Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(η^2 -ethylene)(η^5 -indenyl)iridium(I)

Joseph S. Merola

Department of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA Correspondence e-mail: jmerola@vt.edu

Received 31 August 2013; accepted 11 September 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.055; data-to-parameter ratio = 27.3.

The asymmetric unit of the title compound, $[Ir(C_9H_7) (C_2H_4)_2$, consists of two independent molecules. The bonding between iridium and the five-membered ring of the indenyl ligand shows the usual asymmetry associated with the typical ring slippage responsible for the enhanced activity of indenyl metal compounds when compared with the analogous cyclopentadienvl metal compound. There are three short Ir-C bonds of 2.210 (3), 2.190 (4) and 2.220 (3) Å and two long Ir-C bonds to the C atoms that are part of the fused sixmembered ring of 2.349 (4) and 2.366 (3) Å for one of the independent molecules [2.208 (4), 2.222 (3), 2.197 (4) Å for the short distances and 2.371 (3) and 2.358 (3) Å for the long distances in the second molecule]. This results in both indenyl ligands being slightly kinked, with dihedral angles of 6.8 (4)° and 6.5 $(4)^{\circ}$.

Related literature

For the structures of the analogous rhodium(I) complex determined from single crystal X-ray data, see: CCDC:576585 (Marder et al., 1987); CCDC:567925 (Mlekuz et al., 1986). For a variable temperature NMR study of the title compound, see: Szajek *et al.* (1991). The structure of an η^3 -indenyliridium complex can be found in CCDC:563532 (Merola et al., 1986). For seminal discussions on the "indenvl effect" see: Hart-Davis et al. (1970); Rerek et al. (1983). The synthesis of $[Ir(C_2H_2)_2Cl]_2$ can be found in Herde *et al.* (1974).

55683 measured reflections

 $R_{\rm int} = 0.027$

6917 independent reflections

6733 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Ir(C_9H_7)(C_2H_4)_2]$	V = 2117.00 (5) Å ³
$M_r = 363.45$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.73182 (11) Å	$\mu = 12.57 \text{ mm}^{-1}$
b = 10.77708 (13) Å	$T = 100 { m K}$
c = 25.6818 (5) Å	$0.45 \times 0.33 \times 0.22 \text{ mm}$
$\beta = 98.4034 \ (15)^{\circ}$	

Data collection

Agilent Xcalibur, Sapphire2 diffractometer Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) $T_{\min} = 0.020, \ T_{\max} = 0.142$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	253 parameters
$wR(F^2) = 0.055$	H-atom parameters constrained
S = 1.46	$\Delta \rho_{\rm max} = 1.69 \text{ e } \text{\AA}^{-3}$
6917 reflections	$\Delta \rho_{\rm min} = -2.04 \text{ e } \text{\AA}^{-3}$

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

The author thanks the National Science Foundation for funds (CHE-01311288) for the purchase of the diffractometer. The author recognizes the payment of the open access fee by Virginia Tech University Libraries.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2496).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Hart-Davis, A., White, C. & Mawby, R. (1970). Inorg. Chim. Acta, 4, 441-446. Herde, J. L., Lambert, J. C., Senoff, C. V. & Cushing, M. A. (1974). Inorganic Syntheses, pp. 18-20 John Wiley & Sons, Inc.
- Marder, T. B., Calabrese, J. C., Roe, D. C. & Tulip, T. H. (1987). Organometallics, 6, 2012-2014.
- Merola, J. S., Kacmarcik, R. T. & Van Engen, D. (1986). J. Am. Chem. Soc. 108, 329-331.
- Mlekuz, M., Bougeard, P., Sayer, B. G., McGlinchey, M. J., Rodger, C. A., Churchill, M. R., Ziller, J. W., Kang, S. K. & Albright, T. A. (1986). Organometallics, 5, 1656-1663.
- Rerek, M. E., Ji, L.-N. & Basolo, F. (1983). Chem. Commun. pp. 1208-1209.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Szajek, L. P., Lawson, R. J. & Shapley, J. R. (1991). Organometallics, 10, 357-361.

supporting information

Acta Cryst. (2013). E69, m547 [doi:10.1107/S1600536813025300]

Bis(η^2 -ethylene)(η^5 -indenyl)iridium(I)

