organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-[1-(3-methylbutyl)-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxoacetate

Muhammad Naeem Ahmed,^a Khawaja Ansar Yasin,^a M. Nawaz Tahir,^b* Muhammad Hafeez^a and Shahid Aziz^a

^aDepartment of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 17 October 2013; accepted 6 November 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.156; data-to-parameter ratio = 19.9.

In the title compound, $C_{17}H_{21}N_3O_3$, the non-planar (r.m.s. deviation = 0.212 Å) ethyl (oxo)acetate group is oriented towards the phenyl substituent. The triazole and benzene rings are twisted with respect to each other, making a dihedral angle of 41.69 (6)°. In the crystal, molecules are arranged into centrosymmetric $R_2^2(10)$ dimers via pairs of C-H···O interactions involving the ethyl (oxo)acetate groups. In addition, the triazole rings show $\pi - \pi$ stacking interactions, with their centroids at a distance of 3.745 (2) Å.

Related literature

For the biological activity of 1,4,5-trisubstituted 1,2,3-triazoles, see: Siddiqi & Ahsan (2010); Siddiqi et al. (2011). For the synthesis, see: Wang et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data C17H21N3O3

 $M_r = 315.37$

Triclinic, $P\overline{1}$	$V = 856.23 (14) \text{ Å}^3$
a = 8.1710 (8) Å	Z = 2
b = 10.0684 (9) Å	Mo $K\alpha$ radiation
c = 10.6066 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 98.331 \ (3)^{\circ}$	T = 296 K
$\beta = 94.220 \ (3)^{\circ}$	$0.32 \times 0.25 \times 0.21 \text{ mm}$
$\gamma = 95.367 \ (3)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD	11605 measured reflections
diffractometer	4189 independent reflections
Absorption correction: multi-scan	3196 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.021$
$T_{\min} = 0.973, T_{\max} = 0.982$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	211 parameters
$wR(F^2) = 0.156$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
4189 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdots A$ $C11 - H11B \cdots O2^{i}$ 0.97 2.59 3.338 (2) 134

Symmetry code: (i) -x + 3, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

MNA is very thankful to the Higher Education Commission, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2593).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqi, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536-1543.
- Siddiqi, N., Ahsan, W., Alam, M. S., Ali, R., Jain, S., Azad, B. & Akhtar, J. (2011). Int. J. Pharm. Sci. Rev. Res. 8, 161-169.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, B., Ahmed, M. N., Zhang, J., Chen, W., Wang, X. & Hu, Y. (2013). Tetrahedron Lett. 54, 6097-6100.

supporting information

Acta Cryst. (2013). E69, o1768 [doi:10.1107/S1600536813030420]

Ethyl 2-[1-(3-methylbutyl)-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxoacetate

Muhammad Naeem Ahmed, Khawaja Ansar Yasin, M. Nawaz Tahir, Muhammad Hafeez and Shahid Aziz

S1. Comment

1,4,5-Trisubstituted 1,2,3-triazoles are important compounds due to their diverse biological activities including antibacterial, antifungal, antimalarial, antiviral, anticonvulsant, antidepressant and anticancer (Siddiqi & Ahsan, 2010; Siddiqi *et al.*, 2011). Taking the biological activity of 1,2,3-triazole derivatives into account some novel 1, 2, 3-triazoles have been designed and synthesized. Here we report the crystal structure of title compound (Fig. 1).

The benzene ring A (C1–C6) and the triazol ring B (C7/C8/N1/N2/N3) are planar with r. m. s. deviations of 0.0062 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 41.69 (6)°. The intermolecular C—H…O hydrogen bond (Table 1, Fig. 2) generates centrosymmetric $R_2^2(10)$ motif (Bernstein *et al.*, 1995) and molecules form dimers. There is also π - π interaction between the triazole rings with their centroids at a distance of 3.745 (2) Å [*Cg*—*Cg*ⁱ: i = 2 - *x*, 1 - *y*, - *z*, where *Cg* is the centroid of triazol ring].

