organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,9-Dimethyl-1,10-phenanthrolin-1-ium 2,4,5-tricarboxybenzoate monohydrate

Kai-Long Zhong

Department of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China Correspondence e-mail: zklong76@163.com

Received 11 October 2013; accepted 10 November 2013

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.005 Å; R factor = 0.088; wR factor = 0.272; data-to-parameter ratio = 13.8.

In the preparation of the title hydrated salt, $C_{14}H_{13}N_2^+$. $C_{10}H_5O_8^-$ ·H₂O, a proton has been transferred to the 2,9dimethyl-1,10-phenanthrolinium cation, forming a 2,4,5-tricarboxybenzoate anion. In the anion, the mean planes of the protonated carboxylate groups form dihedral angles of 11.0 (5), 4.4 (5) and 80.3 $(4)^{\circ}$ with the benzene ring to which they are attached. The mean plane of the deprotonated carboxylate group forms a dihedral angle of $10.6 (5)^{\circ}$ with the benzene ring. In the crystal, the anions are involved in carboxylic acid O-H···Ocarboxyl hydrogen bonds, generating a two-dimensional network parallel to (001) containing $R_4^4(28)$ and $R_4^4(32)$ motifs. The 2,9-dimethyl-1,10-phenanthrolinium cations and water molecules reside between the anion layers and are connected to the anions via N-H···Owater and Owater-H···Ocarboxyl hydrogen bonds. An intramolecular O- $H \cdots O$ hydrogen bond is also observed in the anion.

Related literature

For related structures, see: Adams & Ramdas (1978); Mrvos-Sermek *et al.* (1996); Sun *et al.* (2002*a,b*); Zhu *et al.* (2002); Li *et al.* (2003; 2006); Oscar *et al.* (2008). For background to molecular recognition and supramolecular chemistry, see: Batten & Robson (1998); Juan *et al.* (2002); Qiu *et al.* (2008). For hydrogen-bond graph-set notation, see: Bernstein *et al.* (1995).

V = 4261.7 (6) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.15 \text{ mm}$

19580 measured reflections 4346 independent reflections

2278 reflections with $I > 2\sigma(I)$

 $\mu = 0.12 \text{ mm}^{-1}$

T = 223 K

 $R_{\rm int} = 0.173$

Z = 8

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{14}H_{13}N_2^{+} \cdot {\rm C_{10}H_5O_8^{-} \cdot H_2O}}\\ {M_r} = 480.42\\ {\rm Orthorhombic, $Pbca$}\\ {a = 7.1135\ (8)\ {\rm \AA}}\\ {b = 19.4512\ (11)\ {\rm \AA}}\\ {c = 30.800\ (2)\ {\rm \AA}} \end{array}$

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\rm min} = 0.468, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.088$	3 restraints
$wR(F^2) = 0.272$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4346 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
316 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O3	0.82	1.58	2.395 (4)	171
$O5-H5\cdots O1^{i}$	0.82	1.86	2.671 (3)	172
O8−H8···O3 ⁱⁱ	0.82	1.82	2.645 (4)	178
$N1 - H1A \cdots O1W^{iii}$	0.86	1.92	2.738 (4)	160
$O1W - H1WA \cdots O4^{ii}$	0.82	1.92	2.735 (4)	171
$O1W - H1WB \cdots O7^{iv}$	0.82	2.11	2.873 (4)	155

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (iii) $x - \frac{1}{2}$, y, $-z + \frac{1}{2}$; (iv) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5664).

References

- Adams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2781-2785.
- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
- Juan, C. N., Myoung, S. L., Rico, E. D. S., Atta, M. A., Joel, S. M. & Peter, J. S. (2002). J. Am. Chem. Soc. 124, 6613–6625.
- Li, Y., Hao, N., Lu, Y. & Wang, E.-B. (2003). Inorg. Chem. 42, 3119-3124.
- Li, X.-F., Liu, D.-S., Luo, Q.-Y. & Huang, C.-C. (2006). Acta Cryst. E62, 0460–0462.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Mrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538–2541.
- Oscar, F., Jorge, P., Francesc, L., Miguel, J. & Catalina, R.-P. (2008). Inorg. Chem. 47, 3568–3576.
- Qiu, Y., Liu, Z., Li, Y., Deng, H., Zeng, R. & Zeller, M. (2008). *Inorg. Chem.* 47, 5122–5128.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002a). Acta Cryst. E58, 0904-0906.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002b). Acta Cryst. E58, o1100-o1102.
- Zhu, L.-G., Ellern, A. M. & Kostić, N. M. (2002). Acta Cryst. C58, o129-o130.

