

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(Adamantan-1-yl)-1,2,3,4-tetrahydroisoquinoline-2-carbothioamide

Ali A. El-Emam,^a‡ Ebtehal S. Al-Abdullah,^a Hanaa M. Al-Tuwaijri,^a C. S. Chidan Kumar^b and Hoong-Kun Fun^a*§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hfun.c@ksu.edu.sa

Received 18 November 2013; accepted 19 November 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.114; data-to-parameter ratio = 13.4.

In the title compound, $C_{20}H_{26}N_2S$, the N-containing sixmembered ring adopts a boat conformation and the dihedral angle between the thiocarbamide group and the benzene ring is 49.67 (9)°. An intramolecular C-H···S hydrogen bond generates an S(6) ring motif. The N-H group is sterically hindered and there are no significant intermolecular interactions beyond van der Waals contacts.

Related literature

For related structures and biological background, see: Al-Abdullah *et al.* (2012); El-Emam *et al.* (2012); Al-Tamimi *et al.* (2013).

Experimental

Crystal data $C_{20}H_{26}N_2S$ $M_r = 326.49$

b = 6.4106 (2) A	
c = 14.2838 (3) Å	
$\beta = 103.366 \ (2)^{\circ}$	
V = 1707.87 (8) Å ³	
Z = 4	

Data collectionBruker APEXII CCD
diffractometer10894 measured reflections
2831 independent reflections
2351 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.040$ $T_{min} = 0.345, T_{max} = 0.921$ $R_{int} = 0.040$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 1.07	refinement
2831 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C16-H16B\cdots S1$	0.97	2.72	3.365 (2)	125

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7163).

References

- Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, 0531.
- Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, 0683.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, 01347.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Cu $K\alpha$ radiation $\mu = 1.67 \text{ mm}^{-1}$

 $0.81 \times 0.13 \times 0.05 \ \text{mm}$

T = 296 K

[‡] Additonal correspondence author, e-mail: elemam5@hotmail.com. § Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2013). E69, o1815 [doi:10.1107/S1600536813031516]

N-(Adamantan-1-yl)-1,2,3,4-tetrahydroisoquinoline-2-carbothioamide

Ali A. El-Emam, Ebtehal S. Al-Abdullah, Hanaa M. Al-Tuwaijri, C. S. Chidan Kumar and Hoong-Kun Fun

S1. Comment

In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, (Al-Abdullah *et al.*, 2012; El-Emam *et al.*, 2012; Al-Tamimi *et al.*, 2013) we synthesized the title compound (I) as a potential bioactive agent and its crystal structure is described here.

In the crystal structure of the title compound (I), the N-containing six-membered (N1/C1—C3/C8/C9) ring, Fig. 1, adopts a boat conformation, puckering parameters: Q = 0.639 (2) Å, θ = 88.01 (18)°, and φ = 119.18 (18)° with a maximum deviation of 0.380 (2) Å at atom C2. An intramolecular C–H…S hydrogen bond form a six-membered ring, Fig. 1, generating an *S*(6) ring motif, In the crystal structure, no significant intermolecular hydrogen bonds are observed.

S2. Experimental

A mixture of 387 mg 1-adamantylisothiocyanate (387 mg, 2 mmol) and 1,2,3,4-tetrahydroisoquinoline (266 mg, 2 mmol), in ethanol (15 ml), was heated under reflux for 2 h. On cooling, the precipitated crude product were filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 575 mg (88%) of the title compound ($C_{20}H_{26}N_2S$), *m.p.*: 420–422 K. Colorless needles were obtained from the slow evaporation of a CHCl₃:EtOH solution (1:1; 5 ml) at room temperature.

¹H NMR (CDCl₃, 500.13 MHz): δ 1.60–1.67 (m, 6H, Adamantane-H), 2.05 (s, 3H, Adamantane-H), 2.25–2.26 (m, 6H, Adamantane-H), 2.85 (t, 2H, J = 6.0 Hz, Isoquinoline-CH₂), 3.81 (t, 2H, J = 6.0 Hz, Isoquinoline-CH₂), 4.80 (s, 2H, Isoquinoline-CH₂), 5.15 (s, 1H, NH), 7.08–7.15 (m, 4H, Ar—H). ¹³C NMR (CDCl₃, 125.76 MHz): δ 29.68, 32.88, 35.56, 42.01 (Adamantane-C), 29.24, 48.12, 54.82, 126.49, 127.08, 128.33, 129.14, 133.43, 135.50 (Isoquinoline-C), 179.46 (C=S).

