Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 4-(benzyloxy)-3-methoxybenzoate

Kai Wang,^a* ChaoFan Ju,^b Jian Xiao^b and Qiang Chen^a

^aHigh Technology Research Institute of Nanjing University, Changzhou 213162, Jiangsu, People's Republic of China, and ^bSchool of Petrochemical Engineering, Changzhou University & High Technology Research Institute of Nanjing University, Changzhou 213164, Jiangsu, People's Republic of China Correspondence e-mail: wkcoool@163.com

Received 10 September 2013; accepted 13 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.138; data-to-parameter ratio = 13.5.

In the title compound, C₁₆H₁₆O₄, the aromatic rings are almost normal to one another, making a dihedral angle of $85.81 (10)^{\circ}$. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds, forming chains propagating along the *b*-axis direction. There are also $C-H\cdots\pi$ interactions present which link the chains, forming two-dimensional networks lying parallel to (102).

Related literature

For details of the anticancer properties of the drug Cediranib {systematic name: 4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxy-7-[3-(pyrrolidin-1-yl)propoxy]quinazoline}, for which the title compound is an important intermediate in the synthesis, see: Folkman (1996). For the synthetic procedure, see: Li & Zhang (2012). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C16H16O4 $M_r = 272.29$ Monoclinic, $P2_1/c$ a = 5.2466 (7) Å b = 17.973 (2) Å c = 14.8785 (18) Å $\beta = 94.018 (3)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.989, T_{\max} = 0.991$ 7732 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	182 parameters
$wR(F^2) = 0.138$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2454 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

V = 1399.6 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$

 $0.12 \times 0.12 \times 0.10 \text{ mm}$

2454 independent reflections

intensity decay: 1%

1666 reflections with $I > 2\sigma(I)$

3 standard reflections every 120 min

Z = 4

T = 293 K

 $R_{\rm int}=0.029$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 ring

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14B\cdots O3^{i}$ $C14-H14A\cdots Cg^{ii}$	0.96 0.96	2.53 2.75	3.379 (3) 3.519 (2)	147 137
Symmetry codes: (i) $-x$	$+1, y - \frac{1}{2}, -z$	$+\frac{3}{2}$; (ii) $x - 1$,	$-y - \frac{1}{2}, z - \frac{1}{2}.$	

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2645).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands. Folkman, J. (1996). Sci. Am. 275, 150-154.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Li, H.-S. & Zhang, S.-X. (2012). Patent No. CN 102603718A.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1562 [doi:10.1107/S1600536813025415]

Methyl 4-(benzyloxy)-3-methoxybenzoate

Kai Wang, ChaoFan Ju, Jian Xiao and Qiang Chen

S1. Comment

The title compound is an important organic intermediate which has been used to synthesis the antineoplastic drug Cediranib. The drug has shown promising activity against diseases which include lung and breast cancer (Folkman, 1996).

The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. In the molecule the two aromatic rings (C1-C6) and (C8-C13) are almost normal to one another with a dihedral angle of 85.81 (10) $^{\circ}$.

In the crystal, molecules are linked by C—H···O hydrogen bonds forming chains propagating along the b axis direction (Table 1 and Fig. 2). There are also C-H··· π interactions present (Table 1) linking the chains to form two-dimensional networks lying parallel to (102).

S2. Experimental

The title compound was prepared according to the procedure reported by Li & Zhang (2012). A solution of 4-(benzyl-oxy)-3-methoxybenzoic acid (5 g, 19.36 mmol) was added slowly to a solution of methanol and concentrated sulfuric acid (2 ml). After being stirred for 12 h at reflux, saturated sodium bicarbonate solution was added to adjust the pH to 7. Dichloromethane was added, and the mixture was then filtered and the organic phase evaporated on a rotary evaporator and to obtain the title compound. Block-like colourless crystals were obtained by dissolving (0.5 g, 1.84 mmol) of the title compound in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 7 days.