supporting information

Acta Cryst. (2013). E69, o1782–o1783 [doi:10.1107/S1600536813030857]

2,9-Dimethyl-1,10-phenanthrolin-1-ium 2,4,5-tricarboxybenzoate monohydrate

Kai-Long Zhong

S1. Comment

It is well established that hydrogen bonds play vital roles in molecular recognition and supramolecular chemistry (Batten & Robson 1998; Juan *et al.*, 2002; Qiu *et al.*, 2008), owing to their moderately directional intermolecular interaction which can effectively control short-range packing. 1,2,4,5-Benzenetetracarboxylic acid (Li *et al.*, 2003; Oscar *et al.*, 2008) has been widely applied in constructing interesting supramolecular networks because it acts not only as hydrogen bond acceptor but also as a hydrogen bond donor, depending upon the number of deprotonated carboxylate groups. Some proton-transfer compounds of 1,2,4,5-benzenetetracarboxylic acid with nitrogen Lewis bases, such as guanidinium pyromellitate trihydrate monoperhydrate (Adams & Ramdas, 1978), 2,2'-bipyridinium hemi[1,2,4,5- benzenetetra-carboxylate(2-)] hemi(1,2,4,5-benzenetetracarboxylic acid) (Mrvos-Sermek *et al.*, 1996), guanidinuum 2,9-dimethyl-1,10-phenanthrolinium trihydrogen-1,2,3,4-teracarboxybenzoate monohydrate (Sun *et al.*, 2002*a*), imidazolium trihydrogen-1,2,4,5-benzenetetracarboxylate(4-) hexahydrate (Zhu *et al.*, 2002) and ethyl-enediammonium bis(trihydrogen-1,2,4,5-benzenetetracarboxylate) dehydrate (Li *et al.*, 2006) have been synthesized and reported. The title compound (I) was obtained unintentionally during an attempt to synthesize mixed-ligand transition metal complexes with 1,2,4,5-benzenetetracarboxylic acid and 2,9-dimethyl-1,10-phenanthroline ligands *via* a solvo thermal reaction. Its crystal structure is reported herein.

The asymmetric unit of (I) (Fig. 1) is comprised of a 2,9-dimethyl-1,10-phenanthrolinium cation, a trihydrogen-1,2,4,5benzenetetracarboxylate anion and a solvent water molecule. The proton transfer from a carboxyl group to the ring N atom (N1) of the 2,9-dimethyl-1,10-phenanthroline is manifested in an increased internal angle [C1—N1—C12 = 123.7 (3)°] of the pyridine ring, compared with that for atom N2 of the pyridine ring [C10—N2—C11 = 117.8 (3)°]. The protonation diminishes the steric effect of the lone pair of electrons and is responsible for the slightly increased C1—N1 —C12 angle. In the anion, the mean-planes of the protonated carboxylate groups form didedral angles of 11.0 (5) ° for C34/O1/O2, 4.4 (5)° for C36/O5/O6 and 80.3 (4) ° for C37/O7/O8, with the benzene ring to which they are attached. The mean-plane of the deprotonated carboxylate group C35/O4/O4 forms a dihedral angle of 10.6 (5) ° with the benzene ring. Symmetry-related trihydrogen-1,2,4,5-benzenetetracarboxylate anions interact *via* O5—H5···O1ⁱ and O8—H8···O3ⁱⁱ hydrogen bonds, forming a two-dimensional supramolecular layer parallel to (001), which involves R_4^4 (28) and R_4^4 (32) motifs (Bernstein *et al.*, 1995) (Fig. 2 & Table 1). The 2,9-dimethyl-1,10-phenanthrolinium cations are linked to the water molecules (O1W) through N1—H1A···O1Wⁱⁱⁱ hydrogen bonds and reside between the two-dimensional supramolecular layers and are connected to the layers *via* O1W—H1WA···O4ⁱⁱ and O1W—H1WB···O7^{iv} hydrogen bonds (Fig. 3 & Table 1).