S3. Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.97 or 0.98 Å] and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids.

N-(Adamantan-1-yl)-1,2,3,4-tetrahydroisoquinoline-2-carbothioamide

Crystal data	
$C_{20}H_{26}N_2S$	F(000) = 704
$M_r = 326.49$	$D_{\rm x} = 1.270 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 2009 reflections
a = 19.1707 (5) Å	$\theta = 4.7 - 68.5^{\circ}$
b = 6.4106 (2) Å	$\mu = 1.67 \text{ mm}^{-1}$
c = 14.2838 (3) Å	T = 296 K
$\beta = 103.366 \ (2)^{\circ}$	Needle, colorless
V = 1707.87 (8) Å ³	$0.81 \times 0.13 \times 0.05 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD	10894 measured reflections
diffractometer	2831 independent reflections
Radiation source: fine-focus sealed tube	2351 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
φ and ω scans	$\theta_{\rm max} = 65.0^\circ, \ \theta_{\rm min} = 4.7^\circ$
Absorption correction: multi-scan	$h = -22 \rightarrow 22$
(SADABS; Bruker, 2009)	$k = -5 \rightarrow 7$
$T_{\min} = 0.345, \ T_{\max} = 0.921$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.041$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.114$	map
S = 1.07	Hydrogen site location: inferred from
2831 reflections	neighbouring sites
212 parameters	H atoms treated by a mixture of independent
0 restraints	and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0467P)^{2} + 0.4078P] \qquad \Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotrop	ic displacement	parameters	$(Å^2)$)
----------------------------------	------------------	-------------------	-----------------	------------	---------	---

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
S1	0.28539(3)	0.53707 (8)	0.87853 (4)	0.04780 (18)	
N1	0.31695 (8)	0.8392 (2)	1.01049 (11)	0.0410 (4)	
N2	0.22585 (9)	0.9145 (3)	0.88193 (13)	0.0487 (4)	
C1	0.30653 (10)	1.0463 (3)	1.04991 (15)	0.0454 (5)	
H1A	0.2582	1.0555	1.0596	0.054*	
H1B	0.3118	1.1525	1.0037	0.054*	
C2	0.35954 (10)	1.0889 (3)	1.14462 (14)	0.0468 (5)	
H2A	0.3574	1.2352	1.1611	0.056*	
H2B	0.3466	1.0071	1.1952	0.056*	
C3	0.43444 (10)	1.0346 (3)	1.13817 (13)	0.0394 (4)	
C4	0.49318 (11)	1.1642 (3)	1.16802 (14)	0.0477 (5)	
H4A	0.4874	1.2961	1.1922	0.057*	
C5	0.56065 (11)	1.0963 (4)	1.16170 (15)	0.0541 (6)	
H5A	0.6002	1.1827	1.1819	0.065*	
C6	0.56903 (11)	0.9017 (4)	1.12565 (15)	0.0549 (6)	
H6A	0.6146	0.8556	1.1231	0.066*	
C7	0.51028 (10)	0.7734 (3)	1.09301 (13)	0.0485 (5)	
H7A	0.5162	0.6430	1.0674	0.058*	
C8	0.44261 (10)	0.8406 (3)	1.09868 (13)	0.0388 (4)	
C9	0.37639 (10)	0.7106 (3)	1.06543 (14)	0.0464 (5)	
H9A	0.3863	0.5977	1.0252	0.056*	
H9B	0.3626	0.6500	1.1207	0.056*	
C10	0.27588 (9)	0.7748 (3)	0.92530 (14)	0.0386 (4)	
C11	0.17921 (9)	0.9182 (3)	0.78351 (14)	0.0388 (4)	
C12	0.13539 (11)	1.1194 (3)	0.77934 (17)	0.0559 (6)	
H12A	0.1675	1.2379	0.7938	0.067*	
H12B	0.1069	1.1140	0.8272	0.067*	
C13	0.08603 (11)	1.1464 (3)	0.67914 (16)	0.0545 (6)	
H13A	0.0589	1.2764	0.6773	0.065*	
C14	0.03443 (11)	0.9647 (4)	0.65865 (17)	0.0556 (6)	
H14A	0.0029	0.9802	0.5953	0.067*	
H14B	0.0053	0.9610	0.7058	0.067*	

