

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{4-[(*E*)-2-(1*H*-indol-3-yl)ethenyl]-1methylpyridinium} 4-chlorobenzenesulfonate nitrate

Hoong-Kun Fun,^a*‡Ching Kheng Quah,^a Nawong Boonnak^b and Suchada Chantrapromma^c§

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my

Received 2 November 2013; accepted 2 November 2013

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.074; wR factor = 0.254; data-to-parameter ratio = 9.8.

In the title mixed salt, $2C_{16}H_{15}N_2^{+}C_6H_4ClO_3S^{-}NO_3^{-}$, one of the cations shows whole molecule disorder over two sets of sites in a 0.711 (7):0.289 (7) ratio. The 4-chorobenzenesulfonate anion is also disordered over two orientations in a 0.503 (6):0.497 (6) ratio. The cations are close to planar, the dihedral angles between the pyridinium and indole rings being 1.48 (3)° in the ordered cation, and 5.62 (3) and 2.45 (3)°, respectively, for the major and minor components of the disordered cation. In the crystal, the cations are stacked in an antiparallel manner approximately along the *a*-axis direction and linked with the anions *via* N-H···O hydrogen bonds and C-H···O interactions, generating a three-dimensional network. Weak C-H··· π and π - π interactions [with centroid-centroid distances of 3.561 (2)–3.969 (7) Å] are also observed.

Related literature

For related structures, see: Chantrapromma *et al.* (2008); Chantrapromma & Fun (2009). For background to non-linear optical materials, see: Dittrich *et al.* (2003); Nogi *et al.* (2000); Raimundo *et al.* (2002); Ruanwas *et al.* (2010); Sato *et al.* (1999).

 $\gamma = 99.924 (1)^{\circ}$ V = 1792.3 (2) Å³

Mo $K\alpha$ radiation

 $0.55 \times 0.47 \times 0.14 \text{ mm}$

9106 measured reflections

6217 independent reflections

4480 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} \mu = 0.22 \ \mathrm{mm}^- \\ T = 153 \ \mathrm{K} \end{array}$

 $R_{\rm int} = 0.021$

Z = 2

Experimental

Crystal data $2C_{16}H_{15}N_{2}^{+}\cdot C_{6}H_{4}ClO_{3}S^{-}\cdot NO_{3}^{-}$ $M_{r} = 724.21$ Triclinic, P1 a = 8.7540 (7) Å b = 13.6648 (10) Å c = 15.3465 (11) Å $\alpha = 97.206$ (1)° $\beta = 91.186$ (2)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.890, T_{max} = 0.970$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	206 restraints
$wR(F^2) = 0.254$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
6217 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
636 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

Cg3, Cg6, Cg7 and Cg9 are the centroids of the C16–C21, C32–C37, N4A/C30A–C32A/C37A and C32A–C37A rings, respectively.

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N2\cdots O3A$	0.78	2.19	2.937 (9)	161
$N4-H1N4\cdots O4^{i}$	0.81	2.43	3.220 (11)	165
$N4-H1N4\cdots O5^{i}$	0.81	2.32	2.987 (8)	141
$C3A - H3AA \cdots O5^{ii}$	0.93	2.43	3.246 (13)	146
$C8-H8A\cdots O2A^{iii}$	0.93	2.40	3.213 (8)	146
C10−H10A···O5 ^{iv}	0.93	2.51	3.234 (6)	134
$C18-H18A\cdots O1A^{v}$	0.93	2.52	3.345 (8)	148
$C22-H22A\cdots O1A^{iii}$	0.96	2.45	3.368 (9)	160
$C22-H22C\cdots O2A^{vi}$	0.96	2.32	3.082 (9)	136
$C26-H26A\cdots O6^{vii}$	0.93	2.53	3.440 (7)	168
$C15-H15A\cdots Cg6^{vii}$	0.93	2.71	3.550 (6)	151
$C15-H15A\cdots Cg7^{vii}$	0.93	2.94	3.844 (10)	165
$C15-H15A\cdots Cg9^{vii}$	0.93	2.83	3.656 (13)	149
$C34 - H34A \cdots Cg3^{ii}$	0.93	2.78	3.602 (7)	149
$C38-H38C\cdots Cg6^{ii}$	0.96	2.95	3.714 (8)	137
C38-H38 $C \cdot \cdot \cdot Cg9^{vii}$	0.96	2.83	3.627 (14)	141
$C34A - H34B \cdots Cg3^{ii}$	0.93	2.89	3.56 (2)	130

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y, -z; (iv) -x + 1, -y, -z + 1; (v) -x + 2, -y + 1, -z; (vi) x, y - 1, z; (vii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

organic compounds

The authors thank Prince of Songkla University for generous support and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7156).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o258-o259.

- Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, 0876–0877.
- Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). *Appl. Surf. Sci.* 220, 88–95.
- Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). *Nonlinear Optics*, 24, 35–40.
- Raimundo, J.-M., Blanchard, P., Planas, N. G., Mercier, N., Rak, I. L., Hierle, R. & Roncali, J. (2002). J. Org. Chem. 67, 205–218.
- Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). *Synth. Met.* **160**, 819–824.
- Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132– 133.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1753-o1754 [doi:10.1107/S1600536813030080]

Bis{4-[(*E*)-2-(1*H*-indol-3-yl)ethenyl]-1-methylpyridinium} 4-chlorobenzene-sulfonate nitrate

Hoong-Kun Fun, Ching Kheng Quah, Nawong Boonnak and Suchada Chantrapromma

S1. Comment

Organic molecules that exhibit second-order NLO properties usually consist of a framework with delocalized π system, end-capped with either a donor or acceptor substituent or both. Several pyridinium derivatives have been reported to exhibit second-order NLO properties such as single crystals of 1-methyl-4-(2-(4-(dimethylamino)phenyl)ethynyl)pyridinium *p*-toluenesulfonate (DAST) and its analogues (Dittrich *et al.*, 2003; Sato *et al.*, 1999). Based on the knowledge that the organic dipolar compounds with extended π systems having terminal donor and acceptor groups are likely to exhibit large hyperpolarizability (β) (Raimundo *et al.*, 2002), we have synthesized several quinolinium derivatives which exhibit NLO properties (Ruanwas *et al.*, 2010). In a similar manner, the title compound (I) was designed and synthesized in order to study for its NLO property. Unfortunately (I) crystallizes in a centrosymmetric *P*-1 space group which precluded the second-order NLO properties. Herein the crystal structure of (I) is reported.

In the crystal structure of (I), the asymmetric unit consists of two $C_{16}H_{15}N_2^+$ cations, $C_6H_4ClO_3S^-$ and NO_3^- anions (Fig. 1). One cation [C23–C38/N3/N4] exhibits whole molecule disorder over two sets of sites with a refined site-occupancy ratio of 0.711 (7):0.289 (7). The molecule is disordered in such a way that the ethynyl unit in the major and minor (*A*) components are related by a 180° rotation. The two cations exist in the *E* conformation with respect to the ethenyl unit and the torsion angle C11–C12–C13–C14 = -178.8 (3)° for the non-disordered cation, and C27–C28–C29–C30 = 176.8 (6)° and -179.8 (15)° for the major and minor (*A*) components for the disordered cation. The cations are close to planar with the dihedral angles between the pyridinium and the indole rings being 1.28 (3)° for the non-disordered cation, and 5.62 (3) and 2.45 (3)° for the major and minor components respectively for the disordered cation. The 4-chlorobenzenesulfonate anion also shows whole molecule disorder (Fig. 1) with a 0.503 (6):0.497 (6) site occupancy ratio. Bond lengths of the title compound are comparable to those in related structures (Chantrapromma *et al.*, 2008; Chantrapromma & Fun, 2009)

In the crystal (Fig. 2), the cations are stacked in an antiparallel fashion into columns approximately along the *a* axis and are further linked to the anions *via* N—H···O hydrogen bonds and C—H···O interactions (Table 1). C—H··· π interactions and π - π interactions were observed with Cg1··· $Cg2^{iii} = 3.6804$ (19) Å, Cg2··· $Cg3^{iii} = 3.561$ (2) Å, Cg2··· $Cg10^{vi} = 3.969$ (7) Å, Cg2··· $Cg11^{vi} = 3.949$ (7) Å, Cg5··· $Cg5^{viii} = 3.729$ (5) Å, Cg5··· $Cg8^{viii} = 3.728$ (8) Å and Cg8··· $Cg8^{viii} = 3.741$ (11) Å; Cg1, Cg2, Cg3, Cg5, Cg8, Cg10 and Cg11 are the centroids of N2/C14–C16/C21, N1/C7–C11, C16–C21, N3/C23–C27, N3A/C23A–C27A, C1A–C6A and C1–C6, respectively [symmetry code (viii) = -x, 1 - y, 1 - z].