Joseph S. Merola

S1. Comment

The indenyl ligand has been shown to be very flexible in terms of its coordination to metals. An increased reactivity that is displayed by indenyl metal complexes compared with cyclopentadienyl complexes has been dubbed the "indenyl effect". The effect was first described by Mawby's group (Hart-Davis *et al.*, 1970) and was further quantified by Basolo's group (Rerek *et al.*, 1983) We have previously reported on the synthesis and structure of η^3 -indenyliridium complexes formed by reaction of an η^5 -indenyliridiumbis(olefin) complex and small phosphine ligands such as PMe₃ or PhPMe₂ (Merola *et al.*, 1986). The smallest olefin complex of indenyl iridium, (η^5 -Indenyl)bis(η^2 -ethylene)iridium(I), **1**, is the subject of this report. The thermal ellipsoid plot for both independent molecules of **1** is shown in figure 1. The most interesting aspects of the bonding are highlighted in table 1 showing the three short and two long bond distances of the "slipped" indenyl rings.

Figure 2 shows the "fold" of the indenyl ligand which imparts non-planarity of the 6-membered ring from the 5membered ring. The angle between the planes defined by C1, C2 and C9 and that defined by C3, C8, C7, C4, C5 and C6 is $6.5 (4)^{\circ}$ and $6.8 (4)^{\circ}$ for the "A" and "B" molecules.

S2. Experimental

 $[Ir(C_2H_2)_2Cl]_2$ was synthesized by the reaction between $[Ir(C_8H_{14})_2IrCl]_2$ and ethylene (Herde *et al.*, 1974). The title compound was prepared by the reaction between lithium indenide and $[Ir(C_2H_2)_2Cl]_2$ in anhydrous THF. Crystals of the title compound were grown by the slow evaporation of a pentane solution. The title compound has also been reported previously prepared by this same method (Szajek *et al.*, 1991).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were found in difference maps and refined using a riding model with C-H distances of 0.93 Å ($C_{indenyl}$) and 0.97 Å ($C_{ethylene}$). $U_{iso}(H)$ values were set to $1.2U_{eq}$ of the attached carbon atom.

Figure 1

Thermal ellipsoid plot of the two indepenent molecules of the title compound. Ellipsoids are shown at 50% probability.

Figure 2

Ball and stick drawing of title compound showing the fold angle of the indenyl rings for both independent molecules. Ethylene ligands and hydrogen atoms omitted for clarity.

Bis(η^2 -ethylene)(η^5 -indenyl)iridium(I)

Crystal data	
$[Ir(C_9H_7)(C_2H_4)_2]$	F(000) = 1360
$M_r = 363.45$	$D_{\rm x} = 2.286 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.7107$ Å
a = 7.73182 (11) Å	Cell parameters from 34473 reflections
b = 10.77708 (13) Å	$\theta = 3.1 - 32.0^{\circ}$
c = 25.6818 (5) Å	$\mu = 12.57 \text{ mm}^{-1}$
$\beta = 98.4034 \ (15)^{\circ}$	T = 100 K
$V = 2117.00 (5) Å^3$	Prism, clear orange
Z = 8	$0.45 \times 0.33 \times 0.22 \text{ mm}$
Data collection	
Agilent Xcalibur, Sapphire2	Absorption correction: gaussian
diffractometer	(CrysAlis PRO; Agilent, 2013)
Radiation source: Enhance (Mo) X-ray Source	$T_{\min} = 0.020, \ T_{\max} = 0.142$
Graphite monochromator	55683 measured reflections
Detector resolution: 8.3438 pixels mm ⁻¹	6917 independent reflections
ω and π scans	6733 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.027$

