$i > 2\sigma(i)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(2E)-4-(4-Bromophenvl)-2-{(2Z)-[1-(4$ methylphenyl)ethylidene]hydrazinylidene}-3-phenyl-2,3-dihydro-1,3-thiazole

Shaaban K. Mohamed,^{a,b} Mehmet Akkurt,^c Joel T. Mague,^d Alaa A. Hassan^b and Mustafa R. Albayati^e*

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 11 September 2013; accepted 13 September 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 20.1.

In the title compound, $C_{24}H_{20}BrN_3S$, the dihydrothiazole ring is approximately planar, with a maximum deviation of 0.008 (2) Å, and is twisted with respect to the 4-bromophenyl ring, the phenyl ring and methylphenyl ring, making dihedral angles of 47.96 (8), 59.52 (9) and 16.96 (9)°, respectively. In the crystal, weak C-H··· π interactions link inversion-related molecules into supramolecular dimers.

Related literature

For the syntheses of similar thiazolidine compounds, see, for example: Masoudi et al. (2010); Darehkordia et al. (2007) and for the synthesis of a related compound, see: Mohamed et al. (2013). For the range of biological activities of thiazolidinecontaining compounds, see: Pandeya et al. (1999); Shiradkar et al. (2007); Gududuru et al. (2004); Taranalli et al. (2009); Kumar et al. (2007); Rao et al. (2002, 2004); Barreca et al. (2001); Solomon et al. (2007); Amin et al. (2008); Shih & Ying (2004).

Experimental

Crystal data

B

C24H20BrN3S	$\gamma = 96.302 \ (1)^{\circ}$
$M_r = 462.40$	V = 1027.31 (11) Å ³
Triclinic, P1	Z = 2
a = 7.9622 (5) Å	Mo $K\alpha$ radiation
b = 11.2672 (7) Å	$\mu = 2.12 \text{ mm}^{-1}$
c = 11.6370 (7) Å	$T = 150 { m K}$
$\alpha = 96.273 \ (1)^{\circ}$	$0.23 \times 0.17 \times 0.14 \text{ mm}$
$\beta = 94.386 \ (1)^{\circ}$	

Data collection

Bruker Smart APEX CCD	18958 measured reflections
diffractometer	5310 independent reflections
Absorption correction: multi-scan	4582 reflections with $i > 2\sigma(i$
(SADABS; Bruker, 2013)	$R_{\rm int} = 0.033$
$T_{\min} = 0.60, \ T_{\max} = 0.76$	

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$	264 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
5310 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18-C23 benzene ring.

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17 - H17A \cdots Cg4^{i}$	0.98	2.77	3.595 (3)	143
Symmetry and (i) r	2			

Symmetry code: (i) -x + 3, -y, -z + 2.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors thank Tulane University, Manchester Metropolitan University, Ercives University and Minia University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5739).

References

- Amin, K. M., Rahman, A. D. E. & Al-Eryani, Y. A. (2008). Bioorg. Med. Chem. 16, 5377-5388.
- Barreca, M. L., Chimirri, A., De Luca, L., Monforte, A. M., Monforte, P. A., Rao, A., Zappalà, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793-1796.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA
- Darehkordia, A., Kazem Saidib, K. & Islami, M. R. (2007). ARKIVOC, i 180-188
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem Lett 14 5289-5293.
- Kumar, A., Rajput, C. S. & Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 3089-3096

- Masoudi, M., Darehkordi, A. & Moshrefi, A. (2010). World Appl. Sci. J. 10, 1313–1320.
- Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). *Acta Cryst.* E**69**, o1324.
- Pandeya, S. N., Sriram, D., Nath, G. & DeClerq, E. (1999). *Eur. J. Pharm. Sci.* 9, 25–31.
- Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalá, M. (2004). *Il Farmaco*, 59, 33–39.
- Rao, A., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Christophe Pannecouque, C. & Zappala, M. (2002). *Il Farmaco*, **57**, 747– 751.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shih, M. H. & Ying, K. F. (2004). Bioorg. Med. Chem. 12, 4633-4643.
- Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). *Bioorg. Med. Chem.* 15, 3997–4008.
- Solomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394–398.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taranalli, A. D., Thimmaiah, N. V., Srinivas, S. & Saravanan, E. (2009). Asia. J. Pharm. Clin. Res. 2, 79–83.