S2. Experimental

4-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium iodide (compound A) was synthesized from a mixture (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.00 g, 8.51 mmol), indole-3-carboxaldehyde (1.24 g, 8.51 mmol) and piperidine (0.84 ml, 8.51 mmol) in methanol (40 ml) under reflux for 2 h under a nitrogen atmosphere. The solid which formed was

filtered, washed with ether and recrystallized from methanol to give orange single crystals of compound A after several days. The title compound was synthesized by mixing compound A (0.24 g, 0.67 mmol) in hot methanol (30 ml) and silver(I) 4-chlorobenzenesulfonate (0.20 g, 0.67 mmol) in hot methanol (20 ml). The mixture, which turned yellow and cloudy immediately, yielded a gray solid of silver iodide. After stirring the mixture for *ca*. 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated to yield an orange solid. Orange blocks of (I) were recrystalized from methanol solution by slow evaporation of the solvent at room temperature after several days.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.78, 0.81 and 0.86 Å, CH and C_{aryl} —H = 0.93 Å and C_{methyl} —H = 0.96 Å. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. One cation is whole molecule disordered over two sites with refined site occupancies ratio 0.711 (7):0.289 (7), whereas the 4-chlorobenzenesulfonate anion is disordered over two sites with refined site occupancies ratio 0.503 (6):0.497 (6). Similarity and simulation restraints were applied. The displacement ellipsoids of each of the two pairs of atoms i.e. "CL1 C6" and "N3 C38" were restrained to be almost equal.

Figure 1

The structure of (I) showing 30% probability displacement ellipsoids. Open bonds show the minor disorder components.

Figure 2

The crystal packing (involving only the major components of the disordered ions) viewed along the c axis. Hydrogen bonds are drawn as dashed lines.

Bis{4-[(*E*)-2-(1*H*-indol-3-yl)ethenyl]-1-methylpyridinium} 4-chlorobenzenesulfonate nitrate

Crystal data	
$2C_{16}H_{15}N_{2}^{+}C_{6}H_{4}ClO_{3}S^{-}NO_{3}^{-}$ $M_{r} = 724.21$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.7540 (7) Å b = 13.6648 (10) Å c = 15.3465 (11) Å $a = 97.206 (1)^{\circ}$ $\beta = 91.186 (2)^{\circ}$ $\gamma = 99.924 (1)^{\circ}$ $V = 1792.3 (2) \text{ Å}^{3}$	Z = 2 F(000) = 756 $D_x = 1.342 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6217 reflections $\theta = 2.2-25.0^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 153 K Block, orange $0.55 \times 0.47 \times 0.14 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.890, T_{\max} = 0.970$	9106 measured reflections 6217 independent reflections 4480 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 16$ $l = -17 \rightarrow 18$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.074$	Hydrogen site location: inferred from
$wR(F^2) = 0.254$	neighbouring sites
S = 1.05	H-atom parameters constrained
6217 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1598P)^2 + 0.6516P]$
636 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
206 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.87 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.29 \ m e \ m A^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
04	0.7782 (12)	0.1160 (6)	0.5522 (4)	0.262 (4)	
N1	0.3365 (3)	-0.3639 (2)	0.08898 (19)	0.0675 (7)	
N2	0.7327 (4)	0.2710 (2)	0.1516 (2)	0.0737 (8)	
H1N2	0.7335	0.3279	0.1670	0.088*	
Cl1	0.6552 (6)	0.9687 (3)	0.3630 (3)	0.0776 (10)	0.497 (6)
S 1	0.7770 (6)	0.5393 (3)	0.1964 (3)	0.0744 (15)	0.497 (6)
01	0.7041 (10)	0.5304 (5)	0.1112 (4)	0.118 (3)	0.497 (6)
O2	0.9408 (8)	0.5430 (5)	0.1947 (6)	0.125 (3)	0.497 (6)
O3	0.7660 (11)	0.4712 (6)	0.2529 (4)	0.085 (3)	0.497 (6)
C1	0.7483 (7)	0.6565 (5)	0.2512 (6)	0.054 (3)	0.497 (6)
C2	0.8661 (9)	0.7372 (6)	0.2595 (12)	0.073 (4)	0.497 (6)
H2A	0.9675	0.7284	0.2493	0.087*	0.497 (6)
C3	0.8328 (13)	0.8344 (6)	0.2838 (18)	0.085 (6)	0.497 (6)
H3A	0.9055	0.8907	0.2763	0.102*	0.497 (6)
C4	0.6954 (12)	0.8448 (4)	0.3177 (9)	0.054 (3)	0.497 (6)
C5	0.5768 (13)	0.7615 (6)	0.3125 (15)	0.073 (5)	0.497 (6)
H5A	0.4798	0.7685	0.3334	0.087*	0.497 (6)
C6	0.6042 (14)	0.6676 (7)	0.2757 (18)	0.104 (9)	0.497 (6)
H6A	0.5235	0.6129	0.2681	0.124*	0.497 (6)
Cl1A	0.7176 (7)	0.9748 (3)	0.3728 (4)	0.1076 (17)	0.503 (6)
S1A	0.7200 (6)	0.5307 (3)	0.1879 (2)	0.0713 (13)	0.503 (6)
O1A	0.8297 (9)	0.5400 (5)	0.1208 (5)	0.115 (3)	0.503 (6)
O2A	0.5651 (8)	0.4921 (4)	0.1546 (5)	0.108 (2)	0.503 (6)
O3A	0.7044 (13)	0.4664 (6)	0.2478 (5)	0.107 (4)	0.503 (6)
C1A	0.7204 (9)	0.6543 (5)	0.2395 (8)	0.063 (3)	0.503 (6)