S2. Experimental

To a suspension of 1-azido-3-methylbutane (0.068 g, 0.6 mmol) and 1-copper(I)phenylethyne (0.082 g, 0.5 mmol) in chlorobenzene (1 ml) was added ethyl chloro(oxo)acetate (0.068 g, 0.5 mmol). The resultant mixture was stirred at room temperature for 4 h and then passed through a column [silica gel, 10% EtOAc in petroleum ether (333–363 K)] to give the title compound as a white solid (yield 89%, m.p. 340–342 K).Crystals suitable for crystallographic study were grown by slow evaporation of an ethanol solution at room temperature (Wang *et al.*, 2013).

S3. Refinement

The H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding on their carriers with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Figure 1

Molecular structure of the title compound. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Figure 2

The dimers formed via C-H···O inteactions (PLATON: Spek, 2009).

Ethyl 2-[1-(3-methylbutyl)-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxoacetate

$C_{17}H_{21}N_3O_3$	$\beta = 94.220 \ (3)^{\circ}$
$M_r = 315.37$	$\gamma = 95.367 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$V = 856.23 (14) \text{ Å}^3$
a = 8.1710 (8) Å	Z = 2
b = 10.0684 (9) Å	F(000) = 336
c = 10.6066 (10) Å	$D_{\rm x} = 1.223 {\rm ~Mg} {\rm ~m}^{-3}$
$\alpha = 98.331 (3)^{\circ}$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3196 reflections $\theta = 2.0-28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.50 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{absorption} = 0.082$	11605 measured reflections 4189 independent reflections 3196 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.0^\circ$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -8 \rightarrow 14$		
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier		
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.156$	map Hydrogen site location: inferred from neighbouring sites		
S = 1.06	H-atom parameters constrained $1/(-2/2)^2 + (0.08472)^2 + 0.12140$		
211 parameters	$w = 1/[\sigma(F_o^2) + (0.084/P)^2 + 0.1314P]$ where $P = (F_o^2 + 2F_c^2)/3$		

T = 296 K

Block, colorless

 $0.32 \times 0.25 \times 0.21 \text{ mm}$

4189 reflections
211 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.02397 (18)	0.67468 (12)	0.33208 (13)	0.0700 (4)	
O2	1.21537 (16)	0.52473 (15)	0.48236 (11)	0.0699 (4)	
03	1.28070 (12)	0.43994 (10)	0.28644 (10)	0.0466 (3)	
N1	0.82997 (15)	0.30393 (13)	0.04196 (12)	0.0477 (3)	
N2	0.78007 (16)	0.41791 (14)	0.01373 (12)	0.0510 (3)	
N3	0.84537 (14)	0.51779 (12)	0.10506 (11)	0.0423 (3)	
C1	0.99415 (18)	0.22438 (14)	0.34572 (14)	0.0440 (3)	
H1	0.9492	0.2933	0.3956	0.053*	
C2	1.0607 (2)	0.12404 (16)	0.40227 (16)	0.0533 (4)	
H2	1.0625	0.1265	0.4904	0.064*	
C3	1.1249 (2)	0.01966 (16)	0.32834 (17)	0.0554 (4)	
Н3	1.1698	-0.0476	0.3669	0.067*	