S2. Experimental

2,9-Dimethyl-1,10-phenanthroline (0.1 mmol), 1,2,4,5-benzenetetracarboxylic acid (0.1 mmol), $ZnSO_4$ ·7H₂O (0.1 mmol) and 2.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h, whereupon colorless block-shaped crystals of (I) were obtained.

S3. Refinement

The H atoms bonded to C atoms were were positioned geometrically and allowed to ride on their parent atoms, with C— H = 0.93, 0.96 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$). The H atoms bound to N and O were placed in calculated positions with N—H = 0.86 Å, O—H = 0.82 Å and refined with $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$. The precision of the structure is slightly lower than normal as reflected in the R-factors. We attempted to use serveral crystals but the crystal used to collect the data herein was the best quality available.

Figure 1

The asymmetric unit of (I), showing displacement ellipsoids drawn at the 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.

Figure 2

Part of the crystal structure of (I) showing layers parallel to $(0\ 0\ 1)$. Hydrogen bonds are represented by dashed lines. The 2,9-dimethyl-1,10-phenanthrolinium cations and the water molecules have been omitted for clarity.

Figure 3

Part of the crystal structure showing hydrogen bonds involving the cations (red) and water molecules (blue). The hydrogen bond donor-acceptor distances are shown as dashed lines.

2,9-Dimethyl-1,10-phenanthrolin-1-ium 2,4,5-tricarboxybenzoate monohydrate

Crystal data

$C_{14}H_{13}N_2^+ \cdot C_{10}H_5O_8^- \cdot H_2O$
$M_r = 480.42$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 7.1135 (8) Å
<i>b</i> = 19.4512 (11) Å
c = 30.800 (2) Å
V = 4261.7 (6) Å ³
Z = 8

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite Monochromator monochromator Detector resolution: 28.5714 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\min} = 0.468, T_{\max} = 1.000$ F(000) = 2000 $D_x = 1.498 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2016 reflections $\theta = 3.4-26.0^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 223 KBlock, colourless $0.35 \times 0.20 \times 0.15 \text{ mm}$

19580 measured reflections 4346 independent reflections 2278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.173$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 7$ $k = -24 \rightarrow 23$ $l = -38 \rightarrow 30$ Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$D[E^2 > 2 - (E^2)] = 0.000$	Hap Hadron aita la sati an informad fuena
$R[F^2 > 2\sigma(F^2)] = 0.088$	Hydrogen site location: inferred from
$wR(F^2) = 0.272$	neighbouring sites
S = 1.00	H-atom parameters constrained
4346 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1341P)^2]$
316 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.2749 (5)	0.08753 (12)	0.04898 (9)	0.0620 (10)
O1W	0.9045 (6)	0.17263 (15)	0.15048 (10)	0.0773 (11)
H1WA	0.8321	0.1863	0.1316	0.116*
H1WB	0.9732	0.2039	0.1586	0.116*
O2	0.1964 (5)	0.09431 (13)	-0.01923 (9)	0.0687 (11)
H2	0.1669	0.1239	-0.0369	0.103*
O3	0.1453 (4)	0.18081 (12)	-0.07332 (9)	0.0514 (8)
O4	0.1828 (5)	0.29265 (13)	-0.08131 (10)	0.0607 (9)
O5	0.1946 (5)	0.45577 (12)	0.02561 (9)	0.0710 (11)
Н5	0.1941	0.4958	0.0340	0.106*
O6	0.1961 (6)	0.43455 (14)	0.09547 (10)	0.0814 (12)
07	0.1129 (5)	0.29909 (14)	0.15299 (9)	0.0570 (9)
O8	0.4094 (5)	0.32175 (13)	0.13965 (9)	0.0526 (8)
H8	0.4812	0.3203	0.1189	0.079*
N1	0.3348 (5)	0.04067 (14)	0.32309 (11)	0.0418 (8)
H1A	0.3756	0.0820	0.3261	0.050*
N2	0.4269 (5)	0.12165 (13)	0.25335 (10)	0.0387 (8)
C1	0.2968 (6)	0.0044 (2)	0.35906 (14)	0.0505 (11)
C2	0.2298 (6)	-0.0628 (2)	0.35368 (16)	0.0565 (12)
H2B	0.2018	-0.0892	0.3780	0.068*
C3	0.2051 (6)	-0.0901 (2)	0.31345 (16)	0.0540 (12)
H3A	0.1608	-0.1348	0.3107	0.065*
C4	0.2457 (6)	-0.05151 (18)	0.27592 (15)	0.0464 (10)
C5	0.2205 (6)	-0.07699 (19)	0.23280 (16)	0.0510 (11)
H5A	0.1792	-0.1218	0.2285	0.061*