$\theta_{\rm max} = 32.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$	$k = -15 \rightarrow 15$
$h = -11 \longrightarrow 11$	$l = -38 \rightarrow 37$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
S = 1.46	H-atom parameters constrained
6917 reflections	$w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 12.8207P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.69 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.04 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	II. */II	
	л 	<i>y</i>	2	U _{iso} / U _{eq}	
Ir1A	0.306000 (16)	0.166573 (12)	0.397616 (5)	0.00973 (3)	
Ir1B	0.187010 (16)	0.186101 (12)	0.088370 (5)	0.01014 (3)	
C1A	0.1325 (5)	0.2945 (3)	0.43319 (14)	0.0147 (6)	
H1A	0.1386	0.3069	0.4693	0.018*	
C1B	0.3647 (5)	0.0581 (4)	0.05469 (15)	0.0177 (7)	
H1B	0.3600	0.0443	0.0187	0.021*	
C2A	0.2281 (5)	0.3620 (3)	0.39842 (15)	0.0155 (7)	
H2A	0.3161	0.4197	0.4085	0.019*	
C2B	0.4684 (5)	0.1505 (4)	0.08498 (15)	0.0165 (7)	
H2B	0.5327	0.2128	0.0716	0.020*	
C3A	0.1632 (5)	0.3244 (3)	0.34461 (15)	0.0146 (6)	
C3B	0.4555 (4)	0.1297 (3)	0.13992 (14)	0.0142 (6)	
C4A	0.2031 (5)	0.3653 (4)	0.29522 (16)	0.0204 (7)	
H4A	0.2846	0.4280	0.2931	0.024*	
C4B	0.5348 (5)	0.1890 (4)	0.18694 (16)	0.0183 (7)	
H4B	0.6135	0.2539	0.1856	0.022*	
C5A	0.1184 (5)	0.3100 (4)	0.25073 (17)	0.0247 (9)	
H5A	0.1417	0.3368	0.2180	0.030*	
C5B	0.4929 (5)	0.1488 (4)	0.23413 (16)	0.0215 (8)	
H5B	0.5450	0.1866	0.2651	0.026*	
C6A	-0.0051 (6)	0.2120 (4)	0.25316 (17)	0.0241 (8)	
H6A	-0.0605	0.1767	0.2221	0.029*	
C6B	0.3727 (6)	0.0515 (4)	0.23698 (16)	0.0235 (8)	

H6B	0.3490	0.0260	0.2698	0.028*
C7A	-0.0433 (5)	0.1694 (4)	0.30037 (16)	0.0191 (7)
H7A	-0.1209	0.1038	0.3017	0.023*
C7B	0.2895 (5)	-0.0069 (4)	0.19267 (17)	0.0200 (7)
H7B	0.2078	-0.0693	0.1952	0.024*
C8A	0.0379 (4)	0.2272 (3)	0.34746 (14)	0.0134 (6)
C8B	0.3318 (4)	0.0306 (3)	0.14296 (14)	0.0136 (6)
C9A	0.0265 (4)	0.2051 (3)	0.40240 (14)	0.0138 (6)
H9A	-0.0389	0.1430	0.4155	0.017*
C9B	0.2694 (5)	-0.0093 (3)	0.08948 (15)	0.0157 (7)
H9B	0.1828	-0.0681	0.0795	0.019*
C10A	0.5669 (5)	0.1874 (4)	0.43434 (16)	0.0179 (7)
H10A	0.5961	0.2653	0.4525	0.022*
H10B	0.6203	0.1156	0.4531	0.022*
C10B	-0.0726 (5)	0.1574 (4)	0.05168 (16)	0.0180 (7)
H10C	-0.1270	0.2252	0.0304	0.022*
H10D	-0.0994	0.0762	0.0362	0.022*
C11A	0.5626 (4)	0.1880 (3)	0.37850 (15)	0.0158 (7)
H11A	0.6129	0.1165	0.3632	0.019*
H11B	0.5886	0.2663	0.3627	0.019*
C11B	-0.0704 (4)	0.1672 (3)	0.10706 (15)	0.0156 (6)
H11C	-0.0953	0.0920	0.1254	0.019*
H11D	-0.1230	0.2411	0.1196	0.019*
C12A	0.3065 (5)	-0.0121 (3)	0.43176 (15)	0.0164 (7)
H12A	0.4091	-0.0343	0.4565	0.020*
H12B	0.1975	-0.0398	0.4424	0.020*
C12B	0.1810 (5)	0.3641 (4)	0.05277 (16)	0.0187 (7)
H12C	0.2885	0.3920	0.0411	0.022*
H12D	0.0767	0.3846	0.0285	0.022*
C13A	0.3210 (5)	-0.0231 (3)	0.37742 (16)	0.0163 (7)
H13A	0.2208	-0.0575	0.3549	0.020*
H13B	0.4324	-0.0520	0.3689	0.020*
C13B	0.1702 (5)	0.3777 (3)	0.10754 (15)	0.0155 (6)
H13C	0.0592	0.4062	0.1166	0.019*
H13D	0.2710	0.4136	0.1292	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1A	0.00901 (5)	0.00969 (5)	0.01044 (6)	-0.00009 (4)	0.00123 (4)	0.00033 (4)
Ir1B	0.00871 (5)	0.01052 (5)	0.01127 (6)	0.00065 (4)	0.00171 (4)	0.00062 (4)
C1A	0.0151 (15)	0.0157 (15)	0.0135 (16)	0.0026 (12)	0.0025 (12)	-0.0021 (12)
C1B	0.0170 (16)	0.0220 (18)	0.0145 (17)	0.0068 (13)	0.0036 (13)	-0.0016 (14)
C2A	0.0129 (15)	0.0108 (14)	0.0222 (18)	-0.0001 (12)	0.0009 (13)	-0.0015 (13)
C2B	0.0113 (14)	0.0216 (17)	0.0174 (17)	0.0029 (12)	0.0044 (12)	0.0029 (14)
C3A	0.0132 (14)	0.0140 (15)	0.0166 (17)	0.0050 (12)	0.0016 (12)	0.0007 (13)
C3B	0.0120 (14)	0.0156 (15)	0.0146 (16)	0.0030 (12)	0.0010 (12)	0.0016 (12)
C4A	0.0213 (18)	0.0215 (18)	0.0190 (18)	0.0057 (14)	0.0051 (14)	0.0069 (14)

