Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile

Joel T. Mague, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {b }}$ Shaaban K. Mohamed, ${ }^{\text {c,d }}$ Ahmed M. M. El-Saghier ${ }^{\mathbf{e}}$ and Mustafa R. Albayati ${ }^{\text {f }}$
${ }^{\text {a }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, ${ }^{\text {b }}$ Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {c }}$ Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ${ }^{\mathbf{d}}$ Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ${ }^{\text {e }}$ Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ${ }^{\text {f }}$ Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
Correspondence e-mail: shaabankamel@yahoo.com

Received 22 November 2013; accepted 26 November 2013

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.074 ;$ data-to-parameter ratio $=20.8$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}_{3}$, the 1,3,4-thiadiazole ring is essentially planar, with an r.m.s. deviation of $0.001 \AA$. The two $\mathrm{N}-\mathrm{C}-\mathrm{S}-\mathrm{C}$ torsion angles in the molecule are -23.41 (15) and $0.62(14)^{\circ}$. One acetonitrile group is above the plane of the 1,3,4-thiadiazole ring and the other is below it, indicating syn and anti orientations. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into ribbons along [010].

Related literature

For the broad spectrum of biological activities of thiadiazolecontaining compounds, see: Padmavathi et al. (2009); Karegoudar et al. (2008); Wei et al. (2009); Gupta et al. (2009); Pattanayak et al. (2009); Cressier et al. (2009).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}_{3} & a=8.5305(7) \AA \\
M_{r}=228.34 & b=14.2102(11) \AA \\
\text { Monoclinic, } P 2_{1} / c & c=7.8803(6) \AA
\end{array}
$$

$\beta=104.3810(11)^{\circ}$
$V=925.32(13) \AA^{3}$
$Z=4$
$\mu=0.76 \mathrm{~mm}^{-1}$
5.32 (13) A
$T=150 \mathrm{~K}$
$0.24 \times 0.08 \times 0.06 \mathrm{~mm}$
Mo $K \alpha$ radiation

Data collection

Bruker SMART APEX CCD

 diffractometerAbsorption correction: multi-scan (SADABS; Bruker, 2013)
$T_{\text {min }}=0.82, T_{\text {max }}=0.96$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029 \quad 118$ parameters
$w R\left(F^{2}\right)=0.074$
$S=1.05$
2450 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.99	2.60	$3.407(2)$	139
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{~N} 3^{\mathrm{ii}}$	0.99	2.35	$3.267(2)$	153

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors thank Tulane University, Manchester Metropolitan University, Erciyes University and Sohag University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5363).

References

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. \& Rima, G. (2009). Bioorg. Med. Chem. 17, 5275-5284.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gupta, A., Mishra, P., Pandeya, S. N., Kashaw, S. K., Kashaw, V. \& Stables, J. P. (2009). Eur. J. Med. Chem. 44, 1100-1105.

Karegoudar, P., Prasad, D. J., Ashok, A., Mahalinga, M., Poojary, B. \& Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808-815.

Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. \& Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106-2112.
Pattanayak, P., Sharma, R. \& Sahoo, P. K. (2009). Med. Chem. Res. 18, 351-361.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wei, M. X., Feng, L., Li, X. Q., Zhou, X. Z. \& Shao, Z. H. (2009). Eur. J. Med. Chem. 44, 3340-3344.

supporting information

Acta Cryst. (2013). E69, o1855 [doi:10.1107/S1600536813032194]

2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile

Joel T. Mague, Mehmet Akkurt, Shaaban K. Mohamed, Ahmed M. M. El-Saghier and Mustafa R. Albayati

S1. Comment

Thiadiazole acts as a constrained pharmacophore. It is the core structure of several medicinal drugs such as acetazolamide, atibeprone, tebuthiuron and methazolamide. In addition, thiadiazole containing compounds have a wide spectrum of biological activities such as antimicrobial (Padmavathi et al., 2009), antiinflammatory (Karegoudar et al., 2008), anticancer (Wei et al., 2009), anticonvulsant (Gupta et al., 2009), antidepressant (Pattanayak et al., 2009), and antioxidant (Cressier et al., 2009). Based on such facts, the title compound has been synthesized in our lab as a precurser for further study.
The 1,3,4-thiadiazole ring ($\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 2$) of the title compound, (I, Fig. 1), is essentially planar [r.m.s deviation $=$ $0.001 \AA$]. The N1-C1-S2-C3 and N2-C2-S3-C5 torsion angles in (I) are 23.41 (15) and -0.62 (14) ${ }^{\circ}$, respectively. The two acetonitrile groups $\left[-\mathrm{C} 3\left(\mathrm{H}_{2}\right)-\mathrm{C} 4 \equiv \mathrm{~N} 3\right.$ and $\left.-\mathrm{C} 5\left(\mathrm{H}_{2}\right)-\mathrm{C} 6 \equiv \mathrm{~N} 4\right]$ of (I) are above and below the plane of the 1,3,4-thiadiazole ring, indicating syn- and anti- orientations, respectively.
In the crystal, molecules are linked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form ribbons along the b-axis (Table 1, Fig. 2).