C2 4	0.9492 (11)	0.72(0.(())	0.2270 (12)	0.079 (5)	0.502 (()
C2A	0.8482 (11)	0.7269 (6)	0.2379(12)	0.078 (5)	0.503 (6)
H2AA	0.9299	0.7149	0.2027	0.094*	0.503 (6)
C3A	0.8555 (13)	0.8208 (8)	0.2901 (16)	0.079 (5)	0.503 (6)
НЗАА	0.9494	0.8651	0.3001	0.095*	0.503 (6)
C4A	0.7258 (12)	0.8453 (6)	0.3251 (13)	0.108 (8)	0.503 (6)
C5A	0.5943 (14)	0.7713 (7)	0.3256 (16)	0.086 (7)	0.503 (6)
H5AA	0.5067	0.7863	0.3539	0.103*	0.503 (6)
C6A	0.5948 (9)	0.6747 (5)	0.2832 (12)	0.054 (4)	0.503 (6)
H6AA	0.5088	0.6246	0.2851	0.065*	0.503 (6)
C10	0.3905 (4)	-0.1910 (3)	0.1379 (2)	0.0671 (9)	
H10A	0.3681	-0.1366	0.1751	0.080*	
С9	0.3092 (4)	-0.2839 (3)	0.1429 (2)	0.0720 (9)	
H9A	0.2333	-0.2924	0.1842	0.086*	
C8	0.4452 (4)	-0.3513 (3)	0.0303 (2)	0.0693 (9)	
H8A	0.4637	-0.4065	-0.0073	0.083*	
C7	0.5300 (4)	-0.2594(3)	0.0239 (2)	0.0662 (8)	
H7A	0.6052	-0.2530	-0.0179	0.079*	
C11	0.5065 (4)	-0.1757(2)	0.0784(2)	0.0585 (8)	
C12	0.5998 (4)	-0.0784(2)	0.0709 (2)	0.0616 (8)	
H12A	0.6757	-0.0759	0.0293	0.074*	
C13	0.5851(4)	0.0068(2)	0.1188(2)	0.0644 (8)	
H13A	0.5097	0.0019	0.1606	0.077*	
C14	0.6697 (4)	0.0015 0.1055 (2)	0.1148(2)	0.0612 (8)	
C15	0.6097 (4)	0.1033(2) 0.1873(3)	0.1140(2) 0.1677(2)	0.0012(0)	
U15A	0.0401 (5)	0.1873 (3)	0.1077 (2)	0.0755 (10)	
C16	0.5050	0.1852 0.2470 (2)	0.2097	0.0625 (8)	
C10 C17	0.8290(4)	0.2470(2)	0.0634(2)	0.0023(8)	
	0.9403 (4)	0.3088 (3)	0.0471 (3)	0.0734 (10)	
HI/A	0.9609	0.3775	0.0049	0.088^{*}	
	1.0202 (4)	0.2658 (3)	-0.0180 (3)	0.0835 (12)	
HI8A	1.0965	0.3059	-0.0454	0.100*	
C19	0.9891 (4)	0.1619 (3)	-0.0444 (3)	0.0795 (10)	
HI9A	1.0464	0.1344	-0.0885	0.095*	
C20	0.8755 (4)	0.0995 (3)	-0.0066 (2)	0.0656 (8)	
H20A	0.8550	0.0309	-0.0249	0.079*	
C21	0.7926 (4)	0.1428 (2)	0.0601 (2)	0.0568 (7)	
C22	0.2475 (6)	-0.4646 (3)	0.0955 (3)	0.1038 (15)	
H22A	0.2297	-0.5021	0.0379	0.156*	
H22B	0.1497	-0.4584	0.1208	0.156*	
H22C	0.3052	-0.4988	0.1320	0.156*	
N3	0.0284 (13)	0.3441 (6)	0.4087 (7)	0.077 (4)	0.711 (8)
N4	0.6488 (10)	0.9026 (5)	0.6160 (5)	0.085 (2)	0.711 (8)
H1N4	0.6724	0.9605	0.6082	0.102*	0.711 (8)
C23	0.2158 (8)	0.3996 (6)	0.5264 (4)	0.080(2)	0.711 (8)
H23A	0.2707	0.3849	0.5742	0.096*	0.711 (8)
C24	0.1017 (14)	0.3284 (6)	0.4828 (7)	0.086 (4)	0.711 (8)
H24A	0.0737	0.2676	0.5046	0.103*	0.711 (8)
C25	0.0573 (10)	0.4327 (7)	0.3802 (5)	0.0757 (19)	0.711 (8)
H25A	0.0035	0.4431	0.3302	0.091*	0.711 (8)
-		-			

C26	0.1654 (9)	0.5097 (4)	0.4232 (5)	0.0779 (17)	0.711 (8)
H26A	0.1826	0.5714	0.4021	0.093*	0.711 (8)
C27	0.2506 (6)	0.4966 (4)	0.4985 (4)	0.0668 (14)	0.711 (8)
C28	0.3677 (6)	0.5739 (4)	0.5491 (3)	0.0780 (17)	0.711 (8)
H28A	0.4153	0.5552	0.5976	0.094*	0.711 (8)
C29	0.4126 (6)	0.6668 (4)	0.5332 (3)	0.0790 (17)	0.711 (8)
H29A	0.3676	0.6831	0.4827	0.095*	0.711 (8)
C30	0.5181 (6)	0.7450 (4)	0.5811 (4)	0.0654 (14)	0.711 (8)
C31	0.5477 (9)	0.8421 (7)	0.5594 (4)	0.0832 (19)	0.711 (8)
H31A	0.5021	0.8622	0.5109	0.100*	0.711 (8)
C32	0.693 (2)	0.8500 (7)	0.6800 (10)	0.071 (8)	0.711 (8)
C33	0.7919 (17)	0.8825 (6)	0.7527 (8)	0.071 (3)	0.711 (8)
H33A	0.8419	0.9489	0.7636	0.085*	0.711 (8)
C34	0.8158 (9)	0.8159 (6)	0.8083 (4)	0.0694 (19)	0.711 (8)
H34A	0.8819	0.8379	0.8577	0.083*	0.711 (8)
C35	0.7454 (9)	0.7179(5)	0.7937 (4)	0.0687 (15)	0.711 (8)
H35A	0.7656	0.6741	0.8324	0.082*	0.711 (8)
C36	0.6398 (9)	0.6815 (4)	0.7187(5)	0.0673(16)	0.711 (8)
H36A	0.5898	0.6151	0.7091	0.081*	0.711 (8)
C37	0.6142 (10)	0.7501 (4)	0.6598 (6)	0.062(2)	0.711 (8)
C38	-0.0857(7)	0.2599 (6)	0.3651 (5)	0.086(2)	0.711 (8)
H38A	-0.1657	0.2851	0.3356	0.129*	0.711 (8)
H38B	-0.1309	0.2196	0.4081	0.129*	0.711 (8)
H38C	-0.0352	0.2197	0.3229	0.129*	0.711 (8)
N3A	0.027 (3)	0.3295 (12)	0.4146 (17)	0.068 (8)*	0.289 (8)
N4A	0.634 (2)	0.8785 (9)	0.6083 (10)	0.068 (6)*	0.289 (8)
H2N4	0.6593	0.9378	0.5939	0.082*	0.289 (8)
C23A	0.2220 (17)	0.4290 (9)	0.5133 (9)	0.054 (4)*	0.289 (8)
H23B	0.2833	0.4358	0.5647	0.064*	0.289 (8)
C24A	0.131 (3)	0.3390 (8)	0.4829 (12)	0.052 (6)*	0.289 (8)
H24B	0.1412	0.2829	0.5097	0.063*	0.289 (8)
C25A	0.023 (3)	0.4051 (12)	0.3690 (13)	0.090 (8)*	0.289 (8)
H25B	-0.0477	0.3972	0.3215	0.109*	0.289 (8)
C26A	0.1219 (18)	0.4953 (9)	0.3907 (9)	0.071 (5)*	0.289 (8)
H26B	0.1222	0.5455	0.3550	0.085*	0.289 (8)
C27A	0.2226 (17)	0.5127 (8)	0.4660 (9)	0.062 (5)*	0.289 (8)
C28A	0.3251 (10)	0.6080 (6)	0.4976 (6)	0.052 (3)*	0.289 (8)
H28B	0.3230	0.6601	0.4644	0.063*	0.289 (8)
C29A	0.4198 (12)	0.6278 (7)	0.5680(6)	0.053 (3)*	0.289 (8)
H29B	0.4205	0.5746	0.6003	0.063*	0.289 (8)
C30A	0.5197 (15)	0.7169 (8)	0.6015 (8)	0.058 (4)*	0.289 (8)
C31A	0.5276 (19)	0.8063 (10)	0.5659 (9)	0.062 (5)*	0.289 (8)
H31B	0.4659	0.8144	0.5182	0.075*	0.289 (8)
C32A	0.697 (5)	0.8440 (13)	0.679 (2)	0.058 (16)*	0.289 (8)
C33A	0.804 (5)	0.8938 (15)	0.743 (2)	0.086 (13)*	0.289 (8)
H33B	0.8472	0.9608	0.7420	0.104*	0.289 (8)
C34A	0.847 (3)	0.8433 (16)	0.8078 (12)	0.104 (10)*	0.289 (8)
H34B	0.9230	0.8760	0.8500	0.125*	0.289 (8)
					· · · /