C6	0.2559 (6)	-0.0366 (2)	0.19861 (16)	0.0498 (11)
H6A	0.2354	-0.0539	0.1709	0.060*
C7	0.3240 (6)	0.03194 (17)	0.20314 (13)	0.0403 (9)
C8	0.3644 (6)	0.0762 (2)	0.16851 (14)	0.0488 (10)
H8A	0.3421	0.0621	0.1401	0.059*
C9	0.4360 (6)	0.13951 (19)	0.17649 (13)	0.0473 (10)
H9A	0.4648	0.1686	0.1535	0.057*
C10	0.4672 (6)	0.16161 (16)	0.21950 (12)	0.0416 (10)
C11	0.3565 (5)	0.05828 (17)	0.24523 (12)	0.0382 (9)
C12	0.3122 (5)	0.01557 (17)	0.28188 (13)	0.0397 (10)
C13	0.3258 (8)	0.0376 (2)	0.40228 (16)	0.0716 (15)
H13A	0.3728	0.0834	0.3982	0.107*
H13B	0.4149	0.0113	0.4188	0.107*
H13C	0.2084	0.0394	0.4176	0.107*
C14	0.5500 (6)	0.23092 (17)	0.22864 (14)	0.0505 (11)
H14A	0.5598	0.2375	0.2595	0.076*
H14B	0.4706	0.2659	0.2165	0.076*
H14C	0.6728	0.2338	0.2158	0.076*
C28	0.2079 (5)	0.20013 (15)	0.02367 (12)	0.0357 (9)
C29	0.1912 (5)	0.25062 (16)	-0.00893 (13)	0.0350 (9)
C30	0.1867 (5)	0.31977 (17)	0.00395 (12)	0.0378 (9)
H30A	0.1756	0.3535	-0.0173	0.045*
C31	0.1979 (5)	0.33993 (16)	0.04710 (12)	0.0376 (9)
C32	0.2144 (6)	0.28974 (16)	0.07952 (12)	0.0389 (10)
C33	0.2186 (6)	0.22157 (17)	0.06673 (12)	0.0394 (9)
H33A	0.2291	0.1881	0.0881	0.047*
C34	0.2288 (7)	0.12280 (18)	0.01805 (14)	0.0471 (11)
C35	0.1756 (6)	0.24134 (18)	-0.05812 (13)	0.0411 (10)
C36	0.1967 (6)	0.41454 (17)	0.05910 (13)	0.0457 (11)
C37	0.2376 (7)	0.30587 (16)	0.12675 (13)	0.0428 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.119 (3)	0.0212 (13)	0.0460 (18)	0.0077 (14)	-0.0028 (17)	-0.0004 (12)
O1W	0.107 (3)	0.066 (2)	0.058 (2)	-0.0367 (18)	-0.023(2)	0.0200 (15)
O2	0.131 (3)	0.0301 (14)	0.0452 (18)	0.0046 (16)	-0.0161 (18)	-0.0095 (13)
O3	0.077 (2)	0.0359 (14)	0.0416 (17)	0.0044 (13)	-0.0108 (15)	-0.0086 (12)
O4	0.095 (3)	0.0408 (16)	0.0464 (18)	-0.0027 (14)	-0.0044 (17)	0.0012 (14)
05	0.149 (4)	0.0180 (13)	0.0458 (19)	-0.0050 (15)	-0.0022 (19)	0.0033 (12)
O6	0.171 (4)	0.0306 (15)	0.0427 (19)	0.0046 (17)	0.000 (2)	-0.0069 (14)
O7	0.075 (2)	0.0492 (17)	0.0465 (18)	-0.0069 (14)	0.0186 (17)	-0.0076 (13)
08	0.072 (2)	0.0489 (15)	0.0371 (16)	-0.0054 (14)	-0.0002 (15)	-0.0068 (12)
N1	0.054 (2)	0.0278 (15)	0.044 (2)	0.0022 (14)	0.0008 (16)	0.0035 (14)
N2	0.048 (2)	0.0261 (14)	0.0421 (19)	0.0036 (13)	-0.0007 (16)	0.0003 (13)
C1	0.057 (3)	0.042 (2)	0.053 (3)	0.0034 (19)	-0.001 (2)	0.0130 (19)
C2	0.059 (3)	0.040 (2)	0.071 (3)	0.005 (2)	0.006 (3)	0.022 (2)
C3	0.052 (3)	0.033 (2)	0.078 (3)	0.0028 (18)	0.009 (2)	0.009 (2)