C4	1.1224 (2)	0.01532 (15)	0.19828 (16)	0.0513 (4)
H4	1.1642	-0.0556	0.1488	0.062*
C5	1.05780 (18)	0.11619 (14)	0.14049 (14)	0.0436 (3)
H5	1.0568	0.1130	0.0524	0.052*
C6	0.99416 (16)	0.22261 (12)	0.21412 (13)	0.0363 (3)
C7	0.92856 (16)	0.33138 (13)	0.15338 (12)	0.0366 (3)
C8	0.94279 (16)	0.46949 (13)	0.19486 (12)	0.0371 (3)
C9	1.04460 (18)	0.55757 (14)	0.29903 (14)	0.0434 (3)
C10	1.18948 (18)	0.50382 (15)	0.36822 (14)	0.0450 (3)
C11	1.4239 (2)	0.3868 (2)	0.34301 (17)	0.0611 (4)
H11A	1.3911	0.3339	0.4082	0.073*
H11B	1.5047	0.4605	0.3827	0.073*
C12	1.4958 (2)	0.3015 (2)	0.2411 (2)	0.0755 (6)
H12A	1.4173	0.2259	0.2058	0.113*
H12B	1.5939	0.2696	0.2760	0.113*
H12C	1.5230	0.3534	0.1750	0.113*
C13	0.7973 (2)	0.65445 (16)	0.10329 (16)	0.0499 (4)
H13A	0.7548	0.6630	0.0174	0.060*
H13B	0.8935	0.7198	0.1274	0.060*
C14	0.6661 (2)	0.68401 (19)	0.19540 (19)	0.0588 (4)
H14A	0.6940	0.6483	0.2735	0.071*
H14B	0.5608	0.6375	0.1573	0.071*
C15	0.6481 (2)	0.8346 (2)	0.22911 (18)	0.0639 (5)
H15	0.7564	0.8809	0.2636	0.077*
C16	0.5290 (4)	0.8555 (3)	0.3333 (3)	0.1128 (11)
H16A	0.5197	0.9501	0.3558	0.169*
H16B	0.5701	0.8201	0.4074	0.169*
H16C	0.4224	0.8093	0.3020	0.169*
C17	0.5911 (3)	0.8960 (2)	0.1140 (2)	0.0793 (6)
H17A	0.4850	0.8518	0.0786	0.119*
H17B	0.6691	0.8847	0.0509	0.119*
H17C	0.5829	0.9904	0.1394	0.119*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0919 (9)	0.0403 (6)	0.0726 (8)	0.0232 (6)	-0.0114 (7)	-0.0099 (5)
02	0.0643 (7)	0.0953 (10)	0.0446 (6)	0.0281 (7)	-0.0090 (5)	-0.0131 (6)
03	0.0415 (5)	0.0511 (6)	0.0460 (5)	0.0120 (4)	-0.0003 (4)	0.0009 (4)
N1	0.0489 (7)	0.0491 (7)	0.0431 (7)	0.0109 (5)	-0.0040 (5)	0.0006 (5)
N2	0.0509 (7)	0.0575 (8)	0.0442 (7)	0.0152 (6)	-0.0049 (5)	0.0045 (6)
N3	0.0432 (6)	0.0440 (6)	0.0428 (6)	0.0167 (5)	0.0026 (5)	0.0095 (5)
C1	0.0544 (8)	0.0363 (7)	0.0429 (7)	0.0117 (6)	0.0101 (6)	0.0037 (5)
C2	0.0700 (10)	0.0466 (8)	0.0471 (8)	0.0130 (7)	0.0080 (7)	0.0136 (6)
C3	0.0622 (9)	0.0414 (8)	0.0678 (10)	0.0170 (7)	0.0071 (8)	0.0173 (7)
C4	0.0579 (9)	0.0342 (7)	0.0631 (10)	0.0159 (6)	0.0125 (7)	0.0010 (6)
C5	0.0511 (8)	0.0343 (7)	0.0439 (7)	0.0078 (6)	0.0074 (6)	-0.0027 (5)
C6	0.0379 (6)	0.0292 (6)	0.0412 (7)	0.0068 (5)	0.0043 (5)	0.0004 (5)

supporting information

C7	0.0368 (6)	0.0365 (6)	0.0363 (6)	0.0101 (5)	0.0038 (5)	0.0005 (5)
C8	0.0380 (6)	0.0366 (7)	0.0383 (6)	0.0128 (5)	0.0035 (5)	0.0053 (5)
C9	0.0485 (7)	0.0357 (7)	0.0451 (7)	0.0111 (6)	0.0019 (6)	0.0003 (5)
C10	0.0434 (7)	0.0426 (7)	0.0450 (8)	0.0072 (6)	-0.0027 (6)	-0.0046 (6)
C11	0.0444 (8)	0.0788 (12)	0.0589 (10)	0.0218 (8)	-0.0053 (7)	0.0015 (8)
C12	0.0546 (10)	0.0810 (13)	0.0877 (14)	0.0252 (9)	0.0058 (10)	-0.0090 (11)
C13	0.0537 (8)	0.0490 (8)	0.0548 (9)	0.0249 (7)	0.0094 (7)	0.0193 (7)
C14	0.0534 (9)	0.0615 (10)	0.0717 (11)	0.0276 (8)	0.0182 (8)	0.0240 (8)
C15	0.0625 (10)	0.0658 (11)	0.0666 (11)	0.0318 (9)	0.0047 (8)	0.0055 (8)
C16	0.137 (2)	0.129 (2)	0.0923 (18)	0.086 (2)	0.0459 (17)	0.0216 (16)
C17	0.0965 (15)	0.0644 (12)	0.0859 (14)	0.0416 (11)	0.0122 (12)	0.0181 (10)