C35A	0.783 (3)	0.7460 (15)	0.8125 (12)	0.138 (15)*	0.289 (8)
H35B	0.8069	0.7156	0.8607	0.166*	0.289 (8)
C36A	0.678 (2)	0.6898 (10)	0.7431 (10)	0.071 (7)*	0.289 (8)
H36B	0.6433	0.6213	0.7421	0.085*	0.289 (8)
C37A	0.628 (3)	0.7422 (8)	0.6764 (13)	0.052 (6)*	0.289 (8)
C38A	-0.069(2)	0.2302 (10)	0.3910 (14)	0.103 (8)*	0.289 (8)
H38D	-0.1751	0.2335	0.4048	0.155*	0.289 (8)
H38E	-0.0323	0.1828	0.4235	0.155*	0.289 (8)
H38F	-0.0643	0.2094	0.3291	0.155*	0.289 (8)
N5	0.7895 (4)	0.1618 (3)	0.6196 (2)	0.0802 (9)	
05	0.7699 (5)	0.1173 (3)	0.6834 (3)	0.1369 (14)	
06	0.8104 (5)	0.2515 (3)	0.6310 (3)	0.1375 (15)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.400 (12)	0.290 (8)	0.106 (3)	0.157 (8)	-0.058 (5)	-0.055 (4)
N1	0.0686 (18)	0.0573 (16)	0.0730 (17)	0.0000 (13)	-0.0074 (14)	0.0121 (13)
N2	0.092 (2)	0.0471 (15)	0.0814 (19)	0.0150 (14)	0.0001 (16)	0.0019 (13)
C11	0.096 (3)	0.0613 (15)	0.0784 (15)	0.0338 (16)	0.0034 (16)	-0.0078 (11)
S1	0.104 (4)	0.0507 (14)	0.0695 (16)	0.0185 (16)	0.0162 (19)	0.0036 (11)
01	0.185 (8)	0.086 (4)	0.080 (4)	0.037 (5)	-0.036 (5)	-0.015 (3)
O2	0.114 (5)	0.105 (5)	0.159 (6)	0.048 (4)	0.025 (5)	-0.017 (4)
O3	0.116 (6)	0.058 (4)	0.087 (4)	0.032 (4)	-0.024 (4)	0.010 (3)
C1	0.064 (5)	0.050 (5)	0.049 (5)	0.016 (4)	0.000 (4)	0.007 (3)
C2	0.063 (5)	0.074 (7)	0.076 (8)	0.007 (4)	0.006 (5)	-0.004 (4)
C3	0.094 (8)	0.060 (7)	0.101 (9)	0.011 (5)	-0.003 (6)	0.013 (6)
C4	0.077 (5)	0.045 (5)	0.044 (4)	0.031 (4)	-0.009 (4)	-0.008 (3)
C5	0.066 (6)	0.088 (9)	0.068 (7)	0.029 (5)	-0.006 (5)	0.006 (6)
C6	0.107 (12)	0.104 (11)	0.098 (12)	0.015 (8)	0.002 (8)	0.013 (7)
Cl1A	0.127 (4)	0.0511 (13)	0.136 (3)	0.0177 (18)	0.016 (3)	-0.0226 (14)
S1A	0.099 (3)	0.0487 (13)	0.0677 (18)	0.0154 (15)	0.0049 (16)	0.0110 (11)
O1A	0.155 (6)	0.080 (4)	0.115 (6)	0.026 (4)	0.074 (5)	0.008 (4)
O2A	0.105 (5)	0.076 (4)	0.130 (5)	0.005 (3)	-0.024 (4)	-0.018 (3)
O3A	0.139 (8)	0.071 (4)	0.113 (6)	0.014 (4)	0.045 (5)	0.018 (4)
C1A	0.072 (6)	0.061 (6)	0.056 (5)	0.012 (4)	-0.006 (5)	0.009 (4)
C2A	0.083 (7)	0.078 (7)	0.072 (8)	0.017 (5)	0.013 (5)	-0.004 (4)
C3A	0.082 (7)	0.056 (6)	0.092 (8)	0.001 (5)	0.001 (6)	-0.005 (6)
C4A	0.124 (10)	0.103 (10)	0.097 (10)	0.031 (7)	-0.008 (7)	0.000(7)
C5A	0.089 (9)	0.081 (9)	0.087 (10)	0.032 (6)	0.009 (7)	-0.013 (5)
C6A	0.050 (5)	0.054 (6)	0.056 (5)	0.008 (4)	0.005 (4)	0.002 (4)
C10	0.077 (2)	0.0585 (19)	0.0656 (19)	0.0147 (16)	0.0016 (17)	0.0026 (15)
C9	0.069 (2)	0.079 (2)	0.068 (2)	0.0069 (18)	0.0054 (16)	0.0175 (18)
C8	0.079 (2)	0.0546 (19)	0.072 (2)	0.0088 (16)	-0.0008 (18)	0.0041 (15)
C7	0.069 (2)	0.0578 (19)	0.072 (2)	0.0114 (15)	0.0063 (16)	0.0085 (15)
C11	0.0589 (18)	0.0594 (18)	0.0585 (17)	0.0113 (14)	-0.0041 (14)	0.0125 (14)
C12	0.065 (2)	0.0570 (18)	0.0650 (18)	0.0143 (15)	0.0060 (15)	0.0106 (14)
C13	0.067 (2)	0.0585 (19)	0.0684 (19)	0.0111 (15)	0.0028 (16)	0.0112 (15)

supporting information

C14	0.066 (2)	0.0545 (18)	0.0653 (19)	0.0144 (14)	0.0013 (15)	0.0097 (14)
C15	0.090 (3)	0.059 (2)	0.074 (2)	0.0202 (18)	0.0110 (19)	0.0053 (16)
C16	0.0616 (19)	0.0528 (17)	0.073 (2)	0.0091 (14)	-0.0122 (16)	0.0118 (15)
C17	0.067 (2)	0.058 (2)	0.094 (3)	0.0032 (17)	-0.0100 (19)	0.0187 (18)
C18	0.060 (2)	0.084 (3)	0.107 (3)	-0.0039 (19)	-0.005 (2)	0.040 (2)
C19	0.068 (2)	0.086 (3)	0.091 (3)	0.0222 (19)	0.0137 (19)	0.024 (2)
C20	0.062 (2)	0.0618 (19)	0.076 (2)	0.0162 (15)	0.0032 (16)	0.0124 (16)
C21	0.0547 (17)	0.0497 (16)	0.0670 (18)	0.0118 (13)	-0.0075 (14)	0.0104 (13)
C22	0.117 (4)	0.071 (3)	0.111 (3)	-0.025 (2)	-0.003 (3)	0.021 (2)
N3	0.064 (4)	0.093 (6)	0.073 (5)	0.022 (3)	0.006 (2)	-0.007 (3)
N4	0.105 (5)	0.055 (3)	0.092 (4)	0.012 (3)	-0.016 (3)	0.008 (3)
C23	0.081 (4)	0.081 (4)	0.082 (4)	0.013 (4)	0.005 (3)	0.022 (4)
C24	0.070 (6)	0.088 (6)	0.100 (6)	0.014 (3)	0.014 (4)	0.016 (4)
C25	0.078 (5)	0.074 (4)	0.081 (4)	0.025 (4)	0.004 (3)	0.016 (4)
C26	0.084 (5)	0.073 (4)	0.077 (5)	0.019 (3)	0.009 (4)	0.004 (3)
C27	0.062 (3)	0.073 (4)	0.067 (4)	0.019 (3)	0.011 (3)	0.003 (3)
C28	0.084 (4)	0.084 (4)	0.071 (3)	0.027 (3)	0.005 (3)	0.009 (3)
C29	0.086 (4)	0.081 (4)	0.075 (3)	0.024 (3)	0.013 (3)	0.016 (3)
C30	0.070 (3)	0.058 (3)	0.070 (3)	0.018 (3)	0.001 (3)	0.008 (3)
C31	0.097 (5)	0.072 (4)	0.083 (4)	0.019 (4)	-0.006 (3)	0.017 (4)
C32	0.067 (8)	0.070 (8)	0.080 (10)	0.018 (3)	0.011 (3)	0.011 (3)
C33	0.063 (4)	0.066 (5)	0.081 (5)	0.006 (3)	0.002 (4)	0.008 (3)
C34	0.066 (4)	0.068 (4)	0.072 (4)	0.006 (3)	-0.008 (2)	0.011 (3)
C35	0.079 (4)	0.064 (3)	0.065 (3)	0.019 (3)	-0.005 (3)	0.011 (3)
C36	0.064 (4)	0.064 (4)	0.071 (4)	0.010 (2)	0.003 (3)	0.000 (3)
C37	0.062 (4)	0.073 (4)	0.057 (4)	0.023 (3)	0.013 (3)	0.010 (3)
C38	0.073 (4)	0.094 (4)	0.082 (4)	0.012 (3)	-0.008 (3)	-0.015 (4)
N5	0.084 (2)	0.084 (2)	0.075 (2)	0.0217 (18)	-0.0086 (17)	0.0104 (18)
05	0.143 (3)	0.116 (3)	0.163 (4)	0.028 (2)	0.061 (3)	0.048 (3)
06	0.129 (3)	0.094 (3)	0.195 (4)	0.014 (2)	-0.024 (3)	0.049 (3)