supporting information

C4B	0.0142 (15)	0.0195 (17)	0.0197 (18)	0.0022 (13)	-0.0028 (13)	-0.0002 (14)
C5A	0.0223 (19)	0.036 (2)	0.0161 (18)	0.0099 (17)	0.0053 (15)	0.0069 (16)
C5B	0.0211 (18)	0.027 (2)	0.0148 (17)	0.0056 (15)	-0.0036 (14)	-0.0030 (15)
C6A	0.0212 (18)	0.036 (2)	0.0138 (17)	0.0082 (16)	-0.0027 (14)	-0.0037 (16)
C6B	0.026 (2)	0.031 (2)	0.0134 (17)	0.0086 (16)	0.0046 (15)	0.0065 (15)
C7A	0.0136 (15)	0.0221 (18)	0.0201 (18)	0.0024 (13)	-0.0029 (13)	-0.0050 (14)
C7B	0.0170 (16)	0.0198 (17)	0.024 (2)	0.0021 (13)	0.0065 (14)	0.0078 (15)
C8A	0.0106 (14)	0.0145 (15)	0.0146 (16)	0.0018 (11)	0.0008 (12)	-0.0007 (12)
C8B	0.0119 (14)	0.0137 (15)	0.0149 (16)	0.0020 (12)	0.0005 (12)	0.0015 (12)
C9A	0.0115 (14)	0.0157 (15)	0.0146 (16)	0.0010 (12)	0.0029 (12)	0.0002 (12)
C9B	0.0153 (15)	0.0127 (15)	0.0183 (17)	0.0030 (12)	-0.0006 (13)	-0.0013 (13)
C10A	0.0117 (15)	0.0206 (17)	0.0203 (18)	-0.0031 (13)	-0.0017 (13)	0.0045 (14)
C10B	0.0107 (15)	0.0224 (18)	0.0200 (18)	-0.0005 (13)	-0.0004 (13)	0.0029 (14)
C11A	0.0115 (14)	0.0154 (15)	0.0211 (18)	-0.0005 (12)	0.0044 (12)	0.0015 (13)
C11B	0.0103 (14)	0.0158 (15)	0.0211 (18)	-0.0017 (12)	0.0043 (12)	-0.0011 (13)
C12A	0.0181 (16)	0.0116 (15)	0.0190 (18)	-0.0007 (12)	0.0012 (13)	0.0052 (13)
C12B	0.0197 (17)	0.0157 (16)	0.0220 (19)	0.0025 (13)	0.0070 (14)	0.0059 (14)
C13A	0.0167 (16)	0.0107 (14)	0.0220 (19)	-0.0010 (12)	0.0051 (13)	0.0000 (13)
C13B	0.0173 (16)	0.0132 (15)	0.0156 (17)	-0.0004 (12)	0.0014 (13)	-0.0002 (12)

Geometric parameters (Å, °)