S2. Experimental

A mixture of 1,3,4-thiadiazolidine-2,5-dithione ($150 \mathrm{mg}, 1 \mathrm{mmol}$), chloroacetonitrile ($149 \mathrm{mg}, 2 \mathrm{mmol}$), sodium acetate ($36 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 30 ml e thanol was refluxed for 4 h . The reaction mixture was allowed to cool to room temperature to afford the solid product which was filtered off under vacuum, dried and recrystallized from ethanol. Pure single crystals were prepared by slow evaporation of an ethanolic solution of the title compound in air over $24 \mathrm{~h} . \mathrm{M} \cdot \mathrm{P} .396 \mathrm{~K}$.

S3. Refinement

The methylene H atoms were positioned geometrically and refined by using a riding model with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{C})$.

Figure 1
Perspective view of the title molecule with 50% probability displacement ellipsoids.

Figure 2
The hydrogen bonding (dashed lines) viewed along the b-axis of the title compound. [Symmetry code: (b) $1+x, 1 / 2-y, 1 / 2$ $+z]$.

2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}_{3}$
$M_{r}=228.34$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.5305$ (7) \AA
$b=14.2102(11) \AA$
$c=7.8803(6) \AA$
$\beta=104.3810(11)^{\circ}$

$$
\begin{aligned}
& V=925.32(13) \AA^{3} \\
& Z=4 \\
& F(000)=464 \\
& D_{\mathrm{x}}=1.639 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9961 \text { reflections } \\
& \theta=2.9-29.1^{\circ} \\
& \mu=0.76 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=150 \mathrm{~K}$

Column, pale gold

Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.82, T_{\text {max }}=0.96$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.074$
$S=1.05$
2450 reflections
118 parameters
0 restraints
$0.24 \times 0.08 \times 0.06 \mathrm{~mm}$

16625 measured reflections
2450 independent reflections
2155 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-19 \rightarrow 19$
$l=-10 \rightarrow 10$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$\mathrm{W}=1 /\left[\Sigma^{2}\left(F \mathrm{O}^{2}\right)+(0.0348 P)^{2}+0.4414 P\right]$ Where
$P=\left(F \mathrm{O}^{2}+2 F \mathrm{C}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.24557(4)$	$0.24679(2)$	$0.77612(5)$	$0.0199(1)$
S2	$0.35261(4)$	$0.45127(3)$	$0.80614(5)$	$0.0225(1)$
S3	$-0.02136(4)$	$0.11179(3)$	$0.59651(5)$	$0.0217(1)$
N1	$0.07063(16)$	$0.38153(9)$	$0.61222(18)$	$0.0246(4)$
N2	$-0.01784(15)$	$0.29982(9)$	$0.56140(18)$	$0.0232(4)$
N3	$0.31454(18)$	$0.46664(10)$	$0.33409(18)$	$0.0286(4)$
N4	$-0.40861(18)$	$0.23221(12)$	$0.5806(2)$	$0.0370(5)$
C1	$0.20800(17)$	$0.36440(10)$	$0.72254(19)$	$0.0188(4)$
C2	$0.05731(17)$	$0.22555(10)$	$0.63639(18)$	$0.0178(4)$
C3	$0.29143(18)$	$0.53720(10)$	$0.6312(2)$	$0.0223(4)$
C4	$0.30417(18)$	$0.49844(10)$	$0.4636(2)$	$0.0222(4)$
C5	$-0.20837(18)$	$0.14204(11)$	$0.4383(2)$	$0.0240(4)$
C6	$-0.32061(18)$	$0.19370(11)$	$0.5168(2)$	$0.0247(4)$
H3A	0.17830	0.55670	0.62240	0.0270^{*}
H3B	0.36100	0.59370	0.65920	0.0270^{*}