S3. Refinement

All the H atoms were positioned geometrically and constrained to ride on their parent atom: C—H = 0.93 - 0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and = $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the crystal packing of the title compound. The C—H…O hydrogen bonds are shown by dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Methyl 4-(benzyloxy)-3-methoxybenzoate

Crystal data	
$C_{16}H_{16}O_4$	V = 1399.6 (3) Å ³
$M_r = 272.29$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 576
Hall symbol: -P 2ybc	$D_{\rm x} = 1.292 {\rm ~Mg} {\rm ~m}^{-3}$
a = 5.2466 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 17.973 (2) Å	Cell parameters from 1683 reflections
c = 14.8785 (18) Å	$\theta = 5.3-45.5^{\circ}$
$\beta = 94.018 \ (3)^{\circ}$	$\mu=0.09~\mathrm{mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Enraf–Nonius CAD-4	2454 independent reflections
diffractometer	1666 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.029$
Graphite monochromator	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.3^\circ$
$\omega/2\theta$ scans	$h = -6 \rightarrow 6$
Absorption correction: ψ scan	$k = -21 \rightarrow 14$
(North <i>et al.</i> , 1968)	$l = -16 \rightarrow 17$
$T_{\min} = 0.989, \ T_{\max} = 0.991$	3 standard reflections every 120 min
7732 measured reflections	intensity decay: 1%
Refinement	
\mathbf{D} -finance \mathbf{T}^2	Consulare store site lossting difference

 $0.12 \times 0.12 \times 0.10 \text{ mm}$

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0874P)^2 + 0.101P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.005$
$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8880 (3)	0.30300 (7)	0.59482 (9)	0.0538 (4)	
O2	0.5720 (3)	0.29367 (7)	0.71794 (9)	0.0573 (4)	
03	0.3782 (4)	0.61921 (8)	0.64985 (12)	0.0841 (5)	
O4	0.2344 (3)	0.55257 (8)	0.76146 (10)	0.0702 (5)	
C1	1.3108 (4)	0.18726 (11)	0.53747 (14)	0.0585 (6)	
H1	1.4248	0.2124	0.5774	0.070*	
C2	1.3529 (5)	0.11390 (13)	0.51813 (17)	0.0714 (7)	
H2	1.4940	0.0896	0.5457	0.086*	
C3	1.1895 (5)	0.07597 (12)	0.45856 (17)	0.0703 (7)	
Н3	1.2194	0.0263	0.4453	0.084*	
C4	0.9838 (5)	0.11185 (14)	0.41926 (18)	0.0789 (7)	
H4	0.8709	0.0866	0.3790	0.095*	
C5	0.9409 (4)	0.18540 (14)	0.43850 (16)	0.0682 (6)	