С5А—Н5А	0.0200
	0.9300
C5A—C6A	1.430 (7)
C5B—H5B	0.9300
C5B—C6B	1.409 (6)
С6А—Н6А	0.9300
С6А—С7А	1.367 (6)
C6B—H6B	0.9300
C6B—C7B	1.374 (6)
С7А—Н7А	0.9300
C7A—C8A	1.421 (5)
С7В—Н7В	0.9300
C7B—C8B	1.421 (5)
C8A—C9A	1.445 (5)
C8B—C9B	1.451 (5)
С9А—Н9А	0.9300
C9B—H9B	0.9300
C10A—H10A	0.9700
C10A—H10B	0.9700
C10A—C11A	1.428 (5)
C10B—H10C	0.9700
C10B—H10D	0.9700
C10B—C11B	1.422 (5)
C11A—H11A	0.9700
C11A—H11B	0.9700
C11B—H11C	0.9700
C11B—H11D	0.9700
	C5A—C6A C5B—H5B C5B—C6B C6A—H6A C6A—C7A C6B—H6B C6B—C7B C7A—H7A C7A—C8A C7B—H7B C7B—C8B C8A—C9A C8B—C9B C9A—H9A C9B—H9B C10A—H10A C10A—H10B C10A—H10B C10A—C11A C10B—H10C C10B—H10D C10B—C11B C11A—H11A C11A—H11A C11B—H11C C11B—H11C C11B—H11D

C2B—H2B	0.9300	C12A—H12A	0.9700
C2B—C3B	1.445 (5)	C12A—H12B	0.9700
C3A—C4A	1.417 (5)	C12A—C13A	1.419 (5)
C3A—C8A	1.435 (5)	C12B—H12C	0.9700
C3B—C4B	1.422 (5)	C12B—H12D	0.9700
C3B—C8B	1.442 (5)	C12B—C13B	1.427 (5)
C4A—H4A	0.9300	C13A—H13A	0.9700
C4A—C5A	1.367 (6)	C13A—H13B	0.9700
C4B—H4B	0.9300	C13B—H13C	0.9700
C4B—C5B	1.368 (6)	C13B—H13D	0.9700
C1A—Ir1A—C3A	61 69 (13)	C2B—C3B—Ir1B	66 12 (19)
C1A $Ir1A$ $C8A$	61 10 (13)	C4B-C3B-Ir1B	1263(3)
C1A $Ir1A$ $C9A$	37 56 (13)	C4B-C3B-C2B	120.5(3) 1325(4)
$C_{2}A$ $r_{1}A$ $C_{1}A$	38.07 (14)	C4B-C3B-C8B	132.5(4)
C_{2A} Ir1A C_{3A}	37.20 (13)	$C_{4}B = C_{3}B = C_{6}B$	71 75 (19)
C_{2A} r_{1A} C_{8A}	57.20(13)	$C^{8}P$ $C^{3}P$ $C^{2}P$	107.0(1)
C_{2A} Ir1A C_{0A}	63.17(13)	$C_{3} C_{4} C_{4} H_{4}$	107.9 (3)
C_{2A} In I_{A} C_{2A}	35.17(13)	$C_{3A} - C_{4A} - \Pi_{4A}$	120.9 118 1 (4)
$C_{A} = I_{A} = C_{A}$	55.45(12)	$C_{3A} = C_{4A} = C_{3A}$	120.0
$C_{A} = I_{A} = C_{A}$	01.10(13) 26.55(12)	C_{3A} C_{4A} H_{4A}	120.9
C_{9A} I_{1A} C_{1A}	50.55(15)	$C_{3}D - C_{4}D - C_{3}D$	120.7
C10A $In1A$ $C2A$	110.50(15)	$C_{3B} = C_{4B} = U_{4B}$	118.7 (4)
C10A—IFIA— $C2A$	98.05 (15)		120.7
C10A—IrIA— $C3A$	121.30(14)	C4A = C5A = C6A	119.1
CIOA—IIIA—COA	156.62 (14)	C4A - C5A - C6A	121.8 (4)
CIOA—IrIA—C9A	146.06 (15)	C6A—C5A—H5A	119.1
CloA—IrIA—ClIA	39.44 (15)	C4B—C5B—H5B	119.2
Cl0A—IrIA—Cl2A	88.13 (15)	C4B—C5B—C6B	121.6 (4)
Cl0A—IrIA—Cl3A	97.41 (15)	С6В—С5В—Н5В	119.2
C11A—Ir1A—C1A	132.10 (14)	С5А—С6А—Н6А	119.4
C11A—Ir1A—C2A	99.50 (14)	C7A—C6A—C5A	121.2 (4)
C11A—Ir1A—C3A	99.40 (13)	С7А—С6А—Н6А	119.4
C11A—Ir1A—C8A	128.14 (14)	C5B—C6B—H6B	119.0
C11A—Ir1A—C9A	160.23 (14)	C7B—C6B—C5B	122.0 (4)
C12A—Ir1A—C1A	111.18 (14)	C7B—C6B—H6B	119.0
C12A—Ir1A—C2A	148.74 (15)	С6А—С7А—Н7А	120.6
C12A—Ir1A—C3A	150.56 (14)	C6A—C7A—C8A	118.7 (4)
C12A—Ir1A—C8A	115.17 (14)	С8А—С7А—Н7А	120.6
C12A—Ir1A—C9A	95.20 (14)	C6B—C7B—H7B	120.9
C12A—Ir1A—C11A	104.42 (14)	C6B—C7B—C8B	118.1 (4)
C12A—Ir1A—C13A	39.23 (15)	C8B—C7B—H7B	120.9
C13A—Ir1A—C1A	139.61 (14)	C3A—C8A—Ir1A	71.65 (19)
C13A—Ir1A—C2A	162.85 (14)	C3A—C8A—C9A	107.9 (3)
C13A—Ir1A—C3A	126.52 (14)	C7A—C8A—Ir1A	125.8 (3)
C13A—Ir1A—C8A	102.03 (14)	C7A—C8A—C3A	119.6 (3)
C13A—Ir1A—C9A	106.42 (14)	C7A—C8A—C9A	132.5 (3)
C13A—Ir1A—C11A	87.83 (14)	C9A—C8A—Ir1A	66.22 (19)
C1B—Ir1B—C2B	37.74 (14)	C3B—C8B—Ir1B	72.7 (2)