C4	0.043 (2)	0.0283 (18)	0.068 (3)	0.0023 (16)	0.001 (2)	0.0029 (19)
C5	0.046 (3)	0.030 (2)	0.077 (3)	-0.0055 (17)	-0.003 (2)	-0.014 (2)
C6	0.051 (3)	0.043 (2)	0.056 (3)	0.0024 (19)	-0.001 (2)	-0.016 (2)
C7	0.045 (2)	0.0305 (19)	0.045 (2)	0.0050 (15)	-0.0001 (19)	-0.0067 (17)
C8	0.054 (3)	0.053 (2)	0.039 (2)	0.008 (2)	-0.002 (2)	-0.0088 (19)
C9	0.056 (3)	0.043 (2)	0.044 (2)	0.0074 (19)	0.005 (2)	0.0094 (18)
C10	0.049 (3)	0.0318 (17)	0.044 (2)	0.0032 (16)	-0.0029 (19)	0.0021 (16)
C11	0.042 (2)	0.0335 (18)	0.039 (2)	0.0060 (16)	0.0018 (18)	-0.0017 (16)
C12	0.040 (2)	0.0285 (18)	0.051 (3)	0.0043 (15)	-0.0003 (19)	-0.0022 (17)
C13	0.109 (5)	0.058 (3)	0.048 (3)	0.000 (3)	-0.002 (3)	0.015 (2)
C14	0.066 (3)	0.034 (2)	0.052 (3)	-0.0008 (19)	0.004 (2)	0.0064 (18)
C28	0.047 (2)	0.0222 (17)	0.038 (2)	-0.0023 (14)	-0.0021 (17)	-0.0018 (15)
C29	0.041 (2)	0.0259 (17)	0.038 (2)	-0.0004 (15)	0.0001 (17)	-0.0025 (15)
C30	0.051 (3)	0.0236 (17)	0.039 (2)	-0.0029 (16)	-0.0039 (18)	0.0019 (15)
C31	0.051 (3)	0.0217 (16)	0.040 (2)	0.0003 (15)	0.0012 (18)	-0.0030 (15)
C32	0.057 (3)	0.0230 (17)	0.037 (2)	-0.0001 (15)	0.0026 (18)	-0.0014 (15)
C33	0.056 (3)	0.0260 (17)	0.036 (2)	-0.0019 (16)	0.0024 (19)	0.0029 (15)
C34	0.071 (3)	0.0235 (18)	0.047 (2)	-0.0011 (17)	0.007 (2)	-0.0012 (18)
C35	0.050 (3)	0.033 (2)	0.040 (2)	0.0016 (16)	-0.0026 (19)	-0.0037 (17)
C36	0.074 (3)	0.0215 (18)	0.041 (2)	0.0029 (17)	0.005 (2)	-0.0009 (17)
C37	0.070 (3)	0.0175 (16)	0.041 (2)	-0.0042 (17)	-0.002 (2)	-0.0005 (16)

Geometric parameters (Å, °)

01—C34	1.219 (5)	C6—C7	1.426 (5)
O1W—H1WA	0.8199	C6—H6A	0.9300
O1W—H1WB	0.8200	С7—С8	1.400 (6)
O2—C34	1.296 (5)	C7—C11	1.413 (5)
O2—H2	0.8200	C8—C9	1.356 (5)
O3—C35	1.285 (4)	C8—H8A	0.9300
O4—C35	1.228 (5)	C9—C10	1.410 (5)
O5—C36	1.307 (5)	С9—Н9А	0.9300
O5—H5	0.8200	C10-C14	1.498 (5)
O6—C36	1.186 (5)	C11—C12	1.436 (5)
O7—C37	1.208 (5)	C13—H13A	0.9600
O8—C37	1.321 (5)	C13—H13B	0.9600
O8—H8	0.8200	C13—H13C	0.9600
N1-C1	1.341 (5)	C14—H14A	0.9600
N1-C12	1.369 (5)	C14—H14B	0.9600
N1—H1A	0.8600	C14—H14C	0.9600
N2-C10	1.331 (4)	C28—C33	1.392 (5)
N2-C11	1.354 (5)	C28—C29	1.409 (5)
C1—C2	1.401 (6)	C28—C34	1.521 (5)
C1—C13	1.494 (6)	C29—C30	1.403 (5)
C2—C3	1.359 (6)	C29—C35	1.530 (6)
C2—H2B	0.9300	C30—C31	1.388 (5)
C3—C4	1.408 (6)	C30—H30A	0.9300
С3—НЗА	0.9300	C31—C32	1.402 (5)