supporting information

Acta Cryst. (2013). E69, o1563-o1564 [doi:10.1107/S1600536813025506]

(2*E*)-4-(4-Bromophenyl)-2-{(2*Z*)-[1-(4-methylphenyl)ethylidene]hydrazinylidene}-3-phenyl-2,3-dihydro-1,3-thiazole

Shaaban K. Mohamed, Mehmet Akkurt, Joel T. Mague, Alaa A. Hassan and Mustafa R. Albayati

S1. Comment

The syntheses of a variety of thiazolidine-containing compounds have been reported (Masoudi *et al.*, 2010; Darehkordia *et al.*, 2007). Such compounds have been found to possess a wide range of biological properties such as antimicrobial (Pandeya *et al.*, 1999; Shiradkar *et al.*, 2007), antiproliferative (Gududuru *et al.*, 2004), anti-inflammatory, analgesic, anti-ulcer (Taranalli *et al.*, 2009; Kumar *et al.*, 2007), anti-HIV (Rao *et al.*, 2002; Rao *et al.*, 2004; Barreca *et al.*, 2001), antimalarial (Solomon *et al.*, 2007), anticonvulsant (Amin *et al.*, 2008) and antioxidant (Shih & Ying, 2004) activities. With this in mind and to further our ongoing study on the synthesis of various derivatives of thiazolidine compounds, we herein report the crystal structure of the title compound.

In Fig. 1, the thiazole ring (S1/N1/C1-C3) of the title compound is planar with an r.m.s. deviation of 0.002 Å. The 4bromophenyl ring (C4–C9) makes a dihedral angle of 47.96 (8)° with the thiazole ring while the phenyl group (C10–C15) attached to the ring nitrogen makes a dihedral angle of 59.52 (9)°. The dihedral angle between the 4-methylphenyl ring (C18–C23) and the thiazole ring are 16.96 (9)°.

In the crystal, the packing consists of ribbons approximately parallel to [101] and assisted by C17—H17A…Cg4 (Cg4 is the centroid of the C18–C23 ring at 3 - x, -y, 2 - z; H17A…Cg = 2.77 Å, C17—H17A…Cg = 143°) interactions (Table 1).

S2. Experimental

The title compound has been prepared according to our reported method (Mohamed *et al.*, 2013). The crude product has been crystallized from ethanol to afford translucent orange blocks suitable for X-ray diffraction (m.p.: 491 – 493 K).

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.95 (aromatic H) and 0.98 Å (methyl H), with $U_{iso}(H) = 1.2U_{iso}(C)$ for aromatic H atoms and $U_{iso}(H) = 1.5U_{iso}(C)$ for methyl H atoms.

Figure 1

View of the title compound with 50% probability ellipsoids.

Figure 2

Packing of the title compound viewed down the a-axis.

(2*E*)-4-(4-Bromophenyl)-2-{(2*Z*)-[1-(4-methylphenyl)ethylidene]hydrazinylidene}-3-phenyl-2,3-dihydro-1,3-thiazole

Crystal data
$C_{24}H_{20}BrN_3S$
$M_r = 462.40$
Triclinic, P1
Hall symbol: -P 1
a = 7.9622 (5) Å
<i>b</i> = 11.2672 (7) Å
c = 11.6370 (7) Å
$\alpha = 96.273 \ (1)^{\circ}$
$\beta = 94.386 \ (1)^{\circ}$
$\gamma = 96.302 \ (1)^{\circ}$
$V = 1027.31 (11) \text{ Å}^3$

Z = 2 F(000) = 472 $D_x = 1.495 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9928 reflections $\theta = 2.4-29.1^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 150 KBlock, translucent orange $0.23 \times 0.17 \times 0.14 \text{ mm}$ Data collection

Bruker Smart APEX CCD	18958 measured reflections
diffractometer	5310 independent reflections
Radiation source: fine-focus sealed tube	4582 reflections with $i > 2\sigma(i)$
Graphite monochromator	$R_{\rm int} = 0.033$
Detector resolution: 8.3660 pixels mm ⁻¹	$\theta_{\rm max} = 29.1^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -14 \rightarrow 15$
(SADABS; Bruker, 2013)	$l = -15 \rightarrow 15$
$T_{\min} = 0.60, \ T_{\max} = 0.76$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.097$	$W = 1/[\hat{\Sigma}^2(FO^2) + (0.0545P)^2 + 0.2353P]$

 $wR(F^2) = 0.097$ S = 1.095310 reflections 264 parameters 0 restraints

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 15 sec/frame.