Н5	0.8002	0.2095	0.4104	0.082*
C6	1.1025 (4)	0.22385 (11)	0.49856 (13)	0.0475 (5)
C7	1.0484 (4)	0.30341 (11)	0.52037 (14)	0.0552 (5)
H7A	1.2064	0.3297	0.5366	0.066*
H7B	0.9622	0.3279	0.4687	0.066*
C8	0.7756 (3)	0.36807 (10)	0.61691 (12)	0.0456 (5)
C9	0.6001 (3)	0.36283 (10)	0.68347 (12)	0.0430 (4)
C10	0.4714 (3)	0.42556 (10)	0.70828 (12)	0.0463 (5)
H10	0.3552	0.4222	0.7525	0.056*
C11	0.5133 (4)	0.49364 (10)	0.66796 (12)	0.0481 (5)
C12	0.6864 (4)	0.49822 (11)	0.60332 (15)	0.0629 (6)
H12	0.7146	0.5438	0.5760	0.075*
C13	0.8196 (4)	0.43625 (11)	0.57813 (16)	0.0631 (6)
H13	0.9389	0.4404	0.5350	0.076*
C14	0.3712 (4)	0.28318 (11)	0.77630 (14)	0.0581 (6)
H14A	0.3996	0.3146	0.8282	0.087*
H14B	0.3679	0.2321	0.7951	0.087*
H14C	0.2109	0.2958	0.7450	0.087*
C15	0.3720 (4)	0.56143 (11)	0.69069 (15)	0.0561 (5)
C16	0.0836 (5)	0.61549 (13)	0.78568 (19)	0.0836 (8)
H16A	0.1948	0.6546	0.8085	0.100*
H16B	-0.0272	0.6009	0.8312	0.100*
H16C	-0.0171	0.6329	0.7335	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0645 (9)	0.0414 (7)	0.0585 (8)	0.0127 (6)	0.0255 (7)	0.0029 (6)
O2	0.0783 (10)	0.0372 (7)	0.0597 (8)	0.0080 (6)	0.0284 (7)	0.0058 (6)
O3	0.1240 (15)	0.0404 (9)	0.0900 (12)	0.0199 (8)	0.0231 (10)	0.0051 (8)
O4	0.0835 (11)	0.0497 (9)	0.0804 (10)	0.0211 (7)	0.0277 (9)	-0.0038 (7)
C1	0.0590 (13)	0.0555 (13)	0.0617 (13)	0.0077 (10)	0.0084 (10)	-0.0034 (10)
C2	0.0729 (15)	0.0581 (14)	0.0848 (17)	0.0183 (12)	0.0168 (13)	0.0063 (13)
C3	0.0827 (17)	0.0462 (12)	0.0868 (17)	-0.0010 (12)	0.0399 (14)	-0.0076 (12)
C4	0.0712 (16)	0.0758 (18)	0.0911 (18)	-0.0194 (13)	0.0155 (14)	-0.0256 (14)
C5	0.0511 (12)	0.0743 (16)	0.0796 (16)	0.0061 (11)	0.0058 (11)	-0.0059 (13)
C6	0.0469 (11)	0.0491 (11)	0.0487 (11)	0.0023 (9)	0.0188 (9)	0.0002 (9)
C7	0.0582 (12)	0.0511 (12)	0.0591 (12)	0.0094 (9)	0.0242 (10)	0.0056 (10)
C8	0.0485 (10)	0.0385 (10)	0.0504 (10)	0.0063 (8)	0.0082 (8)	-0.0017 (8)
C9	0.0503 (10)	0.0344 (9)	0.0448 (10)	0.0026 (8)	0.0062 (8)	0.0007 (8)
C10	0.0510 (11)	0.0433 (11)	0.0456 (10)	0.0046 (8)	0.0097 (8)	-0.0038 (9)
C11	0.0548 (11)	0.0358 (10)	0.0538 (11)	0.0039 (8)	0.0054 (9)	-0.0034 (9)
C12	0.0768 (14)	0.0374 (10)	0.0771 (15)	0.0008 (10)	0.0244 (12)	0.0060 (10)
C13	0.0676 (13)	0.0468 (12)	0.0786 (14)	0.0061 (10)	0.0323 (11)	0.0080 (11)
C14	0.0702 (14)	0.0482 (12)	0.0581 (12)	-0.0017 (10)	0.0208 (10)	0.0073 (10)
C15	0.0660 (13)	0.0408 (11)	0.0613 (13)	0.0066 (9)	0.0027 (11)	-0.0086 (10)
C16	0.0882 (18)	0.0625 (15)	0.1027 (19)	0.0262 (13)	0.0258 (15)	-0.0171 (14)

Geometric parameters (Å, °)