C15	0.07696 (12)	0.7641 (3)	0.66319 (17)	0.0580 (6)	
H15A	0.0437	0.6459	0.6497	0.070*	
C16	0.12637 (10)	0.7366 (3)	0.76323 (15)	0.0491 (5)	
H16A	0.0981	0.7328	0.8115	0.059*	
H16B	0.1523	0.6060	0.7661	0.059*	
C17	0.12141 (15)	0.7699 (4)	0.58855 (17)	0.0754 (8)	
H17A	0.0902	0.7830	0.5249	0.090*	
H17B	0.1483	0.6411	0.5908	0.090*	
C18	0.17292 (14)	0.9540 (5)	0.60795 (19)	0.0727 (8)	
H18A	0.2013	0.9586	0.5591	0.087*	
C19	0.22293 (11)	0.9277 (4)	0.70823 (17)	0.0599 (6)	
H19A	0.2506	0.8006	0.7101	0.072*	
H19B	0.2560	1.0442	0.7215	0.072*	
C20	0.13032 (13)	1.1555 (4)	0.6051 (2)	0.0729 (7)	
H20A	0.1629	1.2734	0.6181	0.087*	
H20B	0.0993	1.1740	0.5416	0.087*	
H1N2	0.2278 (11)	1.034 (4)	0.9084 (15)	0.051 (6)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0513 (3)	0.0321 (3)	0.0554 (4)	0.0024 (2)	0.0028 (2)	-0.0036 (2)
N1	0.0388 (8)	0.0340 (9)	0.0481 (10)	0.0010 (6)	0.0057 (7)	-0.0023 (7)
N2	0.0455 (9)	0.0361 (11)	0.0575 (11)	0.0066 (7)	-0.0024 (8)	-0.0109 (8)
C1	0.0437 (11)	0.0419 (12)	0.0509 (12)	0.0046 (8)	0.0117 (9)	-0.0049 (8)
C2	0.0508 (12)	0.0453 (12)	0.0451 (12)	0.0021 (9)	0.0126 (9)	-0.0060 (9)
C3	0.0456 (11)	0.0434 (12)	0.0290 (10)	-0.0016 (8)	0.0082 (8)	0.0022 (7)
C4	0.0589 (12)	0.0463 (12)	0.0359 (11)	-0.0082 (9)	0.0067 (9)	-0.0005 (8)
C5	0.0464 (12)	0.0705 (16)	0.0440 (12)	-0.0172 (11)	0.0076 (10)	0.0007 (10)
C6	0.0420 (11)	0.0819 (17)	0.0419 (12)	0.0021 (11)	0.0121 (9)	0.0031 (11)
C7	0.0528 (12)	0.0557 (13)	0.0363 (11)	0.0108 (10)	0.0088 (9)	-0.0016 (9)
C8	0.0430 (10)	0.0406 (11)	0.0309 (10)	0.0017 (8)	0.0049 (8)	0.0020 (7)
C9	0.0493 (11)	0.0363 (11)	0.0490 (12)	0.0027 (9)	0.0020 (9)	0.0021 (8)
C10	0.0336 (9)	0.0353 (10)	0.0472 (12)	-0.0029 (7)	0.0101 (8)	0.0012 (8)
C11	0.0333 (9)	0.0306 (10)	0.0501 (12)	0.0003 (7)	0.0046 (8)	-0.0002 (8)
C12	0.0495 (12)	0.0392 (13)	0.0717 (15)	0.0064 (9)	-0.0010 (11)	-0.0092 (10)
C13	0.0521 (12)	0.0348 (12)	0.0698 (15)	0.0127 (9)	0.0002 (11)	0.0022 (9)
C14	0.0413 (11)	0.0607 (15)	0.0593 (14)	0.0029 (9)	0.0004 (10)	0.0047 (10)
C15	0.0582 (13)	0.0365 (13)	0.0661 (15)	-0.0082 (10)	-0.0124 (11)	0.0015 (10)
C16	0.0454 (11)	0.0386 (12)	0.0587 (13)	-0.0052 (9)	0.0024 (9)	0.0102 (9)
C17	0.1000 (19)	0.0659 (18)	0.0500 (15)	0.0366 (15)	-0.0034 (14)	-0.0084 (11)
C18	0.0681 (16)	0.098 (2)	0.0596 (16)	0.0250 (14)	0.0300 (13)	0.0246 (14)
C19	0.0428 (11)	0.0660 (16)	0.0751 (16)	0.0084 (10)	0.0219 (11)	0.0182 (12)
C20	0.0663 (15)	0.0633 (17)	0.0850 (18)	0.0017 (12)	0.0093 (14)	0.0356 (13)