Geometric parameters (Å, °)

O1—C9	1.2115 (17)	C9—C10	1.530 (2)	
O2—C10	1.1978 (19)	C11—C12	1.473 (2)	
O3—C10	1.3209 (17)	C11—H11A	0.9700	
O3—C11	1.4565 (18)	C11—H11B	0.9700	
N1—N2	1.3199 (18)	C12—H12A	0.9600	
N1C7	1.3585 (18)	C12—H12B	0.9600	
N2—N3	1.3325 (18)	C12—H12C	0.9600	
N3—C8	1.3684 (17)	C13—C14	1.524 (2)	
N3—C13	1.4680 (18)	C13—H13A	0.9700	
C1—C2	1.381 (2)	C13—H13B	0.9700	
C1—C6	1.3934 (19)	C14—C15	1.530 (2)	
C1—H1	0.9300	C14—H14A	0.9700	
С2—С3	1.385 (2)	C14—H14B	0.9700	
С2—Н2	0.9300	C15—C17	1.509 (3)	
C3—C4	1.373 (2)	C15—C16	1.530 (3)	
С3—Н3	0.9300	C15—H15	0.9800	
C4—C5	1.385 (2)	C16—H16A	0.9600	
C4—H4	0.9300	C16—H16B	0.9600	
C5—C6	1.3964 (17)	C16—H16C	0.9600	
С5—Н5	0.9300	C17—H17A	0.9600	
С6—С7	1.4714 (17)	C17—H17B	0.9600	
С7—С8	1.3877 (18)	C17—H17C	0.9600	
C8—C9	1.464 (2)			
C10—O3—C11	115.68 (12)	O3—C11—H11B	110.0	
N2—N1—C7	108.62 (12)	C12—C11—H11B	110.0	
N1—N2—N3	108.25 (11)	H11A—C11—H11B	108.4	
N2—N3—C8	110.66 (11)	C11—C12—H12A	109.5	
N2-N3-C13	119.48 (12)	C11—C12—H12B	109.5	
C8—N3—C13	129.67 (13)	H12A—C12—H12B	109.5	
C2-C1-C6	120.11 (13)	C11—C12—H12C	109.5	
C2-C1-H1	119.9	H12A—C12—H12C	109.5	
C6-C1-H1	119.9	H12B-C12-H12C	109.5	
C1—C2—C3	120.28 (15)	N3—C13—C14	110.78 (13)	