C1B—Ir1B—C3B	61.00 (13)	C3B—C8B—C9B	107.4 (3)
C1B—Ir1B—C8B	61.37 (13)	C7B—C8B—Ir1B	125.7 (3)
C2B—Ir1B—C3B	36.48 (13)	C7B—C8B—C3B	120.0 (3)
C2B—Ir1B—C8B	61.19 (13)	C7B—C8B—C9B	132.5 (3)
C8B—Ir1B—C3B	35.51 (12)	C9B—C8B—Ir1B	65.48 (19)
C9B—Ir1B—C1B	38.00 (14)	Ir1A—C9A—H9A	118.0
C9B—Ir1B—C2B	63.37 (14)	C1A—C9A—Ir1A	70.85 (19)
C9B—Ir1B—C3B	61.27 (13)	C1A—C9A—C8A	108.5 (3)
C9B—Ir1B—C8B	36.94 (13)	С1А—С9А—Н9А	125.7
C10B—Ir1B—C1B	109.80 (15)	C8A—C9A—Ir1A	77.2 (2)
C10B—Ir1B—C2B	146.00 (15)	С8А—С9А—Н9А	125.7
C10B—Ir1B—C3B	155.32 (14)	Ir1B—C9B—H9B	117.0
C10B—Ir1B—C8B	119.92 (14)	C1B—C9B—Ir1B	71.4 (2)
C10B—Ir1B—C9B	96.90 (15)	C1B—C9B—C8B	108.0 (3)
C10B—Ir1B—C11B	39.26 (15)	C1B—C9B—H9B	126.0
C10B—Ir1B—C12B	88.89 (15)	C8B—C9B—Ir1B	77.6 (2)
C10B $Ir1B$ $C13B$	99 14 (15)	C8B—C9B—H9B	126.0
C_{11B} In B C_{12B}	133 24 (15)	Ir1A—C10A—H10A	116.5
C11B $Ir1B$ $C2B$	161 22 (14)	Ir1A—C10A—H10B	116.5
C11B $Ir1B$ $C3B$	128 47 (14)	H10A - C10A - H10B	113.5
C11B $Ir1B$ $C8B$	100.21(13)	C11A - C10A - Ir1A	70.8(2)
C11B In B $C0B$	100.21(13) 100.64(14)	C11A - C10A - H10A	116.5
C11B_Ir1B_C13B	87 13 (14)	$C_{11}A = C_{10}A = H_{10}B$	116.5
C12B Ir1B $C1B$	$111\ 80\ (15)$		116.5
C12B—Ir1B—C2B	95 70 (14)	Ir1B-C10B-H10D	116.5
C12B Ir1B $C3B$	33.70(14)	HIAC CIAB HIAD	113.5
C12B $I+1B$ $C8B$	113.72(14) 151.18(14)	C11R C10R I+1R	70.8(2)
C12D $Ir1D$ $C0D$	131.10(14) 140.22(15)	$C_{11} D = C_{10} D = H_{10} C$	116.5
C12D $II1D$ $C12D$ $II1D$ $C11D$	149.22(13) 102.70(15)	$C_{11} D = C_{10} D = H_{10} D$	110.5
C12D ITD $C12D$	102.79(13)		110.3
C12B—IFIB—C13B	39.24 (15) 120.24 (15)	IFIA—CIIA—HIIA	110.7
C13B—If IB — $C1B$	139.24 (15)	IFIA—CIIA—HIIB	110.7
C13B—If IB — $C2B$	105.04(14) 101.27(12)	CIOA—CIIA—IFIA	69.7 (2)
CI3B—IIIB—C3B	101.37 (13)	CIOA—CIIA—HIIA	116.7
CI3B—IIIB—C8B	126.20 (13)	CIUA—CIIA—HIIB	110.7
CI3B—IrIB—C9B	162.21 (14)	HIIA—CIIA—HIIB	113./
IrIA—CIA—HIA	123.7	IrIB—CIIB—HIIC	116.6
C2A—C1A—Ir1A	70.2 (2)	IrIB—CIIB—HIID	116.6
C2A—C1A—H1A	126.2	C10B—C11B—Ir1B	69.9 (2)
C9A—C1A—Ir1A	71.6 (2)	C10B—C11B—H11C	116.6
C9A—C1A—H1A	126.2	C10B—C11B—H11D	116.6
C9A—C1A—C2A	107.7 (3)	H11C—C11B—H11D	113.6
Ir1B—C1B—H1B	123.5	Ir1A—C12A—H12A	116.6
C2B—C1B—Ir1B	71.6 (2)	Ir1A—C12A—H12B	116.6
C2B—C1B—H1B	125.9	H12A—C12A—H12B	113.6
C2B—C1B—C9B	108.1 (3)	C13A—C12A—Ir1A	70.4 (2)
C9B—C1B—Ir1B	70.6 (2)	C13A—C12A—H12A	116.6
C9B—C1B—H1B	125.9	C13A—C12A—H12B	116.6
Ir1A—C2A—H2A	117.0	Ir1B—C12B—H12C	116.5