Geometric parameters (Å, °)

<u></u> S1C10	1.6906 (19)	C11—C16	1.526 (2)
N1—C10	1.352 (2)	C11—C12	1.533 (3)
N1—C1	1.473 (2)	C12—C13	1.532 (3)
N1—C9	1.477 (2)	C12—H12A	0.9700
N2—C10	1.353 (2)	C12—H12B	0.9700
N2—C11	1.482 (2)	C13—C20	1.503 (3)
N2—H1N2	0.85 (2)	C13—C14	1.512 (3)
C1—C2	1.517 (3)	C13—H13A	0.9800
C1—H1A	0.9700	C14—C15	1.516 (3)
C1—H1B	0.9700	C14—H14A	0.9700
C2—C3	1.501 (3)	C14—H14B	0.9700
C2—H2A	0.9700	C15—C17	1.511 (4)
C2—H2B	0.9700	C15—C16	1.531 (3)
C3—C4	1.385 (3)	C15—H15A	0.9800
C3—C8	1.389 (3)	C16—H16A	0.9700
C4—C5	1.387 (3)	C16—H16B	0.9700
C4—H4A	0.9300	C17—C18	1.522 (4)
C5—C6	1.373 (3)	C17—H17A	0.9700
C5—H5A	0.9300	C17—H17B	0.9700
C6—C7	1.385 (3)	C18—C20	1.524 (4)
С6—Н6А	0.9300	C18—C19	1.538 (3)
С7—С8	1.387 (3)	C18—H18A	0.9800
С7—Н7А	0.9300	C19—H19A	0.9700
C8—C9	1.501 (3)	C19—H19B	0.9700
С9—Н9А	0.9700	C20—H20A	0.9700
С9—Н9В	0.9700	C20—H20B	0.9700
C11—C19	1.510 (3)		
C10—N1—C1	121.12 (15)	C13—C12—H12A	109.6
C10—N1—C9	121.67 (16)	C11—C12—H12B	109.6
C1—N1—C9	117.13 (15)	C13—C12—H12B	109.6
C10—N2—C11	130.81 (17)	H12A—C12—H12B	108.1
C10—N2—H1N2	116.1 (15)	C20—C13—C14	110.2 (2)
C11—N2—H1N2	111.1 (15)	C20—C13—C12	109.55 (18)
N1—C1—C2	112.39 (16)	C14—C13—C12	109.20 (18)
N1—C1—H1A	109.1	С20—С13—Н13А	109.3
C2—C1—H1A	109.1	C14—C13—H13A	109.3
N1—C1—H1B	109.1	C12—C13—H13A	109.3
C2—C1—H1B	109.1	C13—C14—C15	108.90 (17)
H1A—C1—H1B	107.9	C13—C14—H14A	109.9
C3—C2—C1	110.89 (16)	C15—C14—H14A	109.9
С3—С2—Н2А	109.5	C13—C14—H14B	109.9
C1—C2—H2A	109.5	C15—C14—H14B	109.9
C3—C2—H2B	109.5	H14A—C14—H14B	108.3
C1—C2—H2B	109.5	C17—C15—C14	109.51 (19)
H2A—C2—H2B	108.0	C17—C15—C16	109.45 (18)