H5A	-0.18280	0.18080	0.34420	0.0290^{*}
H5B	-0.26140	0.08360	0.38420	0.0290^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0170(2)$	$0.0195(2)$	$0.0210(2)$	$-0.0004(1)$	$0.0001(1)$	$0.0025(1)$
S2	$0.0207(2)$	$0.0212(2)$	$0.0224(2)$	$-0.0041(1)$	$-0.0007(1)$	$0.0015(1)$
S3	$0.0205(2)$	$0.0189(2)$	$0.0243(2)$	$-0.0020(1)$	$0.0029(1)$	$-0.0006(1)$
N1	$0.0195(6)$	$0.0210(6)$	$0.0302(7)$	$-0.0028(5)$	$0.0006(5)$	$0.0037(5)$
N2	$0.0185(6)$	$0.0212(6)$	$0.0274(7)$	$-0.0031(5)$	$0.0012(5)$	$0.0025(5)$
N3	$0.0310(7)$	$0.0273(7)$	$0.0261(7)$	$-0.0034(6)$	$0.0042(6)$	$0.0016(6)$
N4	$0.0244(7)$	$0.0490(9)$	$0.0352(8)$	$0.0019(7)$	$0.0031(6)$	$-0.0032(7)$
C1	$0.0195(7)$	$0.0175(6)$	$0.0194(7)$	$-0.0010(5)$	$0.0050(5)$	$0.0017(5)$
C2	$0.0156(6)$	$0.0217(7)$	$0.0164(6)$	$-0.0014(5)$	$0.0043(5)$	$0.0004(5)$
C3	$0.0232(7)$	$0.0173(7)$	$0.0260(8)$	$0.0014(5)$	$0.0051(6)$	$0.0023(6)$
C4	$0.0202(7)$	$0.0180(7)$	$0.0265(8)$	$-0.0026(5)$	$0.0025(6)$	$0.0041(6)$
C5	$0.0233(7)$	$0.0272(8)$	$0.0187(7)$	$-0.0049(6)$	$0.0000(5)$	$-0.0028(6)$
C6	$0.0187(7)$	$0.0299(8)$	$0.0215(7)$	$-0.0047(6)$	$-0.0026(6)$	$0.0009(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

S1-C1	1.7340 (15)	N3-C4	1.140 (2)
S1-C2	1.7333 (15)	N4-C6	1.142 (2)
S2-C1	1.7538 (15)	C3-C4	1.460 (2)
S2-C3	1.8184 (15)	C5-C6	1.460 (2)
S3-C2	1.7486 (15)	C3-H3A	0.9900
S3-C5	1.8155 (16)	C3-H3B	0.9900
N1-N2	1.3885 (19)	C5-H5A	0.9900
N1-C1	1.297 (2)	C5-H5B	0.9900
N2-C2	1.2984 (19)		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	85.82 (7)	S3-C5-C6	112.64 (11)
C1-S2-C3	98.35 (7)	N4-C6-C5	178.33 (17)
C2-S3-C5	97.88 (7)	S2-C3-H3A	109.00
N2-N1-C1	111.85 (12)	S2-C3-H3B	109.00
N1-N2-C2	112.14 (13)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.00
S1-C1-S2	121.11 (9)	C4-C3-H3B	109.00
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	115.19 (11)	H3A-C3-H3B	108.00
S2-C1-N1	123.63 (11)	S3-C5-H5A	109.00
S1-C2-S3	121.93 (8)	S3-C5-H5B	109.00
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 2$	114.99 (11)	C6-C5-H5A	109.00
$\mathrm{S} 3-\mathrm{C} 2-\mathrm{N} 2$	123.07 (11)	C6-C5-H5B	109.00
S2-C3-C4	111.14 (10)	H5A-C5-H5B	108.00
N3-C4-C3	178.79 (16)		
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	-177.61 (10)	C5-S3-C2-N2	0.62 (14)
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-0.51 (12)	C2-S3-C5-C6	-68.78 (12)

$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{S} 3$	$179.01(10)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 2$	$0.61(12)$
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	$153.44(9)$
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	$-23.41(15)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4$	$-60.50(12)$
$\mathrm{C} 5-\mathrm{S} 3-\mathrm{C} 2-\mathrm{S} 1$	$-177.66(9)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	$0.16(19)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$0.32(17)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$177.33(11)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 1$	$-0.57(17)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 3$	$-178.96(11)$

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.99	2.60	$3.407(2)$	139
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots \mathrm{~N} 3^{\mathrm{ii}}$	0.99	2.35	$3.267(2)$	153

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y-1 / 2,-z+1 / 2$.