C4—C12	1.400 (5)	C31—C36	1.498 (5)
C4—C5	1.429 (6)	C32—C33	1.384 (5)
C5—C6	1.337 (6)	C32—C37	1.497 (5)
С5—Н5А	0.9300	С33—Н33А	0.9300
H1WA—O1W—H1WB	110.5	C4—C12—C11	120.7 (4)
С34—О2—Н2	109.5	C1—C13—H13A	109.5
С36—О5—Н5	109.5	C1—C13—H13B	109.5
С37—О8—Н8	109.5	H13A—C13—H13B	109.5
C1—N1—C12	123.7 (3)	C1—C13—H13C	109.5
C1—N1—H1A	118.2	H13A—C13—H13C	109.5
C12—N1—H1A	118.2	H13B—C13—H13C	109.5
C10—N2—C11	117.8 (3)	C10—C14—H14A	109.5
N1—C1—C2	117.5 (4)	C10—C14—H14B	109.5
N1—C1—C13	118.7 (4)	H14A—C14—H14B	109.5
C2—C1—C13	123.8 (4)	C10—C14—H14C	109.5
C3—C2—C1	121.0 (4)	H14A—C14—H14C	109.5
C3—C2—H2B	119.5	H14B—C14—H14C	109.5
C1—C2—H2B	119.5	C33—C28—C29	118.3 (3)
C2—C3—C4	121.0 (4)	C33—C28—C34	113.5 (3)
С2—С3—НЗА	119.5	C29—C28—C34	128.0 (3)
С4—С3—НЗА	119.5	C30—C29—C28	118.0 (3)
C12—C4—C3	117.3 (4)	C30—C29—C35	113.0 (3)
C12—C4—C5	119.2 (4)	C28—C29—C35	129.0 (3)
C3—C4—C5	123.6 (4)	C31—C30—C29	122.7 (3)
C6—C5—C4	120.3 (3)	С31—С30—Н30А	118.6
С6—С5—Н5А	119.8	С29—С30—Н30А	118.6
C4—C5—H5A	119.8	C30—C31—C32	119.4 (3)
C5—C6—C7	122.4 (4)	C30—C31—C36	120.7 (3)
С5—С6—Н6А	118.8	C32—C31—C36	120.0 (3)
С7—С6—Н6А	118.8	C33—C32—C31	117.8 (3)
C8—C7—C11	116.3 (3)	C33—C32—C37	118.4 (3)
C8—C7—C6	124.7 (4)	C31—C32—C37	123.7 (3)
C11—C7—C6	119.0 (4)	C32—C33—C28	123.9 (3)
C9—C8—C7	119.8 (4)	С32—С33—Н33А	118.1
С9—С8—Н8А	120.1	С28—С33—Н33А	118.1
С7—С8—Н8А	120.1	O1—C34—O2	120.0 (3)
C8—C9—C10	120.4 (4)	O1—C34—C28	119.6 (3)
С8—С9—Н9А	119.8	O2—C34—C28	120.4 (3)
С10—С9—Н9А	119.8	O4—C35—O3	122.7 (4)
N2—C10—C9	121.6 (3)	O4—C35—C29	118.5 (3)
N2-C10-C14	117.6 (3)	O3—C35—C29	118.7 (3)
C9—C10—C14	120.8 (3)	O6—C36—O5	123.0 (3)
N2—C11—C7	124.1 (3)	O6—C36—C31	123.4 (3)
N2-C11-C12	117.6 (3)	O5—C36—C31	113.6 (3)
C7—C11—C12	118.4 (3)	O7—C37—O8	120.2 (4)
N1 C10 C4			
NI-CI2-C4	119.6 (3)	O7—C37—C32	123.1 (4)