C1—C2—H2	119.9	N3-C13-H13A	109 5
$C_3 = C_2 = H_2$	119.9	C14— $C13$ — $H13A$	109.5
C_{4} C_{3} C_{2} C_{2}	120 11 (14)	N3_C13_H13B	109.5
$C_{4} = C_{3} = H_{3}$	110.0	C_{14} C_{13} H_{13B}	109.5
$C_2 = C_3 = H_3$	110.0		109.5
$C_2 = C_3 = C_4$	119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1 112.22(15)
$C_3 = C_4 = C_3$	120.21 (15)	$C_{13} = C_{14} = C_{13}$	113.33 (13)
$C_5 = C_4 = H_4$	119.9	C15 - C14 - H14A	108.9
$C_3 - C_4 - H_4$	119.9	C13—C14—H14A	108.9
C4 - C5 - C6	120.22 (14)	C15—C14—H14B	108.9
C4—C5—H5	119.9	C15—C14—H14B	108.9
C6—C5—H5	119.9	H14A—C14—H14B	10/./
C1—C6—C5	119.05 (12)	C17—C15—C14	112.37 (17)
C1—C6—C7	120.60 (11)	C17—C15—C16	110.58 (17)
C5—C6—C7	120.36 (12)	C14—C15—C16	109.5 (2)
N1—C7—C8	108.50 (11)	С17—С15—Н15	108.1
N1—C7—C6	121.22 (12)	C14—C15—H15	108.1
C8—C7—C6	130.19 (12)	C16—C15—H15	108.1
N3—C8—C7	103.94 (12)	C15—C16—H16A	109.5
N3—C8—C9	122.89 (12)	C15—C16—H16B	109.5
C7—C8—C9	132.91 (12)	H16A—C16—H16B	109.5
O1—C9—C8	123.30 (13)	C15—C16—H16C	109.5
O1—C9—C10	116.91 (13)	H16A—C16—H16C	109.5
C8—C9—C10	119.75 (12)	H16B—C16—H16C	109.5
O2—C10—O3	126.60 (14)	C15—C17—H17A	109.5
O2—C10—C9	121.89 (14)	C15—C17—H17B	109.5
O3—C10—C9	111.44 (12)	H17A—C17—H17B	109.5
O3—C11—C12	108.46 (14)	C15—C17—H17C	109.5
O3—C11—H11A	110.0	H17A—C17—H17C	109.5
C12—C11—H11A	110.0	H17B—C17—H17C	109.5
C7—N1—N2—N3	0.13 (16)	N1—C7—C8—N3	1.65 (15)
N1—N2—N3—C8	0.96 (16)	C6-C7-C8-N3	-174.92(13)
N1—N2—N3—C13	-174.42(12)	N1—C7—C8—C9	-172.46(15)
C6-C1-C2-C3	-13(2)	C6-C7-C8-C9	11.0.(2)
C1 - C2 - C3 - C4	-0.1(3)	N3-C8-C9-01	17.4(2)
$C_2 - C_3 - C_4 - C_5$	0.9(3)	C7 - C8 - C9 - 01	-16939(16)
$C_{2} = C_{3} = C_{4} = C_{5} = C_{6}$	-0.3(2)	N_{3} C_{8} C_{9} C_{10}	-160.12(13)
C_{2} C_{1} C_{6} C_{5}	1.9(2)	C7 - C8 - C9 - C10	131(2)
$C_{2} = C_{1} = C_{0} = C_{3}$	$-177 \ 97 \ (14)$	$C_{11} = C_{3} = C_{10} = C_{10}$	20(2)
$C_2 = C_1 = C_0 = C_1$	-1.1(2)	$C_{11} = 03 = C_{10} = 02$	2.0(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	1.1(2) 179 75 (12)	$C_{11} = 05 = C_{10} = 03$	1/0.99(14)
C4 - C3 - C0 - C7	1/6.73(13) 1.15(16)	01 - 02 - 010 - 02	40.3(2)
$N_2 - N_1 - C_7 - C_8$	-1.13(10) 175 78(12)	$C_{8} - C_{9} - C_{10} - O_{2}$	-133.78(17)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	1/3.70(12) 126.59(14)	$C_{1}^{0} = C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	-130.03(10)
$C_1 - C_0 - C_1 - N_1$	-130.38(14)	$C_{0} = C_{0} = C_{10} = C_{10}$	4/.0/(19)
$C_{0} = C_{0} = C_{0} = C_{0}$	45.59 (19)	C10-O3-C11-C12	1/1.29 (15)
C1 - C6 - C7 - C8	39.6 (2)	N2—N3—C13—C14	99.01 (17)
05-06-07-08	-140.22 (15)	C8—N3—C13—C14	-/5.4 (2)
N2—N3—C8—C7	-1.60 (15)	N3—C13—C14—C15	162.54 (15)

supporting information

C13—N3—C8—C7	173.17 (13)	C13—C14—C15—C17	63.3 (2)
N2—N3—C8—C9	173.26 (13)	C13-C14-C15-C16	-173.43 (19)
C13—N3—C8—C9	-12.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11 <i>B</i> ···O2 ⁱ	0.97	2.59	3.338 (2)	134

Symmetry code: (i) -x+3, -y+1, -z+1.