Geometric parameters (Å, °)

O4—N5	1.133 (6)	N4—C32	1.372 (6)
N1—C8	1.328 (5)	N4—H1N4	0.8081
N1—C9	1.345 (5)	C23—C24	1.366 (8)
N1—C22	1.476 (5)	C23—C27	1.429 (9)
N2—C15	1.336 (5)	C23—H23A	0.9300
N2—C16	1.377 (5)	C24—H24A	0.9300
N2—H1N2	0.7838	C25—C26	1.376 (11)
Cl1—C4	1.842 (5)	C25—H25A	0.9300
S1—O3	1.342 (4)	C26—C27	1.409 (10)
S1—01	1.425 (5)	C26—H26A	0.9300
S1—O2	1.427 (7)	C27—C28	1.468 (7)
S1—C1	1.773 (4)	C28—C29	1.318 (6)
C1—C6	1.352 (8)	C28—H28A	0.9300
C1—C2	1.365 (7)	C29—C30	1.404 (7)
C2—C3	1.415 (10)	C29—H29A	0.9300

C2—H2A	0.9300	C30—C31	1.391 (9)
C3—C4	1.343 (9)	C30—C37	1.445 (8)
С3—НЗА	0.9300	C31—H31A	0.9300
C4—C5	1.395 (8)	C32—C33	1.377 (6)
C5—C6	1.397 (8)	C32—C37	1.412 (7)
C5—H5A	0.9300	C33—C34	1.362 (8)
С6—Н6А	0.9300	С33—Н33А	0.9300
Cl1A—C4A	1.842 (5)	C34—C35	1.363 (10)
S1A—O3A	1.342 (4)	С34—Н34А	0.9300
S1A—O1A	1.425 (5)	C35—C36	1.443 (9)
S1A—O2A	1.427 (7)	С35—Н35А	0.9300
S1A—C1A	1.773 (4)	C36—C37	1.421 (8)
C1A—C6A	1.351 (8)	C36—H36A	0.9300
C1A—C2A	1.365 (7)	C38—H38A	0.9600
C2A—C3A	1.415 (10)	C38—H38B	0.9600
C2A—H2AA	0.9300	C38—H38C	0.9600
C3A—C4A	1 343 (10)	N3A—C25A	1 324 (9)
C3A—H3AA	0.9300	N3A—C24A	1.352(7)
C4A—C5A	1,395 (8)	N3A—C38A	1.468 (6)
C5A—C6A	1 397 (8)	N4A—C31A	1 326 (8)
C5A—H5AA	0.9300	N4A—C32A	1.372 (6)
С6А—Н6АА	0.9300	N4A—H1N4	1.1137
C10—C9	1.356 (5)	N4A—H2N4	0.8600
C10—C11	1.386 (5)	C_{23A} C_{24A}	1.367 (8)
C10—H10A	0.9300	C23A—C27A	1.429 (9)
C9—H9A	0.9300	C23A—H23B	0.9300
C8—C7	1.360 (5)	C24A—H24B	0.9300
C8—H8A	0.9300	C25A—C26A	1.376 (11)
C7—C11	1.378 (5)	C25A—H25B	0.9300
С7—Н7А	0.9300	C26A—C27A	1.410 (10)
C11—C12	1.455 (5)	C26A—H26B	0.9300
C12—C13	1.324 (5)	C27A—C28A	1.468 (7)
C12—H12A	0.9300	C28A—C29A	1.318 (6)
C13—C14	1.432 (5)	C28A—H28B	0.9300
С13—Н13А	0.9300	C29A—C30A	1.403 (7)
C14—C15	1.362 (5)	С29А—Н29В	0.9300
C14—C21	1.440 (5)	C30A—C31A	1.390 (9)
C15—H15A	0.9300	C30A—C37A	1.445 (8)
C16—C17	1.370 (5)	C31A—H31B	0.9300
C16—C21	1.407 (4)	C32A—C33A	1.377 (6)
C17—C18	1.360 (6)	C32A—C37A	1.412 (7)
С17—Н17А	0.9300	C33A—C34A	1.362 (8)
C18—C19	1.404 (6)	С33А—Н33В	0.9300
C18—H18A	0.9300	C34A—C35A	1.363 (10)
C19—C20	1.382 (5)	C34A—H34B	0.9300
C19—H19A	0.9300	C35A—C36A	1.443 (10)
C20—C21	1.397 (5)	C35A—H35B	0.9300
C20—H20A	0.9300	C36A—C37A	1.421 (8)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—H22A	0.9600	C36A—H36B	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—H22B	0.9600	C38A—H38D	0.9600
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C22—H22C	0.9600	C38A—H38E	0.9600
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N3—C25	1.324 (9)	C38A—H38F	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C24	1.352 (7)	N5—O6	1.197 (5)
N4-C31 1.326 (8) C8-N1-C9 119.2 (3) C31-N4-H1N4 118.3 C8-N1-C22 120.5 (3) C32-N4-H1N4 132.2 C9-N1-C22 120.3 (3) C24-C23-C27 119.9 (5) C15-N2-C16 108.9 (3) C24-C23-H23A 120.0 C15-N2-H1N2 133.0 C27-C23-H23A 120.0 C16-N2-H1N2 117.4 N3-C24-C23 121.6 (6) O3-S1-O1 128.6 (4) N3-C24-H24A 119.2 O1-S1-O2 90.3 (5) C23-C24-H24A 119.2 O1-S1-O2 113.3 (4) N3-C25-C26 121.2 (5) C6-C1 106.7 (2) C26-C25-H25A 119.4 O1-S1-C1 106.7 (2) C26-C27-C28 123.5 (5) C1-C2 120.3 (5) C25-C26-H25A 119.4 C2-C1-S1 119.1 (4) C27-C26-H26A 119.4 C2-C2-C3 119.5 (6) C26-C27-C28 125.3 (5) C1-C2-H2A 120.2 C29-C28-C27 127.1 (4) C4-C3-H3A 120.3 C27-C28-H28A	N3—C38	1.468 (6)	N5—O5	1.216 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N4—C31	1.326 (8)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C9	119.2 (3)	C31—N4—H1N4	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C22	120.5 (3)	C32—N4—H1N4	132.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N1—C22	120.3 (3)	C24—C23—C27	119.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—N2—C16	108.9 (3)	C24—C23—H23A	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—N2—H1N2	133.0	С27—С23—Н23А	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N2—H1N2	117.4	N3—C24—C23	121.6 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—O1	128.6 (4)	N3—C24—H24A	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—O2	90.3 (5)	C23—C24—H24A	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—S1—O2	113.3 (4)	N3—C25—C26	121.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—C1	110.2 (2)	N3—C25—H25A	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—S1—C1	105.7 (2)	C26—C25—H25A	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—C1	106.5 (3)	C25—C26—C27	121.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2	120.3 (5)	C25—C26—H26A	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6C1S1	119.1 (4)	С27—С26—Н26А	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—S1	120.2 (4)	C26—C27—C23	115.5 (4)
C1—C2—H2A120.2C23—C27—C28119.1 (5)C3—C2—H2A120.2C29—C28—C27127.1 (4)C4—C3—C2119.4 (6)C29—C28—H28A116.5C4—C3—H3A120.3C27—C28—H28A116.5C2—C3—H3A120.3C28—C29—C30129.7 (4)C3—C4—C5119.5 (5)C28—C29—H29A115.2C3—C4—C11121.2 (5)C30—C29—H29A115.2C5—C4—C11119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—H33A120.5O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5	C1—C2—C3	119.5 (6)	C26—C27—C28	125.3 (5)