WHERE $P = (FO^2 + 2FC^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.97 \text{ e Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.30655 (3)	0.39026 (2)	0.30405 (2)	0.0337 (1)	
S1	0.89651 (6)	-0.07711 (4)	0.65607 (4)	0.0232 (1)	
N1	0.91033 (19)	0.15300 (13)	0.65666 (13)	0.0202 (4)	
N2	1.0854 (2)	0.09850 (14)	0.80890 (14)	0.0249 (5)	
N3	1.1384 (2)	-0.00294 (14)	0.85333 (14)	0.0232 (4)	
C1	0.7740 (2)	-0.01832 (17)	0.55032 (17)	0.0236 (5)	
C2	0.7931 (2)	0.10264 (17)	0.56284 (15)	0.0201 (5)	
C3	0.9789 (2)	0.06878 (16)	0.71838 (16)	0.0209 (5)	
C4	0.6892 (2)	0.17839 (16)	0.49902 (16)	0.0206 (5)	
C5	0.6570 (2)	0.15626 (18)	0.37854 (17)	0.0235 (5)	
C6	0.5459 (2)	0.22100 (18)	0.31982 (17)	0.0249 (5)	
C7	0.4664 (2)	0.30698 (17)	0.38211 (17)	0.0231 (5)	
C8	0.4987 (2)	0.33198 (17)	0.50162 (17)	0.0253 (5)	
С9	0.6109 (2)	0.26850 (17)	0.55927 (16)	0.0227 (5)	
C10	0.9755 (2)	0.27811 (16)	0.67949 (16)	0.0201 (5)	

C11	1.0510(2)	0.33501 (17)	0.59380 (17)	0.0235 (5)
C12	1.1144 (3)	0.45611 (18)	0.61650 (19)	0.0284 (6)
C13	1.1018 (3)	0.51860 (18)	0.7235 (2)	0.0306 (6)
C14	1.0260 (3)	0.46116 (19)	0.80881 (19)	0.0300 (6)
C15	0.9628 (2)	0.34014 (18)	0.78762 (17)	0.0248 (5)
C16	1.2045 (2)	0.01738 (17)	0.95964 (16)	0.0212 (5)
C17	1.2183 (3)	0.13675 (18)	1.03341 (17)	0.0272 (6)
C18	1.2755 (2)	-0.08429 (17)	1.00904 (16)	0.0217 (5)
C19	1.3742 (2)	-0.06595 (18)	1.11581 (17)	0.0257 (5)
C20	1.4562 (3)	-0.15780 (19)	1.15694 (18)	0.0287 (6)
C21	1.4419 (3)	-0.27080 (19)	1.09447 (18)	0.0283 (6)
C22	1.3378 (3)	-0.29089 (19)	0.99012 (19)	0.0287 (6)
C23	1.2561 (2)	-0.19953 (18)	0.94795 (17)	0.0258 (5)
C24	1.5419 (3)	-0.3684 (2)	1.1368 (2)	0.0354 (7)
H1	0.70160	-0.06660	0.49030	0.0280*
Н5	0.71130	0.09670	0.33630	0.0280*
H6	0.52480	0.20630	0.23770	0.0300*
H8	0.44450	0.39190	0.54330	0.0300*
H9	0.63510	0.28630	0.64090	0.0270*
H11	1.05960	0.29180	0.52010	0.0280*
H12	1.16650	0.49580	0.55810	0.0340*
H13	1.14520	0.60130	0.73870	0.0370*
H14	1.01710	0.50470	0.88230	0.0360*
H15	0.91170	0.30040	0.84640	0.0300*
H17A	1.33760	0.17120	1.04670	0.0410*
H17B	1.17330	0.12550	1.10810	0.0410*
H17C	1.15300	0.19140	0.99360	0.0410*
H19	1.38520	0.01050	1.16090	0.0310*
H20	1.52320	-0.14270	1.22930	0.0340*
H22	1.32270	-0.36860	0.94720	0.0340*
H23	1.18630	-0.21560	0.87680	0.0310*
H24A	1.59110	-0.34280	1.21660	0.0530*
H24B	1.63290	-0.38160	1.08640	0.0530*
H24C	1.46580	-0.44330	1.13440	0.0530*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Br1	0.0380(1)	0.0275 (1)	0.0349(1)	0.0071 (1)	-0.0114 (1)	0.0072 (1)	
S 1	0.0258 (2)	0.0195 (2)	0.0240 (2)	0.0029 (2)	0.0006 (2)	0.0024 (2)	
N1	0.0203 (7)	0.0190 (7)	0.0203 (8)	0.0009 (6)	-0.0019 (6)	0.0022 (6)	
N2	0.0260 (8)	0.0240 (8)	0.0239 (8)	0.0026 (6)	-0.0043 (6)	0.0046 (6)	
N3	0.0222 (7)	0.0247 (8)	0.0229 (8)	0.0025 (6)	-0.0008 (6)	0.0054 (6)	
C1	0.0238 (9)	0.0248 (9)	0.0209 (9)	0.0015 (7)	-0.0013 (7)	0.0008 (7)	
C2	0.0186 (8)	0.0252 (9)	0.0157 (8)	0.0015 (7)	0.0008 (6)	0.0009 (6)	
C3	0.0212 (8)	0.0213 (8)	0.0202 (9)	0.0020 (7)	0.0017 (7)	0.0033 (7)	
C4	0.0173 (8)	0.0223 (9)	0.0210 (9)	-0.0001 (7)	-0.0010 (7)	0.0018 (7)	
C5	0.0213 (8)	0.0277 (9)	0.0204 (9)	0.0025 (7)	0.0011 (7)	-0.0013 (7)	

