

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis-(sulfanediyl)]diacetonitrile

#### Joel T. Mague,<sup>a</sup> Mehmet Akkurt,<sup>b</sup> Shaaban K. Mohamed,<sup>c,d</sup> Ahmed M. M. El-Saghier<sup>e</sup> and Mustafa R. Albayati<sup>f</sup>\*

<sup>a</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, <sup>b</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>c</sup>Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, <sup>d</sup>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, <sup>e</sup>Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and <sup>f</sup>Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 22 November 2013; accepted 26 November 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.074; data-to-parameter ratio = 20.8.

In the title compound,  $C_6H_4N_4S_3$ , the 1,3,4-thiadiazole ring is essentially planar, with an r.m.s. deviation of 0.001 Å. The two N-C-S-C torsion angles in the molecule are -23.41 (15) and 0.62 (14)°. One acetonitrile group is above the plane of the 1,3,4-thiadiazole ring and the other is below it, indicating *syn* and *anti* orientations. In the crystal, C-H···N hydrogen bonds link the molecules into ribbons along [010].

#### **Related literature**

For the broad spectrum of biological activities of thiadiazolecontaining compounds, see: Padmavathi *et al.* (2009); Karegoudar *et al.* (2008); Wei *et al.* (2009); Gupta *et al.* (2009); Pattanayak *et al.* (2009); Cressier *et al.* (2009).



#### Experimental

Crystal data  $C_6H_4N_4S_3$   $M_r = 228.34$ Monoclinic,  $P2_1/c$ 

a = 8.5305 (7) Åb = 14.2102 (11) Åc = 7.8803 (6) Å  $\beta = 104.3810 \ (11)^{\circ}$   $V = 925.32 \ (13) \ \text{Å}^3$  Z = 4Mo  $K\alpha$  radiation

Data collection

.

| Bruker SMART APEX CCD                |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2013)               |
| $T_{\min} = 0.82, \ T_{\max} = 0.96$ |

\_\_\_\_\_

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 118 parameters $wR(F^2) = 0.074$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.56$  e Å $^{-3}$ 2450 reflections $\Delta \rho_{min} = -0.24$  e Å $^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                             | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------|--------------|-------------------------|------------------------|---------------------------|
| $C3-H3A\cdots N1^{i}$ $C5-H5B\cdots N3^{ii}$ | 0.99<br>0.99 | 2.60<br>2.35            | 3.407 (2)<br>3.267 (2) | 139<br>153                |
| Summatry and as (i)                          | x y   1 =    | 1. (ii) x y             | 1 - 1                  |                           |

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii)  $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXT* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors thank Tulane University, Manchester Metropolitan University, Erciyes University and Sohag University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5363).

#### References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). *Bioorg. Med. Chem.* 17, 5275–5284.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gupta, A., Mishra, P., Pandeya, S. N., Kashaw, S. K., Kashaw, V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 1100–1105.
- Karegoudar, P., Prasad, D. J., Ashok, A., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). *Eur. J. Med. Chem.* 43, 808–815.
- Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). *Eur. J. Med. Chem.* 44, 2106–2112.

Pattanayak, P., Sharma, R. & Sahoo, P. K. (2009). Med. Chem. Res. 18, 351–361. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wei, M. X., Feng, L., Li, X. Q., Zhou, X. Z. & Shao, Z. H. (2009). Eur. J. Med. Chem. 44, 3340–3344.

### organic compounds

 $\mu = 0.76 \text{ mm}^{-1}$ 

 $0.24 \times 0.08 \times 0.06 \; \text{mm}$ 

16625 measured reflections

2450 independent reflections

2155 reflections with  $I > 2\sigma(I)$ 

T = 150 K

 $R_{\rm int} = 0.040$ 

# supporting information

Acta Cryst. (2013). E69, o1855 [doi:10.1107/S1600536813032194]

### 2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile

# Joel T. Mague, Mehmet Akkurt, Shaaban K. Mohamed, Ahmed M. M. El-Saghier and Mustafa R. Albayati

#### S1. Comment

Thiadiazole acts as a constrained pharmacophore. It is the core structure of several medicinal drugs such as acetazolamide, atibeprone, tebuthiuron and methazolamide. In addition, thiadiazole containing compounds have a wide spectrum of biological activities such as antimicrobial (Padmavathi *et al.*, 2009), antiinflammatory (Karegoudar *et al.*, 2008), anticancer (Wei *et al.*, 2009), anticonvulsant (Gupta *et al.*, 2009), antidepressant (Pattanayak *et al.*, 2009), and antioxidant (Cressier *et al.*, 2009). Based on such facts, the title compound has been synthesized in our lab as a precurser for further study.