C3-C2-H2A120.2C29-C28-C27127.1 (4)C4-C3-C2119.4 (6)C29-C28-H28A116.5C4-C3-H3A120.3C27-C28-H28A116.5C2-C3-H3A120.3C28-C29-C30129.7 (4)C3-C4-C5119.5 (5)C28-C29-H29A115.2C3-C4-C11121.2 (5)C30-C29-H29A115.2C5-C4-C11119.1 (5)C31-C30-C29123.5 (5)C4-C5-C6119.8 (5)C31-C30-C37104.0 (4)C4-C5-H5A120.1C29-C30-C37132.4 (5)C6-C5-H5A120.1N4-C31-C30111.9 (5)C1-C6-C5119.9 (5)N4-C31-H31A124.1C5-C6-H6A120.1C30-C37107.2 (5)O3A-S1A-O1A128.5 (4)N4-C32-C37107.2 (5)O3A-S1A-O2A90.3 (5)C33-C32-C37123.1 (6)O1A-S1A-O2A113.3 (4)C34-C33-H33A120.5O1A-S1A-C1A110.2 (2)C34-C33-H33A120.5	C1—C2—H2A	120.2	C23—C27—C28	119.1 (5)
C4—C3—C2119.4 (6)C29—C28—H28A116.5C4—C3—H3A120.3C27—C28—H28A116.5C2—C3—H3A120.3C28—C29—C30129.7 (4)C3—C4—C5119.5 (5)C28—C29—H29A115.2C3—C4—C11121.2 (5)C30—C29—H29A115.2C5—C4—C11119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C5—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5	C3—C2—H2A	120.2	C29—C28—C27	127.1 (4)
C4—C3—H3A120.3C27—C28—H28A116.5C2—C3—H3A120.3C28—C29—C30129.7 (4)C3—C4—C5119.5 (5)C28—C29—H29A115.2C3—C4—C11121.2 (5)C30—C29—H29A115.2C5—C4—C11119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C5—C6—H6A120.1C30—C37107.2 (5)O3A—S1A—O1A128.5 (4)N4—C32—C33129.7 (6)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5O1A—S1A—C1A105.7 (2)C32—C33—H33A120.5	C4—C3—C2	119.4 (6)	C29—C28—H28A	116.5
C2—C3—H3A120.3C28—C29—C30129.7 (4)C3—C4—C5119.5 (5)C28—C29—H29A115.2C3—C4—C11121.2 (5)C30—C29—H29A115.2C5—C4—C11119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C1—C6—C5119.9 (5)N4—C31—C30111.9 (5)C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5O1A—S1A—C1A105.7 (2)C32—C33—H33A120.5	С4—С3—НЗА	120.3	C27—C28—H28A	116.5
C3-C4-C5119.5 (5)C28-C29-H29A115.2C3-C4-C11121.2 (5)C30-C29-H29A115.2C5-C4-C11119.1 (5)C31-C30-C29123.5 (5)C4-C5-C6119.8 (5)C31-C30-C37104.0 (4)C4-C5-H5A120.1C29-C30-C37132.4 (5)C1-C6-C5119.9 (5)N4-C31-C30111.9 (5)C1-C6-H6A120.1C30-C31-H31A124.1C5-C6-H6A120.1C30-C31-H31A124.1C5-C6-H6A120.1N4-C32-C33129.7 (6)O3A-S1A-O1A128.5 (4)N4-C32-C37107.2 (5)O3A-S1A-O2A90.3 (5)C33-C32-C37123.1 (6)O1A-S1A-O1A110.2 (2)C34-C33-H33A120.5O1A-S1A-C1A105.7 (2)C32-C33-H33A120.5	С2—С3—НЗА	120.3	C28—C29—C30	129.7 (4)
C3—C4—Cl1121.2 (5)C30—C29—H29A115.2C5—C4—Cl1119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C5—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—H33A120.5O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5	C3—C4—C5	119.5 (5)	С28—С29—Н29А	115.2
C5—C4—C11119.1 (5)C31—C30—C29123.5 (5)C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O1A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5O1A—S1A—C1A105.7 (2)C32—C33—H33A120.5	C3—C4—Cl1	121.2 (5)	С30—С29—Н29А	115.2
C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O1A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—C1A110.2 (2)C34—C33—H33A120.5O1A—S1A—C1A110.2 (2)C32—C33—H33A120.5	C5—C4—Cl1	119.1 (5)	C31—C30—C29	123.5 (5)
C4—C5—H5A120.1C29—C30—C37132.4 (5)C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—C32119.0 (6)O3A—S1A—C1A110.2 (2)C34—C33—H33A120.5	C4—C5—C6	119.8 (5)	C31—C30—C37	104.0 (4)
C6—C5—H5A120.1N4—C31—C30111.9 (5)C1—C6—C5119.9 (5)N4—C31—H31A124.1C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—C32119.0 (6)O3A—S1A—C1A110.2 (2)C34—C33—H33A120.5	С4—С5—Н5А	120.1	C29—C30—C37	132.4 (5)
C1—C6—C5119.9 (5)N4—C31—H31A124.1C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—C32119.0 (6)O3A—S1A—C1A110.2 (2)C34—C33—H33A120.5	С6—С5—Н5А	120.1	N4-C31-C30	111.9 (5)
C1—C6—H6A120.1C30—C31—H31A124.1C5—C6—H6A120.1N4—C32—C33129.7 (6)O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)O1A—S1A—O2A113.3 (4)C34—C33—C32119.0 (6)O3A—S1A—C1A110.2 (2)C34—C33—H33A120.5O1A—S1A—C1A105.7 (2)C32—C33—H33A120.5	C1—C6—C5	119.9 (5)	N4—C31—H31A	124.1
C5—C6—H6A 120.1 N4—C32—C33 129.7 (6) O3A—S1A—O1A 128.5 (4) N4—C32—C37 107.2 (5) O3A—S1A—O2A 90.3 (5) C33—C32—C37 123.1 (6) O1A—S1A—O2A 113.3 (4) C34—C33—C32 119.0 (6) O3A—S1A—C1A 110.2 (2) C34—C33—H33A 120.5 O1A—S1A—C1A 105.7 (2) C32—C33—H33A 120.5	С1—С6—Н6А	120.1	С30—С31—Н31А	124.1
O3A—S1A—O1A 128.5 (4) N4—C32—C37 107.2 (5) O3A—S1A—O2A 90.3 (5) C33—C32—C37 123.1 (6) O1A—S1A—O2A 113.3 (4) C34—C33—C32 119.0 (6) O3A—S1A—C1A 110.2 (2) C34—C33—H33A 120.5 O1A—S1A—C1A 105.7 (2) C32—C33—H33A 120.5	С5—С6—Н6А	120.1	N4—C32—C33	129.7 (6)
O3A—S1A—O2A 90.3 (5) C33—C32—C37 123.1 (6) O1A—S1A—O2A 113.3 (4) C34—C33—C32 119.0 (6) O3A—S1A—C1A 110.2 (2) C34—C33—H33A 120.5 O1A—S1A—C1A 105.7 (2) C32—C33—H33A 120.5	O3A—S1A—O1A	128.5 (4)	N4—C32—C37	107.2 (5)
O1A—S1A—O2A 113.3 (4) C34—C33—C32 119.0 (6) O3A—S1A—C1A 110.2 (2) C34—C33—H33A 120.5 O1A—S1A—C1A 105.7 (2) C32—C33—H33A 120.5	O3A—S1A—O2A	90.3 (5)	C33—C32—C37	123.1 (6)
O3A—S1A—C1A 110.2 (2) C34—C33—H33A 120.5 O1A—S1A—C1A 105.7 (2) C32—C33—H33A 120.5	O1A—S1A—O2A	113.3 (4)	C34—C33—C32	119.0 (6)
014 - S14 - C14 $1057(2)$ $C32 - C33 - H334$ 1205	O3A—S1A—C1A	110.2 (2)	С34—С33—Н33А	120.5
011 - 011	O1A—S1A—C1A	105.7 (2)	С32—С33—Н33А	120.5
O2A—S1A—C1A 106.6 (3) C33—C34—C35 121.9 (5)	O2A—S1A—C1A	106.6 (3)	C33—C34—C35	121.9 (5)
C6A—C1A—C2A 120.4 (5) C33—C34—H34A 119.1	C6A—C1A—C2A	120.4 (5)	C33—C34—H34A	119.1
C6A—C1A—S1A 119.2 (4) C35—C34—H34A 119.1	C6A—C1A—S1A	119.2 (4)	C35—C34—H34A	119.1
C2A—C1A—S1A 120.4 (4) C34—C35—C36 120.6 (4)	C2A—C1A—S1A	120.4 (4)	C34—C35—C36	120.6 (4)
C1A—C2A—C3A 119.5 (6) C34—C35—H35A 119.7	C1A—C2A—C3A	119.5 (6)	С34—С35—Н35А	119.7