supporting information

C6	0.0253 (9)	0.0310 (10)	0.0167 (9)	-0.0004 (8)	-0.0020 (7)	0.0019 (7)
C7	0.0215 (8)	0.0222 (9)	0.0247 (9)	0.0003 (7)	-0.0051 (7)	0.0057 (7)
C8	0.0255 (9)	0.0243 (9)	0.0255 (10)	0.0042 (7)	0.0005 (7)	0.0009 (7)
C9	0.0241 (9)	0.0245 (9)	0.0185 (9)	0.0025 (7)	-0.0001 (7)	0.0003 (7)
C10	0.0165 (8)	0.0200 (8)	0.0230 (9)	0.0024 (6)	-0.0017 (6)	0.0017 (7)
C11	0.0231 (9)	0.0254 (9)	0.0220 (9)	0.0044 (7)	0.0013 (7)	0.0021 (7)
C12	0.0256 (9)	0.0276 (10)	0.0330 (11)	0.0027 (8)	0.0007 (8)	0.0096 (8)
C13	0.0284 (10)	0.0216 (9)	0.0397 (12)	0.0020 (8)	-0.0064 (9)	0.0014 (8)
C14	0.0297 (10)	0.0301 (10)	0.0274 (11)	0.0055 (8)	-0.0030 (8)	-0.0067 (8)
C15	0.0224 (9)	0.0293 (10)	0.0225 (9)	0.0045 (7)	0.0004 (7)	0.0022 (7)
C16	0.0187 (8)	0.0244 (9)	0.0203 (9)	0.0004 (7)	0.0018 (7)	0.0036 (7)
C17	0.0327 (10)	0.0271 (10)	0.0213 (10)	0.0022 (8)	-0.0002 (8)	0.0033 (7)
C18	0.0184 (8)	0.0283 (9)	0.0192 (9)	0.0021 (7)	0.0030 (7)	0.0058 (7)
C19	0.0257 (9)	0.0293 (10)	0.0211 (9)	-0.0001 (7)	0.0000 (7)	0.0040 (7)
C20	0.0258 (9)	0.0373 (11)	0.0231 (10)	0.0008 (8)	-0.0007 (7)	0.0092 (8)
C21	0.0254 (9)	0.0347 (11)	0.0278 (11)	0.0058 (8)	0.0056 (8)	0.0126 (8)
C22	0.0305 (10)	0.0272 (10)	0.0292 (11)	0.0059 (8)	0.0032 (8)	0.0041 (8)
C23	0.0254 (9)	0.0298 (10)	0.0220 (9)	0.0027 (8)	0.0004 (7)	0.0035 (7)
C24	0.0367 (11)	0.0373 (12)	0.0357 (12)	0.0131 (9)	0.0028 (9)	0.0114 (9)

