.09999 (15)	0.3728 (2)	0.27477 (8)	0.0336 (3)
C2	0.0986 (2)	0.2211 (3)	0.27536 (10)	0.0499 (5)

supporting information

H2	0.1644	0.1696	0.2929	0.060*	
C3	0.0000	0.1464 (4)	0.2500	0.0578 (9)	
H3	0.0000	0.0446	0.2500	0.069*	
C4	0.0000	0.4479 (3)	0.2500	0.0305 (4)	
H4	0.0000	0.5497	0.2500	0.037*	
C5	0.20697 (16)	0.4554 (3)	0.30225 (10)	0.0477 (5)	
H5A	0.2719	0.3896	0.3070	0.057*	
H5B	0.2186	0.5330	0.2733	0.057*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01044 (9)	0.01735 (11)	0.02374 (12)	0.00015 (8)	0.00423 (8)	-0.00035 (9)
P1	0.01487 (12)	0.01621 (14)	0.02461 (16)	0.00092 (10)	0.00736 (11)	0.00057 (11)
P2	0.01156 (12)	0.01553 (14)	0.02536 (16)	0.00003 (10)	0.00241 (11)	0.00060 (12)
01	0.0148 (4)	0.0313 (5)	0.0283 (5)	0.0045 (4)	0.0073 (4)	0.0064 (4)
O2	0.0363 (6)	0.0195 (5)	0.0374 (6)	-0.0048 (4)	0.0187 (5)	-0.0060 (4)
03	0.0217 (4)	0.0178 (4)	0.0446 (6)	-0.0032 (4)	0.0129 (4)	-0.0008 (4)
04	0.0202 (4)	0.0539 (8)	0.0304 (6)	0.0138 (5)	0.0085 (4)	0.0100 (5)
05	0.0124 (3)	0.0297 (5)	0.0256 (5)	-0.0013 (3)	0.0032 (3)	0.0023 (4)
06	0.0182 (4)	0.0184 (4)	0.0339 (5)	0.0032 (3)	0.0014 (4)	0.0034 (4)
07	0.0193 (5)	0.0182 (5)	0.0697 (9)	-0.0006 (4)	-0.0025 (5)	-0.0103 (5)
O1W	0.0178 (4)	0.0256 (5)	0.0525 (7)	-0.0017 (4)	0.0090 (5)	-0.0130 (5)
O2W	0.0372 (7)	0.0640 (11)	0.0506 (9)	-0.0005 (7)	0.0106 (7)	0.0063 (8)
N1	0.0203 (5)	0.0316 (7)	0.0327 (7)	-0.0009 (5)	0.0021 (5)	0.0041 (5)
C1	0.0308 (7)	0.0460 (10)	0.0233 (7)	0.0031 (7)	0.0037 (6)	-0.0020 (7)
C2	0.0589 (13)	0.0493 (12)	0.0396 (10)	0.0199 (10)	0.0051 (9)	0.0030 (9)
C3	0.086 (3)	0.0330 (14)	0.0521 (19)	0.000	0.0083 (18)	0.000
C4	0.0304 (10)	0.0333 (12)	0.0271 (10)	0.000	0.0041 (8)	0.000
C5	0.0262 (8)	0.0832 (17)	0.0347 (9)	-0.0055 (9)	0.0088 (7)	-0.0058 (10)

Geometric parameters (Å, °)

Col—Ol ⁱ	2.0695 (11)	O2W—H1W2	0.853 (9)	
Co101	2.0695 (11)	O2W—H2W2	0.855 (9)	
Co1-O1W ⁱ	2.0940 (15)	N1—C5	1.480 (3)	
Co1—O1W	2.0940 (14)	N1—H1A	0.8900	
Co1—O5	2.1044 (11)	N1—H1B	0.8900	
Co1—O5 ⁱ	2.1044 (11)	N1—H1C	0.8900	
P101	1.4873 (10)	C1—C2	1.385 (3)	
P1—O3	1.5007 (12)	C1—C4	1.389 (2)	
P1—O2	1.5554 (12)	C1—C5	1.501 (3)	
P1—O4	1.5965 (12)	C2—C3	1.377 (3)	
P2—O5	1.4901 (10)	С2—Н2	0.9300	
P2—O6	1.4975 (11)	C3—C2 ⁱⁱ	1.377 (3)	
P2—O7	1.5452 (13)	С3—Н3	0.9300	
P2—O4	1.6012 (13)	C4—C1 ⁱⁱ	1.389 (2)	
O2—H2O2	0.8200	C4—H4	0.9300	