С1А—С2А—Н2АА	120.2	C36—C35—H35A	119.7
C3A—C2A—H2AA	120.2	C37—C36—C35	118.2 (4)
C4A—C3A—C2A	119.4 (6)	C37—C36—H36A	120.9
С4А—С3А—НЗАА	120.3	C35—C36—H36A	120.9
С2А—С3А—НЗАА	120.3	C32—C37—C36	117.3 (6)
C3A—C4A—C5A	119.5 (5)	C32—C37—C30	107.4 (6)
C3A—C4A—Cl1A	121.3 (5)	C36—C37—C30	135.3 (5)
C5A—C4A—Cl1A	119.2 (5)	C25A—N3A—C24A	120.3 (6)
C4A—C5A—C6A	119.7 (5)	C25A—N3A—C38A	123.0 (7)
С4А—С5А—Н5АА	120.1	C24A—N3A—C38A	116.5 (8)
С6А—С5А—Н5АА	120.1	C31A—N4A—C32A	109.5 (6)
C1A—C6A—C5A	119.9 (5)	C31A—N4A—H1N4	137.4
С1А—С6А—Н6АА	120.1	C32A—N4A—H1N4	112.4
С5А—С6А—Н6АА	120.1	C31A—N4A—H2N4	125.3
C9—C10—C11	121.1 (3)	C32A—N4A—H2N4	125.3
C9—C10—H10A	119.4	C24A—C23A—C27A	119.8 (5)
C11—C10—H10A	119.4	C24A—C23A—H23B	120.1
N1—C9—C10	121.0 (3)	C27A—C23A—H23B	120.1
N1—C9—H9A	119.5	N3A—C24A—C23A	121.5 (6)
С10—С9—Н9А	119.5	N3A—C24A—H24B	119.2
N1—C8—C7	121.4 (3)	C23A—C24A—H24B	119.2
N1—C8—H8A	119.3	N3A—C25A—C26A	121.1 (6)
С7—С8—Н8А	119.3	N3A—C25A—H25B	119.5
C8—C7—C11	121.2 (3)	C26A—C25A—H25B	119.5
C8—C7—H7A	119.4	C25A—C26A—C27A	121.1 (5)
С11—С7—Н7А	119.4	C25A—C26A—H26B	119.4
C7—C11—C10	116.0 (3)	C27A—C26A—H26B	119.4
C7—C11—C12	120.1 (3)	C26A—C27A—C23A	115.5 (4)
C10-C11-C12	123.8 (3)	C26A—C27A—C28A	125.2 (5)
C13—C12—C11	125.0 (3)	C23A—C27A—C28A	119.3 (5)
C13—C12—H12A	117.5	C29A—C28A—C27A	127.2 (4)
C11—C12—H12A	117.5	C29A—C28A—H28B	116.4
C12—C13—C14	128.7 (3)	C27A—C28A—H28B	116.4
С12—С13—Н13А	115.7	C28A—C29A—C30A	129.8 (4)
C14—C13—H13A	115.7	C28A—C29A—H29B	115.1
C15—C14—C13	122.3 (3)	C30A—C29A—H29B	115.1
C15—C14—C21	105.7 (3)	C31A—C30A—C29A	123.7 (5)
C13—C14—C21	132.0 (3)	C31A—C30A—C37A	104.0 (4)
N2-C15-C14	111.4 (3)	C29A—C30A—C37A	132.2 (5)
N2—C15—H15A	124.3	N4A—C31A—C30A	111.8 (5)
C14—C15—H15A	124.3	N4A—C31A—H31B	124.1
C17—C16—N2	129.1 (3)	C30A—C31A—H31B	124.1
C17—C16—C21	123.4 (4)	N4A—C32A—C33A	129.8 (6)
N2-C16-C21	107.5 (3)	N4A—C32A—C37A	107.2 (5)
C18—C17—C16	117.5 (4)	C33A—C32A—C37A	123.0 (6)
C18—C17—H17A	121.2	C34A—C33A—C32A	119.0 (6)
C16—C17—H17A	121.2	С34А—С33А—Н33В	120.5
C17—C18—C19	121.0 (4)	С32А—С33А—Н33В	120.5

C17—C18—H18A	119.5	C33A—C34A—C35A	121.8 (5)
C19—C18—H18A	119.5	C33A—C34A—H34B	119.1
C20-C19-C18	121.7 (4)	C35A—C34A—H34B	119.1
С20—С19—Н19А	119.2	C34A—C35A—C36A	120.4 (4)
С18—С19—Н19А	119.2	С34А—С35А—Н35В	119.8
C19—C20—C21	117.9 (3)	C36A—C35A—H35B	119.8
C19—C20—H20A	121.1	C37A - C36A - C35A	118.0(5)
C_{21} C_{20} H_{20A}	121.1	C37A - C36A - H36B	121.0
C_{20} C_{21} C_{16}	118.6 (3)	C35A - C36A - H36B	121.0
C_{20} C_{21} C_{10}	135.0(3)	$C_{32}A - C_{37}A - C_{36}A$	1173(6)
$C_{20} = C_{21} = C_{14}$	106.4(3)	$C_{32A} = C_{37A} = C_{30A}$	107.4(6)
N1 C22 H22A	100.4 (5)	$C_{32A} = C_{37A} = C_{30A}$	107.4(0) 135.4(5)
NI C22 H22D	109.5	$C_{30A} = C_{37A} = C_{30A}$	100.5
NI = C22 = H22D	109.5	N3A = C38A = H38D	109.5
H22A-C22-H22B	109.5	N3A - C38A - H38E	109.5
NI-C22-H22C	109.5	H38D—C38A—H38E	109.5
H22A—C22—H22C	109.5	N3A—C38A—H38F	109.5
H22B—C22—H22C	109.5	H38D—C38A—H38F	109.5
C25—N3—C24	120.4 (6)	H38E—C38A—H38F	109.5
C25—N3—C38	123.1 (7)	O4—N5—O6	123.5 (6)
C24—N3—C38	116.5 (7)	O4—N5—O5	118.0 (6)
C31—N4—C32	109.5 (6)	O6—N5—O5	118.3 (4)
O3—S1—C1—C6	-72.0 (16)	C27—C23—C24—N3	5.6 (17)
O1—S1—C1—C6	70.6 (16)	C24—N3—C25—C26	2.1 (17)
O2—S1—C1—C6	-168.6 (16)	C38—N3—C25—C26	-179.9 (10)
O3—S1—C1—C2	115.4 (12)	N3-C25-C26-C27	0.7 (12)
O1—S1—C1—C2	-102.1 (12)	C25—C26—C27—C23	-0.4 (9)
O2—S1—C1—C2	18.8 (12)	C25—C26—C27—C28	-179.7 (6)
C6—C1—C2—C3	-8 (3)	C24—C23—C27—C26	-2.7 (11)
S1—C1—C2—C3	164.9 (17)	C24—C23—C27—C28	176.7 (9)
C1-C2-C3-C4	15 (3)	$C_{26} - C_{27} - C_{28} - C_{29}$	0.0 (9)
$C_2 = C_3 = C_4 = C_5$	-13(3)	C_{23} C_{27} C_{28} C_{29}	-1793(6)
$C_2 = C_3 = C_4 = C_{11}$	1724(17)	C_{27} C_{28} C_{29} C_{30}	176.8 (6)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	3(3)	C_{28} C_{29} C_{30} C_{31}	-1759(7)
C_{11} C_{4} C_{5} C_{6}	5(3) 178(2)	$C_{20} = C_{20} = C_{30} = C_{31}$	175.7(7)
$C_{1}^{2} = C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	-2(3)	$C_{20} = C_{20} = C_{30} = C_{37}$	-0.5(12)
$C_2 - C_1 - C_0 - C_3$	2(3) -174.8(10)	$C_{32} = N_{4} = C_{31} = C_{30}$	0.3(13)
SI = CI = C0 = C3	-1/4.0(19)	$C_{29} = C_{30} = C_{31} = N_4$	1/0.4(7)
C4 - C5 - C6 - C1	5(4)	$C_{3} = C_{3} = C_{3} = C_{3}$	-0.2(9)
O_{3A} SI_{A} C_{1A} C_{6A}	-60.6(14)	C_{31} N4 C_{32} C_{33}	-1/8(2)
OIA—SIA—CIA—C6A	156.9 (13)	C_{31} N4 C_{32} C_{32} C_{34}	0.9 (18)
O2A—SIA—CIA—C6A	36.1 (13)	N4—C32—C33—C34	178.9 (18)
U3A—SIA—CIA—C2A	117.0 (14)	C37—C32—C33—C34	0(3)
OIA—SIA—CIA—C2A	-25.5 (14)	C32—C33—C34—C35	1 (2)
O2A—S1A—C1A—C2A	-146.3 (14)	C33—C34—C35—C36	-1.1 (13)
C6A—C1A—C2A—C3A	7 (3)	C34—C35—C36—C37	1.3 (9)
S1A—C1A—C2A—C3A	-170.6 (17)	N4—C32—C37—C36	-178.8 (12)
C1A—C2A—C3A—C4A	-15 (3)	C33—C32—C37—C36	1 (3)
C2A—C3A—C4A—C5A	13 (3)	N4-C32-C37-C30	-1.0 (18)