01—C8	1.360 (2)	C7—H7A	0.9700	
O1—C7	1.437 (2)	C7—H7B	0.9700	
O2—C9	1.357 (2)	C8—C13	1.381 (3)	
O2—C14	1.424 (2)	C8—C9	1.402 (3)	
O3—C15	1.205 (2)	C9—C10	1.378 (2)	
O4—C15	1.327 (3)	C10—C11	1.387 (3)	
O4—C16	1.440 (2)	C10—H10	0.9300	
C1—C6	1.369 (3)	C11—C12	1.371 (3)	
C1—C2	1.371 (3)	C11—C15	1.477 (3)	
C1—H1	0.9300	C12—C13	1.381 (3)	
С2—С3	1.371 (3)	C12—H12	0.9300	
С2—Н2	0.9300	C13—H13	0.9300	
C3—C4	1.354 (3)	C14—H14A	0.9600	
С3—Н3	0.9300	C14—H14B	0.9600	
C4—C5	1.374 (3)	C14—H14C	0.9600	
C4—H4	0.9300	C16—H16A	0.9601	
С5—С6	1.374 (3)	C16—H16B	0.9601	
С5—Н5	0.9300	C16—H16C	0.9600	
C6—C7	1.498 (3)			
C8—O1—C7	117.96 (14)	O2—C9—C10	125.47 (16)	
C9—O2—C14	117.16 (14)	O2—C9—C8	115.00 (15)	
C15—O4—C16	116.30 (17)	C10—C9—C8	119.53 (16)	
C6—C1—C2	120.6 (2)	C9—C10—C11	120.70 (17)	
C6—C1—H1	119.7	C9—C10—H10	119.7	
C2—C1—H1	119.7	C11—C10—H10	119.7	
C1—C2—C3	120.8 (2)	C12—C11—C10	119.29 (17)	
C1—C2—H2	119.6	C12—C11—C15	118.61 (17)	
С3—С2—Н2	119.6	C10-C11-C15	122.08 (18)	
C4—C3—C2	119.1 (2)	C11—C12—C13	120.99 (18)	
С4—С3—Н3	120.5	C11—C12—H12	119.5	
С2—С3—Н3	120.5	C13—C12—H12	119.5	
C3—C4—C5	120.3 (2)	C12—C13—C8	120.00 (19)	
C3—C4—H4	119.8	C12—C13—H13	120.0	
С5—С4—Н4	119.8	C8—C13—H13	120.0	
C4—C5—C6	121.1 (2)	O2—C14—H14A	109.5	
C4—C5—H5	119.4	O2-C14-H14B	109.5	
С6—С5—Н5	119.4	H14A—C14—H14B	109.5	
C1—C6—C5	118.12 (19)	O2—C14—H14C	109.5	
C1—C6—C7	121.67 (18)	H14A—C14—H14C	109.5	
С5—С6—С7	120.21 (18)	H14B—C14—H14C	109.5	
O1—C7—C6	106.99 (15)	O3—C15—O4	122.60 (18)	
O1—C7—H7A	110.3	O3—C15—C11	124.3 (2)	
С6—С7—Н7А	110.3	O4—C15—C11	113.09 (18)	
O1—C7—H7B	110.3	O4—C16—H16A	109.5	
С6—С7—Н7В	110.3	O4—C16—H16B	109.4	

H7A—C7—H7B O1—C8—C13 O1—C8—C9 C13—C8—C9	108.6 125.04 (17) 115.48 (15) 119.47 (16)	H16A—C16—H16B O4—C16—H16C H16A—C16—H16C H16B—C16—H16C	109.5 109.5 109.5 109.5
C6—C1—C2—C3	0.9 (3)	O1—C8—C9—C10	-178.12 (16)
C1-C2-C3-C4 C2-C3-C4-C5	-0.5 (3) 0.4 (4)	C13—C8—C9—C10 O2—C9—C10—C11	0.9 (3) -179.44 (17)
C3—C4—C5—C6	-0.9(4)	C8—C9—C10—C11	0.2 (3)
C2-C1-C6-C5 C2-C1-C6-C7	-1.3 (3) 178.4 (2)	C9—C10—C11—C12 C9—C10—C11—C15	-0.5 (3) 177.82 (18)
C4—C5—C6—C1	1.3 (3)	C10-C11-C12-C13	-0.2 (3)
C4—C5—C6—C7 C8—O1—C7—C6	-178.4(2) -168.61(16)	C15—C11—C12—C13 C11—C12—C13—C8	-178.6(2) 1 3 (4)
C1C6C7O1	-90.8 (2)	01-C8-C13-C12	177.3 (2)
C5—C6—C7—O1	88.9 (2)	C9—C8—C13—C12	-1.6 (3)
C7-O1-C8-C13	-5.6(3)	C16-O4-C15-O3	2.0(3)
C14—O2—C9—C10	8.2 (3)	C12-C11-C15-O3	8.1 (3)
С14—О2—С9—С8	-171.46 (16)	C10—C11—C15—O3	-170.3 (2)
01 - C8 - C9 - 02 C13 - C8 - C9 - 02	1.5(2) -179.44(18)	C12—C11—C15—O4	-172.12(18) 9.5(3)
013 00 07 02	1,2,17,10)		J.J. (J)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
C14—H14 <i>B</i> ····O3 ⁱ	0.96	2.53	3.379 (3)	147
C14—H14 A ···· Cg^{ii}	0.96	2.75	3.519 (2)	137

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*-1, -*y*-1/2, *z*-1/2.