The 1,3,4-thiadiazole ring (S1/N1/N2/C1/C2) of the title compound, (I, Fig. 1), is essentially planar [r.m.s deviation = 0.001 Å]. The N1–C1–S2–C3 and N2–C2–S3–C5 torsion angles in (I) are 23.41 (15) and -0.62 (14)°, respectively. The two acetonitrile groups [ $-C3(H_2)$ –C4 $\equiv$ N3 and  $-C5(H_2)$ –C6 $\equiv$ N4] of (I) are above and below the plane of the 1,3,4-thia-diazole ring, indicating *syn*- and *anti*- orientations, respectively.

In the crystal, molecules are linked by intermolecular C—H…N hydrogen bonds to form ribbons along the *b*-axis (Table 1, Fig. 2).

#### S2. Experimental

A mixture of 1,3,4-thiadiazolidine-2,5-dithione (150 mg, 1 mmol), chloroacetonitrile (149 mg, 2 mmol), sodium acetate (36 mg, 0.5 mmol) in 30 ml e thanol was refluxed for 4 h. The reaction mixture was allowed to cool to room temperature to afford the solid product which was filtered off under vacuum, dried and recrystallized from ethanol. Pure single crystals were prepared by slow evaporation of an ethanolic solution of the title compound in air over 24 h. M·P. 396 K.

#### **S3. Refinement**

The methylene H atoms were positioned geometrically and refined by using a riding model with C—H = 0.99 Å and, with  $U_{iso}(H) = 1.2 U_{iso}(C)$ .



#### Figure 1

Perspective view of the title molecule with 50% probability displacement ellipsoids.



#### Figure 2

The hydrogen bonding (dashed lines) viewed along the *b*-axis of the title compound. [Symmetry code: (b) 1 + x,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ ].

#### 2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile

| Crystal data                      |                                                       |
|-----------------------------------|-------------------------------------------------------|
| $C_6H_4N_4S_3$                    | $V = 925.32 (13) Å^3$                                 |
| $M_r = 228.34$                    | Z = 4                                                 |
| Monoclinic, $P2_1/c$              | F(000) = 464                                          |
| Hall symbol: -P 2ybc              | $D_{\rm x} = 1.639 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 8.5305 (7)  Å                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 14.2102 (11)  Å               | Cell parameters from 9961 reflections                 |
| c = 7.8803 (6) Å                  | $\theta = 2.9 - 29.1^{\circ}$                         |
| $\beta = 104.3810 \ (11)^{\circ}$ | $\mu = 0.76 \text{ mm}^{-1}$                          |
|                                   |                                                       |

#### T = 150 KColumn, pale gold

Data collection

| Dura concerion                                                                      |                                                                                                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Bruker SMART APEX CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube | 16625 measured reflections<br>2450 independent reflections<br>2155 reflections with $L > 2\sigma(L)$  |
| Graphite monochromator                                                              | $R_{int} = 0.040$                                                                                     |
| Detector resolution: 8.3660 pixels mm <sup>-1</sup> $\varphi$ and $\omega$ scans    | $\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$<br>$h = -11 \rightarrow 11$ |
| Absorption correction: multi-scan                                                   | $k = -19 \longrightarrow 19$                                                                          |
| (SADABS; Bruker, 2013)                                                              | $l = -10 \rightarrow 10$                                                                              |
| $T_{\min} = 0.82, \ T_{\max} = 0.96$                                                |                                                                                                       |
| Refinement                                                                          |                                                                                                       |
| Refinement on $F^2$<br>Least-squares matrix: full                                   | Hydrogen site location: inferred from<br>neighbouring sites                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                                                     | H-atom parameters constrained                                                                         |
| $wR(F^2) = 0.074$                                                                   | $W = 1/[\hat{\Sigma}^2(FO^2) + (0.0348P)^2 + 0.4414P]$ Where                                          |
| S = 1.05                                                                            | $P = (FO^2 + 2FC^2)/3$                                                                                |
| 2450 reflections                                                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                   |
| 118 parameters                                                                      | $\Delta  ho_{ m max} = 0.56 \ { m e} \ { m \AA}^{-3}$                                                 |