C1A—C2A—Ir1A	71.7 (2)	Ir1B—C12B—H12D	116.5
C1A—C2A—H2A	125.9	H12C-C12B-H12D	113.5
C1A—C2A—C3A	108.1 (3)	C13B—C12B—Ir1B	70.7 (2)
C3A—C2A—Ir1A	77.4 (2)	C13B—C12B—H12C	116.5
СЗА—С2А—Н2А	125.9	C13B—C12B—H12D	116.5
Ir1B—C2B—H2B	117.9	Ir1A—C13A—H13A	116.6
C1B—C2B—Ir1B	70.6 (2)	Ir1A—C13A—H13B	116.6
C1B—C2B—H2B	126.0	C12A—C13A—Ir1A	70.4 (2)
C1B—C2B—C3B	108.0 (3)	C12A—C13A—H13A	116.6
C3B—C2B—Ir1B	77.4 (2)	C12A—C13A—H13B	116.6
C3B—C2B—H2B	126.0	H13A—C13A—H13B	113.6
C2A—C3A—Ir1A	65.45 (19)	Ir1B—C13B—H13C	116.6
C4A—C3A—Ir1A	126.7 (3)	Ir1B—C13B—H13D	116.6
C4A—C3A—C2A	132.2 (4)	C12B—C13B—Ir1B	70.1 (2)
C4A—C3A—C8A	120.5 (3)	C12B—C13B—H13C	116.6
C8A—C3A—Ir1A	72.9 (2)	C12B—C13B—H13D	116.6
C8A—C3A—C2A	107.2 (3)	H13C—C13B—H13D	113.6