C2A—C3A—C4A—C11A	-166.5 (19)	$C_{33} - C_{32} - C_{37} - C_{30}$	178.4 (19)
C3A—C4A—C5A—C6A	-5 (3)	C35—C36—C37—C32	-1.0(15)
Cl1A—C4A—C5A—C6A	174.7 (19)	C35—C36—C37—C30	-178.0(10)
C2A—C1A—C6A—C5A	1 (3)	C31—C30—C37—C32	0.7 (13)
S1A-C1A-C6A-C5A	178.9 (17)	C29—C30—C37—C32	-177.6 (12)
C4A—C5A—C6A—C1A	-2 (3)	C31—C30—C37—C36	177.9 (11)
C8—N1—C9—C10	0.1 (5)	C29—C30—C37—C36	-0.4 (17)
C22—N1—C9—C10	179.7 (4)	C25A—N3A—C24A—C23A	8 (4)
C11—C10—C9—N1	-1.3 (5)	C38A—N3A—C24A—C23A	-177 (3)
C9—N1—C8—C7	0.5 (5)	C27A—C23A—C24A—N3A	-8 (3)
C22—N1—C8—C7	-179.1 (4)	C24A—N3A—C25A—C26A	-1 (5)
N1-C8-C7-C11	0.1 (6)	C38A—N3A—C25A—C26A	-176 (3)
C8—C7—C11—C10	-1.1 (5)	N3A—C25A—C26A—C27A	-5 (4)
C8—C7—C11—C12	179.4 (3)	C25A—C26A—C27A—C23A	4 (3)
C9—C10—C11—C7	1.7 (5)	C25A—C26A—C27A—C28A	-176 (2)
C9—C10—C11—C12	-178.8 (3)	C24A—C23A—C27A—C26A	2 (3)
C7—C11—C12—C13	178.8 (3)	C24A—C23A—C27A—C28A	-177.7 (18)
C10-C11-C12-C13	-0.7 (5)	C26A—C27A—C28A—C29A	179.3 (17)
C11—C12—C13—C14	-178.8 (3)	C23A—C27A—C28A—C29A	-1 (2)
C12—C13—C14—C15	178.9 (3)	C27A—C28A—C29A—C30A	-179.8 (15)
C12-C13-C14-C21	0.0 (6)	C28A—C29A—C30A—C31A	4 (3)
C16—N2—C15—C14	0.3 (4)	C28A—C29A—C30A—C37A	-178 (2)
C13—C14—C15—N2	-179.5 (3)	C32A—N4A—C31A—C30A	-4 (3)
C21—C14—C15—N2	-0.4 (4)	C29A—C30A—C31A—N4A	-178.5 (17)
C15—N2—C16—C17	179.1 (4)	C37A—C30A—C31A—N4A	4 (2)
C15—N2—C16—C21	-0.1 (4)	C31A—N4A—C32A—C33A	-177 (6)
N2-C16-C17-C18	-179.8 (3)	C31A—N4A—C32A—C37A	3 (4)
C21—C16—C17—C18	-0.7 (5)	N4A—C32A—C33A—C34A	179 (5)
C16—C17—C18—C19	-0.2 (6)	C37A—C32A—C33A—C34A	0 (8)
C17—C18—C19—C20	0.9 (6)	C32A—C33A—C34A—C35A	-2 (7)
C18—C19—C20—C21	-0.7 (5)	C33A—C34A—C35A—C36A	7 (4)
C19—C20—C21—C16	-0.2 (5)	C34A—C35A—C36A—C37A	-8 (3)
C19—C20—C21—C14	-179.7 (4)	N4A—C32A—C37A—C36A	179 (3)
C17—C16—C21—C20	0.9 (5)	C33A—C32A—C37A—C36A	-1 (7)
N2—C16—C21—C20	-179.8 (3)	N4A—C32A—C37A—C30A	-1 (4)
C17—C16—C21—C14	-179.4 (3)	C33A—C32A—C37A—C30A	179 (5)
N2-C16-C21-C14	-0.1 (3)	C35A—C36A—C37A—C32A	5 (4)
C15—C14—C21—C20	179.9 (4)	C35A—C36A—C37A—C30A	-175 (3)
C13—C14—C21—C20	-1.1 (6)	C31A—C30A—C37A—C32A	-2 (3)
C15—C14—C21—C16	0.3 (4)	C29A—C30A—C37A—C32A	-179 (3)
C13—C14—C21—C16	179.3 (3)	C31A—C30A—C37A—C36A	179 (3)
C25—N3—C24—C23	-5 (2)	C29A—C30A—C37A—C36A	1 (5)
C38—N3—C24—C23	176.6 (12)		

Hydrogen-bond geometry (Å, °)

Cg3, Cg6, Cg7 and Cg9 are the centroids of the C16–C21, C32–C37, N4A/C30A–C32A/C37A and C32A–C37A rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
N2—H1 <i>N</i> 2···O3 <i>A</i>	0.78	2.19	2.937 (9)	161
N4—H1 <i>N</i> 4···O4 ⁱ	0.81	2.43	3.220 (11)	165
N4—H1 <i>N</i> 4···O5 ⁱ	0.81	2.32	2.987 (8)	141
C3A—H3AA···O5 ⁱⁱ	0.93	2.43	3.246 (13)	146
C8—H8A····O2A ⁱⁱⁱ	0.93	2.40	3.213 (8)	146
C10—H10A····O5 ^{iv}	0.93	2.51	3.234 (6)	134
C18—H18 A ···O1 A^{v}	0.93	2.52	3.345 (8)	148
C22—H22 A ···O1 A ⁱⁱⁱ	0.96	2.45	3.368 (9)	160
C22—H22 C ···O2 A^{vi}	0.96	2.32	3.082 (9)	136
C26—H26A···O6 ^{vii}	0.93	2.53	3.440 (7)	168
C15—H15 <i>A</i> ··· <i>Cg</i> 6 ^{vii}	0.93	2.71	3.550 (6)	151
C15—H15 <i>A</i> ··· <i>Cg</i> 7 ^{vii}	0.93	2.94	3.844 (10)	165
C15—H15 <i>A</i> ··· <i>Cg</i> 9 ^{vii}	0.93	2.83	3.656 (13)	149
C34—H34 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱ	0.93	2.78	3.602 (7)	149
C38—H38 <i>C</i> ··· <i>Cg</i> 6 ⁱⁱ	0.96	2.95	3.714 (8)	137
С38—Н38С…Сд9 ^{vii}	0.96	2.83	3.627 (14)	141
$C34A$ — $H34B$ ··· $Cg3^{ii}$	0.93	2.89	3.56 (2)	130

Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1.