 $0.24 \times 0.08 \times 0.06 \text{ mm}$ 

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 

#### Special details

0 restraints

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x             | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|---------------|--------------|--------------|-----------------------------|--|
| S1  | 0.24557 (4)   | 0.24679 (2)  | 0.77612 (5)  | 0.0199 (1)                  |  |
| S2  | 0.35261 (4)   | 0.45127 (3)  | 0.80614 (5)  | 0.0225 (1)                  |  |
| S3  | -0.02136 (4)  | 0.11179 (3)  | 0.59651 (5)  | 0.0217(1)                   |  |
| N1  | 0.07063 (16)  | 0.38153 (9)  | 0.61222 (18) | 0.0246 (4)                  |  |
| N2  | -0.01784 (15) | 0.29982 (9)  | 0.56140 (18) | 0.0232 (4)                  |  |
| N3  | 0.31454 (18)  | 0.46664 (10) | 0.33409 (18) | 0.0286 (4)                  |  |
| N4  | -0.40861 (18) | 0.23221 (12) | 0.5806 (2)   | 0.0370 (5)                  |  |
| C1  | 0.20800 (17)  | 0.36440 (10) | 0.72254 (19) | 0.0188 (4)                  |  |
| C2  | 0.05731 (17)  | 0.22555 (10) | 0.63639 (18) | 0.0178 (4)                  |  |
| C3  | 0.29143 (18)  | 0.53720 (10) | 0.6312 (2)   | 0.0223 (4)                  |  |
| C4  | 0.30417 (18)  | 0.49844 (10) | 0.4636 (2)   | 0.0222 (4)                  |  |
| C5  | -0.20837 (18) | 0.14204 (11) | 0.4383 (2)   | 0.0240 (4)                  |  |
| C6  | -0.32061 (18) | 0.19370 (11) | 0.5168 (2)   | 0.0247 (4)                  |  |
| H3A | 0.17830       | 0.55670      | 0.62240      | 0.0270*                     |  |
| H3B | 0.36100       | 0.59370      | 0.65920      | 0.0270*                     |  |

# supporting information

| H5A | -0.18280 | 0.18080 | 0.34420 | 0.0290* |
|-----|----------|---------|---------|---------|
| H5B | -0.26140 | 0.08360 | 0.38420 | 0.0290* |