Geometric parameters (Å, °)

Br1—C7	1.8966 (18)	C18—C23	1.397 (3)
S1—C1	1.7439 (19)	C19—C20	1.391 (3)
S1—C3	1.7573 (19)	C20—C21	1.384 (3)
N1—C2	1.406 (2)	C21—C22	1.399 (3)
N1—C3	1.385 (2)	C21—C24	1.529 (3)
N1-C10	1.437 (2)	C22—C23	1.390 (3)
N2—N3	1.398 (2)	C1—H1	0.9500
N2—C3	1.290 (2)	С5—Н5	0.9500
N3—C16	1.293 (2)	С6—Н6	0.9500
C1—C2	1.345 (3)	C8—H8	0.9500
C2—C4	1.471 (2)	С9—Н9	0.9500
C4—C5	1.396 (3)	C11—H11	0.9500
С4—С9	1.401 (3)	C12—H12	0.9500
С5—С6	1.393 (3)	C13—H13	0.9500
С6—С7	1.384 (3)	C14—H14	0.9500
С7—С8	1.387 (3)	C15—H15	0.9500
С8—С9	1.383 (3)	C17—H17A	0.9800
C10-C11	1.383 (3)	C17—H17B	0.9800
C10-C15	1.387 (3)	C17—H17C	0.9800
C11—C12	1.391 (3)	C19—H19	0.9500
C12—C13	1.378 (3)	C20—H20	0.9500
C13—C14	1.384 (3)	C22—H22	0.9500
C14—C15	1.389 (3)	C23—H23	0.9500
C16—C17	1.503 (3)	C24—H24A	0.9800
C16—C18	1.483 (3)	C24—H24B	0.9800
C18—C19	1.401 (3)	C24—H24C	0.9800

C1—S1—C3	90.57 (9)	C21—C22—C23	121.4 (2)
C2—N1—C3	113.95 (15)	C18—C23—C22	120.76 (18)
C2—N1—C10	124.72 (15)	S1—C1—H1	124.00
C3—N1—C10	120.74 (15)	C2—C1—H1	124.00
N3—N2—C3	111.32 (15)	С4—С5—Н5	120.00
N2—N3—C16	114.04 (16)	С6—С5—Н5	120.00
S1—C1—C2	112.77 (14)	С5—С6—Н6	120.00
N1—C2—C1	112.72 (16)	С7—С6—Н6	120.00
N1—C2—C4	121.09 (16)	С7—С8—Н8	120.00
C1—C2—C4	125.66 (16)	С9—С8—Н8	120.00
S1—C3—N1	109.97 (12)	С4—С9—Н9	120.00
S1—C3—N2	127.42 (14)	С8—С9—Н9	119.00
N1—C3—N2	122.60 (16)	C10-C11-H11	120.00
C2—C4—C5	120.73 (16)	C12—C11—H11	120.00
C2—C4—C9	120.26 (16)	C11—C12—H12	120.00
C5—C4—C9	118.85 (16)	C13—C12—H12	120.00
C4—C5—C6	120.42 (17)	C12—C13—H13	120.00
C5—C6—C7	119.41 (18)	C14—C13—H13	120.00
Br1—C7—C6	119.81 (14)	C13—C14—H14	120.00
Br1—C7—C8	118.99 (13)	C15—C14—H14	120.00
C6—C7—C8	121.18 (17)	C10—C15—H15	120.00
C7—C8—C9	119.13 (17)	C14—C15—H15	120.00
C4—C9—C8	120.97 (17)	C16—C17—H17A	109.00
N1—C10—C11	119.67 (16)	C16—C17—H17B	109.00
N1—C10—C15	119.49 (16)	C16—C17—H17C	109.00
C11—C10—C15	120.85 (17)	H17A—C17—H17B	109.00
C10—C11—C12	119.43 (18)	H17A—C17—H17C	109.00
C11—C12—C13	120.2 (2)	H17B—C17—H17C	109.00
C12—C13—C14	120.13 (19)	C18—C19—H19	119.00
C13—C14—C15	120.4 (2)	C20—C19—H19	119.00
C10-C15-C14	119.06 (18)	C19—C20—H20	119.00
N3—C16—C17	124.44 (17)	C21—C20—H20	119.00
N3—C16—C18	116.73 (17)	C21—C22—H22	119.00
C17—C16—C18	118.80 (16)	C23—C22—H22	119.00
C16—C18—C19	120.75 (17)	C18—C23—H23	120.00
C16—C18—C23	121.50 (16)	С22—С23—Н23	120.00
C19—C18—C23	117.62 (17)	C21—C24—H24A	109.00
C18—C19—C20	121.12 (18)	C21—C24—H24B	109.00
C19—C20—C21	121.2 (2)	C21—C24—H24C	109.00
C20—C21—C22	117.8 (2)	H24A—C24—H24B	109.00
C20—C21—C24	120.7 (2)	H24A—C24—H24C	110.00
C22—C21—C24	121.52 (19)	H24B—C24—H24C	109.00
C1—S1—C3—N2	178.97 (17)	C5—C4—C9—C8	2.3 (3)
C3—S1—C1—C2	-0.78 (14)	C4—C5—C6—C7	-0.5 (3)
C1—S1—C3—N1	-0.03 (14)	C5C6C7Br1	-176.96 (14)
C3—N1—C10—C11	116.25 (19)	C5—C6—C7—C8	1.7 (3)