C12—N1—C1—C2	-0.2 (6)	C7—C11—C12—C4	2.5 (6)
C12—N1—C1—C13	-179.6 (4)	C33—C28—C29—C30	0.1 (6)
N1—C1—C2—C3	0.2 (7)	C34—C28—C29—C30	-175.6 (4)
C13—C1—C2—C3	179.6 (4)	C33—C28—C29—C35	-179.5 (4)
C1—C2—C3—C4	-0.2 (7)	C34—C28—C29—C35	4.8 (7)
C2-C3-C4-C12	0.1 (6)	C28—C29—C30—C31	0.0 (6)
C2—C3—C4—C5	-179.2 (4)	C35—C29—C30—C31	179.7 (4)
C12—C4—C5—C6	-1.6 (6)	C29—C30—C31—C32	0.0 (6)
C3—C4—C5—C6	177.7 (4)	C29—C30—C31—C36	178.6 (4)
C4—C5—C6—C7	1.7 (7)	C30—C31—C32—C33	-0.1 (6)
C5—C6—C7—C8	179.6 (4)	C36—C31—C32—C33	-178.7 (4)
C5—C6—C7—C11	0.4 (6)	C30—C31—C32—C37	176.7 (4)
C11—C7—C8—C9	1.9 (6)	C36—C31—C32—C37	-2.0 (6)
C6—C7—C8—C9	-177.3 (4)	C31—C32—C33—C28	0.2 (6)
C7—C8—C9—C10	-1.1 (6)	C37—C32—C33—C28	-176.7 (4)
C11—N2—C10—C9	0.7 (6)	C29—C28—C33—C32	-0.2 (6)
C11—N2—C10—C14	-178.3 (3)	C34—C28—C33—C32	176.1 (4)
C8—C9—C10—N2	-0.3 (6)	C33—C28—C34—O1	-8.9 (6)
C8—C9—C10—C14	178.7 (4)	C29—C28—C34—O1	167.0 (4)
C10—N2—C11—C7	0.3 (6)	C33—C28—C34—O2	170.5 (4)
C10—N2—C11—C12	-179.6 (3)	C29—C28—C34—O2	-13.6 (7)
C8—C7—C11—N2	-1.6 (6)	C30—C29—C35—O4	8.2 (5)
C6-C7-C11-N2	177.7 (3)	C28—C29—C35—O4	-172.2 (4)
C8—C7—C11—C12	178.3 (3)	C30—C29—C35—O3	-168.0 (3)
C6—C7—C11—C12	-2.5 (6)	C28—C29—C35—O3	11.6 (6)
C1—N1—C12—C4	0.1 (6)	C30-C31-C36-O6	175.9 (5)
C1-N1-C12-C11	180.0 (3)	C32—C31—C36—O6	-5.4 (7)
C3—C4—C12—N1	-0.1 (6)	C30—C31—C36—O5	-3.5 (6)
C5—C4—C12—N1	179.3 (4)	C32—C31—C36—O5	175.2 (4)
C3—C4—C12—C11	-179.9 (4)	C33—C32—C37—O7	-77.6 (5)
C5-C4-C12-C11	-0.6 (6)	C31—C32—C37—O7	105.7 (5)
N2-C11-C12-N1	2.6 (5)	C33—C32—C37—O8	95.8 (4)
C7-C11-C12-N1	-177.3 (3)	C31—C32—C37—O8	-81.0 (5)
N2-C11-C12-C4	-177.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…O3	0.82	1.58	2.395 (4)	171
O5—H5…O1 ⁱ	0.82	1.86	2.671 (3)	172
O8—H8…O3 ⁱⁱ	0.82	1.82	2.645 (4)	178
N1— $H1A$ ···O1 W ⁱⁱⁱ	0.86	1.92	2.738 (4)	160
O1 <i>W</i> —H1 <i>WA</i> ···O4 ⁱⁱ	0.82	1.92	2.735 (4)	171
$O1W$ — $H1WB$ ···O 7^{iv}	0.82	2.11	2.873 (4)	155

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*; (iii) *x*-1/2, *y*, -*z*+1/2; (iv) *x*+1, *y*, *z*.