C4—C3—C8	120.13 (18)	C14—C15—C16	110.37 (19)
C4—C3—C2	124.29 (18)	С17—С15—Н15А	109.2
C8—C3—C2	115.58 (17)	C14—C15—H15A	109.2
C3—C4—C5	119.7 (2)	С16—С15—Н15А	109.2
C3—C4—H4A	120.1	C11—C16—C15	109.25 (16)
C5—C4—H4A	120.1	C11—C16—H16A	109.8
C6—C5—C4	120.06 (19)	C15—C16—H16A	109.8
С6—С5—Н5А	120.0	C11—C16—H16B	109.8
C4—C5—H5A	120.0	C15—C16—H16B	109.8
C5—C6—C7	120.60 (19)	H16A—C16—H16B	108.3
С5—С6—Н6А	119.7	C15—C17—C18	109.80 (19)
C7—C6—H6A	119.7	С15—С17—Н17А	109.7
C6-C7-C8	119.6 (2)	C18—C17—H17A	109.7
C6—C7—H7A	120.2	C15—C17—H17B	109.7
C8—C7—H7A	120.2	C18—C17—H17B	109.7
C7—C8—C3	119.76 (18)	H17A—C17—H17B	108.2
C7 - C8 - C9	122.91 (18)	C17 - C18 - C20	109.2
$C_3 - C_8 - C_9$	117.32 (16)	C17 - C18 - C19	109.9(2)
N1-C9-C8	110.52 (16)	C_{20} C_{18} C_{19}	109.4(2)
N1-C9-H9A	109.5	C17—C18—H18A	109.7
C8—C9—H9A	109.5	C20—C18—H18A	109.7
N1-C9-H9B	109.5	C19—C18—H18A	109.7
C8—C9—H9B	109.5	$C_{11} - C_{19} - C_{18}$	109.80 (17)
H9A—C9—H9B	108.1	C11—C19—H19A	109.7
N1-C10-N2	114.44 (17)	C18—C19—H19A	109.7
N1-C10-S1	122.50 (14)	С11—С19—Н19В	109.7
N2-C10-S1	123.05 (15)	C18—C19—H19B	109.7
N2-C11-C19	111.34 (16)	H19A—C19—H19B	108.2
N2—C11—C16	113.34 (16)	C13—C20—C18	109.52 (18)
C19—C11—C16	110.43 (18)	С13—С20—Н20А	109.8
N2—C11—C12	104.80 (16)	C18—C20—H20A	109.8
C19—C11—C12	109.13 (17)	C13—C20—H20B	109.8
C16—C11—C12	107.50 (16)	C18—C20—H20B	109.8
C11—C12—C13	110.23 (17)	H20A—C20—H20B	108.2
C11—C12—H12A	109.6		
C10—N1—C1—C2	-178.44 (16)	C10—N2—C11—C12	-179.4 (2)
C9—N1—C1—C2	-1.5 (2)	N2-C11-C12-C13	178.19 (16)
N1—C1—C2—C3	47.4 (2)	C19—C11—C12—C13	58.8 (2)
C1—C2—C3—C4	131.5 (2)	C16—C11—C12—C13	-60.9 (2)
C1—C2—C3—C8	-48.2 (2)	C11—C12—C13—C20	-59.5 (2)
C8—C3—C4—C5	-2.4 (3)	C11—C12—C13—C14	61.2 (2)
C2—C3—C4—C5	177.96 (19)	C20—C13—C14—C15	60.7 (2)
C3—C4—C5—C6	0.2 (3)	C12—C13—C14—C15	-59.6 (2)
C4—C5—C6—C7	1.7 (3)	C13—C14—C15—C17	-60.3 (2)
C5—C6—C7—C8	-1.4 (3)	C13—C14—C15—C16	60.2 (2)
C6—C7—C8—C3	-0.8 (3)	N2-C11-C16-C15	175.54 (16)
C6—C7—C8—C9	-179.65 (18)	C19—C11—C16—C15	-58.8 (2)
	× /		· /

C4—C3—C8—C7	2.7 (3)	C12—C11—C16—C15	60.2 (2)
C2—C3—C8—C7	-177.63 (17)	C17—C15—C16—C11	59.4 (2)
C4—C3—C8—C9	-178.40 (17)	C14-C15-C16-C11	-61.2 (2)
C2—C3—C8—C9	1.2 (3)	C14—C15—C17—C18	60.0 (2)
C10—N1—C9—C8	133.07 (17)	C16—C15—C17—C18	-61.1 (2)
C1—N1—C9—C8	-43.8 (2)	C15—C17—C18—C20	-58.9 (3)
C7—C8—C9—N1	-136.37 (18)	C15—C17—C18—C19	60.6 (2)
C3—C8—C9—N1	44.8 (2)	N2-C11-C19-C18	-174.24 (19)
C1—N1—C10—N2	-0.3 (3)	C16—C11—C19—C18	58.9 (2)
C9—N1—C10—N2	-177.09 (16)	C12-C11-C19-C18	-59.0 (2)
C1-N1-C10-S1	-179.06 (14)	C17—C18—C19—C11	-59.3 (3)
C9—N1—C10—S1	4.2 (2)	C20-C18-C19-C11	60.2 (3)
C11—N2—C10—N1	169.16 (18)	C14—C13—C20—C18	-60.1 (3)
C11—N2—C10—S1	-12.1 (3)	C12-C13-C20-C18	60.0 (3)
C10-N2-C11-C19	-61.5 (3)	C17—C18—C20—C13	58.8 (3)
C10-N2-C11-C16	63.7 (3)	C19—C18—C20—C13	-60.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C16—H16B…S1	0.97	2.72	3.365 (2)	125