O7—H7	0.8200	С5—Н5А	0.9700
O1W—H1W1	0.843 (9)	С5—Н5В	0.9700
O1W—H2W1	0.849 (9)		
O1 ⁱ —Co1—O1	180.0	P2O5Co1	134.09 (7)
O1 ⁱ —Co1—O1W ⁱ	93.85 (5)	Р2—О7—Н7	109.5
O1—Co1—O1W ⁱ	86.15 (5)	Co1—O1W—H1W1	115.7 (17)
Ol ⁱ —Col—OlW	86.15 (5)	Co1—O1W—H2W1	114.9 (17)
O1—Co1—O1W	93.85 (5)	H1W1—O1W—H2W1	109.9 (18)
O1W ⁱ —Co1—O1W	180.00 (8)	H1W2—O2W—H2W2	112.3 (18)
Ol ⁱ —Col—O5	91.75 (4)	C5—N1—H1A	109.5
O1—Co1—O5	88.25 (4)	C5—N1—H1B	109.5
O1W ⁱ —Co1—O5	94.01 (5)	H1A—N1—H1B	109.5
O1W—Co1—O5	85.99 (5)	C5—N1—H1C	109.5
O1 ⁱ —Co1—O5 ⁱ	88.25 (4)	H1A—N1—H1C	109.5
O1-Co1-O5 ⁱ	91.75 (4)	H1B—N1—H1C	109.5
O1W ⁱ —Co1—O5 ⁱ	85.99 (5)	C2—C1—C4	119.07 (19)
O1W—Co1—O5 ⁱ	94.01 (5)	C2—C1—C5	120.64 (19)
O5-Co1-O5 ⁱ	180.00 (5)	C4—C1—C5	120.3 (2)
O1—P1—O3	116.07 (7)	C3—C2—C1	120.2 (2)
O1—P1—O2	112.49 (7)	C3—C2—H2	119.9
O3—P1—O2	106.82 (7)	C1—C2—H2	119.9
O1—P1—O4	109.69 (6)	C2 ⁱⁱ —C3—C2	120.6 (3)
O3—P1—O4	108.66 (7)	С2 ^{іі} —С3—Н3	119.7
O2—P1—O4	102.15 (7)	С2—С3—Н3	119.7
O5—P2—O6	117.67 (6)	C1 ⁱⁱ —C4—C1	120.8 (2)
O5—P2—O7	112.39 (7)	C1 ⁱⁱ —C4—H4	119.6
O6—P2—O7	107.56 (7)	C1—C4—H4	119.6
O5—P2—O4	109.15 (7)	N1	111.18 (15)
O6—P2—O4	103.86 (7)	N1—C5—H5A	109.4
O7—P2—O4	105.19 (8)	C1—C5—H5A	109.4
P1	136.65 (7)	N1—C5—H5B	109.4
P1—O2—H2O2	109.5	C1—C5—H5B	109.4
P1	132.91 (7)	H5A—C5—H5B	108.0
O3—P1—O1—Co1	132.63 (10)	O7—P2—O5—Co1	-91.76 (11)
O2—P1—O1—Co1	-103.92 (11)	O4—P2—O5—Co1	24.54 (12)
O4—P1—O1—Co1	9.04 (13)	O1 ⁱ —Co1—O5—P2	175.43 (10)
O1 ⁱ —Co1—O1—P1	112.8 (17)	O1—Co1—O5—P2	-4.57 (10)
O1W ⁱ —Co1—O1—P1	-109.69 (11)	O1W ⁱ —Co1—O5—P2	81.45 (10)
O1W—Co1—O1—P1	70.31 (11)	O1W—Co1—O5—P2	-98.55 (10)
O5—Co1—O1—P1	-15.56 (11)	O5 ⁱ —Co1—O5—P2	-39 (100)
O5 ⁱ —Co1—O1—P1	164.44 (11)	C4—C1—C2—C3	1.9 (3)
O1—P1—O4—P2	23.46 (15)	C5—C1—C2—C3	-179.98 (16)
O3—P1—O4—P2	-104.38 (13)	C1—C2—C3—C2 ⁱⁱ	-0.95 (14)
O2—P1—O4—P2	142.97 (12)	C2-C1-C4-C1 ⁱⁱ	-0.93 (14)
O5—P2—O4—P1	-38.26 (15)	C5-C1-C4-C1 ⁱⁱ	-179.09 (18)
O6—P2—O4—P1	-164.55 (12)	C2-C1-C5-N1	-104.4 (2)

supporting information

O7—P2—O4—P1	82.55 (13)	C4—C1—C5—N1	73.8 (2)
O6—P2—O5—Co1	142.47 (8)		

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
02—H2 <i>O</i> 2···O6 ⁱⁱⁱ	0.82	1.74	2.5574 (18)	172
O7—H7…O3 ^{iv}	0.82	1.74	2.5268 (18)	160
O1 <i>W</i> —H1 <i>W</i> 1···O6 ⁱⁱⁱ	0.84 (1)	1.99 (1)	2.8289 (17)	174 (2)
$O1W - H2W1 \cdots O3^{v}$	0.85 (1)	1.94 (1)	2.7891 (17)	174 (2)
O2 <i>W</i> —H1 <i>W</i> 2···O3 ^{vi}	0.85 (1)	2.15 (1)	2.972 (2)	162 (2)
O2 <i>W</i> —H2 <i>W</i> 2···O6 ⁱⁱ	0.86(1)	2.12 (1)	2.946 (2)	163 (2)
N1—H1A····O2 ⁱⁱⁱ	0.89	2.22	2.9694 (18)	142
N1—H1 A ···O2 W ^{vii}	0.89	2.36	2.969 (3)	126
N1—H1 <i>B</i> ···O7 ^v	0.89	2.01	2.8893 (18)	167
N1—H1 <i>C</i> ···O5	0.89	1.99	2.8701 (19)	171

Symmetry codes: (ii) -*x*, *y*, -*z*+1/2; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*, -*y*, -*z*+1; (v) *x*+1/2, *y*+1/2, *z*; (vi) *x*+1/2, -*y*+1/2, *z*-1/2; (vii) -*x*+1/2, *y*+1/2, -*z*+1/2.