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| S1 | 0.0170 (2) | 0.0195 (2) | 0.0210 (2) | -0.0004 (1) | 0.0001 (1)  | 0.0025 (1)  |
| S2 | 0.0207 (2) | 0.0212 (2) | 0.0224 (2) | -0.0041 (1) | -0.0007(1)  | 0.0015 (1)  |
| S3 | 0.0205 (2) | 0.0189 (2) | 0.0243 (2) | -0.0020(1)  | 0.0029(1)   | -0.0006(1)  |
| N1 | 0.0195 (6) | 0.0210 (6) | 0.0302 (7) | -0.0028 (5) | 0.0006 (5)  | 0.0037 (5)  |
| N2 | 0.0185 (6) | 0.0212 (6) | 0.0274 (7) | -0.0031 (5) | 0.0012 (5)  | 0.0025 (5)  |
| N3 | 0.0310(7)  | 0.0273 (7) | 0.0261 (7) | -0.0034 (6) | 0.0042 (6)  | 0.0016 (6)  |
| N4 | 0.0244 (7) | 0.0490 (9) | 0.0352 (8) | 0.0019 (7)  | 0.0031 (6)  | -0.0032 (7) |
| C1 | 0.0195 (7) | 0.0175 (6) | 0.0194 (7) | -0.0010 (5) | 0.0050 (5)  | 0.0017 (5)  |
| C2 | 0.0156 (6) | 0.0217 (7) | 0.0164 (6) | -0.0014 (5) | 0.0043 (5)  | 0.0004 (5)  |
| C3 | 0.0232 (7) | 0.0173 (7) | 0.0260 (8) | 0.0014 (5)  | 0.0051 (6)  | 0.0023 (6)  |
| C4 | 0.0202 (7) | 0.0180 (7) | 0.0265 (8) | -0.0026 (5) | 0.0025 (6)  | 0.0041 (6)  |
| C5 | 0.0233 (7) | 0.0272 (8) | 0.0187 (7) | -0.0049 (6) | 0.0000 (5)  | -0.0028 (6) |
| C6 | 0.0187 (7) | 0.0299 (8) | 0.0215 (7) | -0.0047 (6) | -0.0026 (6) | 0.0009 (6)  |
|    |            |            |            |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| S1—C1       | 1.7340 (15)  | N3—C4       | 1.140 (2)   |
|-------------|--------------|-------------|-------------|
| S1—C2       | 1.7333 (15)  | N4—C6       | 1.142 (2)   |
| S2—C1       | 1.7538 (15)  | C3—C4       | 1.460 (2)   |
| S2—C3       | 1.8184 (15)  | C5—C6       | 1.460 (2)   |
| S3—C2       | 1.7486 (15)  | С3—НЗА      | 0.9900      |
| S3—C5       | 1.8155 (16)  | С3—Н3В      | 0.9900      |
| N1—N2       | 1.3885 (19)  | C5—H5A      | 0.9900      |
| N1C1        | 1.297 (2)    | С5—Н5В      | 0.9900      |
| N2—C2       | 1.2984 (19)  |             |             |
| C1—S1—C2    | 85.82 (7)    | S3—C5—C6    | 112.64 (11) |
| C1—S2—C3    | 98.35 (7)    | N4—C6—C5    | 178.33 (17) |
| C2—S3—C5    | 97.88 (7)    | S2—C3—H3A   | 109.00      |
| N2—N1—C1    | 111.85 (12)  | S2—C3—H3B   | 109.00      |
| N1—N2—C2    | 112.14 (13)  | C4—C3—H3A   | 109.00      |
| S1—C1—S2    | 121.11 (9)   | C4—C3—H3B   | 109.00      |
| S1—C1—N1    | 115.19 (11)  | НЗА—СЗ—НЗВ  | 108.00      |
| S2—C1—N1    | 123.63 (11)  | S3—C5—H5A   | 109.00      |
| S1—C2—S3    | 121.93 (8)   | S3—C5—H5B   | 109.00      |
| S1—C2—N2    | 114.99 (11)  | C6—C5—H5A   | 109.00      |
| S3—C2—N2    | 123.07 (11)  | C6—C5—H5B   | 109.00      |
| S2—C3—C4    | 111.14 (10)  | H5A—C5—H5B  | 108.00      |
| N3—C4—C3    | 178.79 (16)  |             |             |
| C2—S1—C1—S2 | -177.61 (10) | C5—S3—C2—N2 | 0.62 (14)   |
| C2—S1—C1—N1 | -0.51 (12)   | C2—S3—C5—C6 | -68.78 (12) |
|             |              |             |             |

# supporting information

| C1—S1—C2—S3 | 179.01 (10) | C1—N1—N2—C2 | 0.16 (19)    |
|-------------|-------------|-------------|--------------|
| C1—S1—C2—N2 | 0.61 (12)   | N2—N1—C1—S1 | 0.32 (17)    |
| C3—S2—C1—S1 | 153.44 (9)  | N2—N1—C1—S2 | 177.33 (11)  |
| C3—S2—C1—N1 | -23.41 (15) | N1—N2—C2—S1 | -0.57 (17)   |
| C1—S2—C3—C4 | -60.50 (12) | N1—N2—C2—S3 | -178.96 (11) |
| C5—S3—C2—S1 | -177.66 (9) |             |              |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D····A    | D—H···A |
|------------------------------------|------|-------|-----------|---------|
| C3—H3A···N1 <sup>i</sup>           | 0.99 | 2.60  | 3.407 (2) | 139     |
| C5—H5 <i>B</i> ···N3 <sup>ii</sup> | 0.99 | 2.35  | 3.267 (2) | 153     |

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*, *y*-1/2, -*z*+1/2.