C3—N1—C2—C1	-1.4 (2)	C6—C7—C8—C9	-0.8 (3)
C3—N1—C10—C15	-63.3 (2)	Br1—C7—C8—C9	177.83 (13)
C10—N1—C3—N2	10.2 (3)	C7—C8—C9—C4	-1.2 (3)
C10—N1—C2—C4	-18.1 (2)	N1-C10-C11-C12	-179.80 (17)
C10—N1—C3—S1	-170.78 (13)	C11—C10—C15—C14	0.5 (3)
C2—N1—C3—N2	-178.25 (16)	C15—C10—C11—C12	-0.2 (3)
C3—N1—C2—C4	170.66 (15)	N1-C10-C15-C14	-179.91 (18)
C2—N1—C10—C15	126.02 (18)	C10-C11-C12-C13	0.0 (3)
C10—N1—C2—C1	169.77 (16)	C11—C12—C13—C14	0.0 (4)
C2-N1-C10-C11	-54.4 (2)	C12—C13—C14—C15	0.3 (4)
C2—N1—C3—S1	0.81 (18)	C13—C14—C15—C10	-0.6 (3)
N3—N2—C3—S1	2.6 (2)	N3-C16-C18-C19	169.30 (16)
C3—N2—N3—C16	-161.26 (16)	N3-C16-C18-C23	-6.5 (2)
N3—N2—C3—N1	-178.52 (15)	C17—C16—C18—C19	-8.8 (2)
N2—N3—C16—C17	2.6 (3)	C17—C16—C18—C23	175.40 (17)
N2—N3—C16—C18	-175.39 (14)	C16—C18—C19—C20	-173.07 (18)
S1—C1—C2—N1	1.38 (19)	C23—C18—C19—C20	2.9 (3)
S1—C1—C2—C4	-170.28 (14)	C16—C18—C23—C22	173.41 (18)
N1-C2-C4-C5	140.44 (17)	C19—C18—C23—C22	-2.5 (3)
C1—C2—C4—C9	126.8 (2)	C18—C19—C20—C21	-0.6 (3)
C1—C2—C4—C5	-48.6 (3)	C19—C20—C21—C22	-2.0 (3)
N1-C2-C4-C9	-44.2 (2)	C19—C20—C21—C24	176.0 (2)
C2—C4—C9—C8	-173.15 (16)	C20—C21—C22—C23	2.3 (3)
C2—C4—C5—C6	174.01 (17)	C24—C21—C22—C23	-175.6 (2)
C9—C4—C5—C6	-1.4 (3)	C21—C22—C23—C18	-0.1 (3)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 benzene ring.

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C17—H17C···N2	0.98	2.28	2.713 (3)	105
C17—H17 A ···Cg4 ⁱ	0.98	2.77	3.595 (3)	143

Symmetry code: (i) -x+3, -y, -z+2.