Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl [4-(2,2':6',2"-terpyridine-4'-yl)phenyl]phosphonate

Jan Chyba,^{a,b} Marek Necas^{a,b} and Jiri Pinkas^{a,b}*

^aDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic, and ^bCentral European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic Correspondence e-mail: jpinkas@chemi.muni.cz

Received 4 November 2013; accepted 19 November 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.075; data-to-parameter ratio = 13.4.

The title compound, C₂₅H₂₄N₃O₃P, was obtained by catalytic phosphonation of 4'-(4-bromphenyl)-2,2':6',2"-terpyridine. The terpyridine moiety is nearly planar, the dihedral angles between the central and the outer rings being 4.06 (9) and 5.39 (9)°. The N atoms in the two pyridine rings are oriented nearly antiperiplanar to that of the central ring. The benzene ring is rotated out of the plane of the central ring of the terpyridine unit by $34.65 (6)^{\circ}$.

Related literature

Terpyridines (Heller & Schubert, 2003) are frequently employed as tridentate chelating ligands for transition and rare earth metals forming very stable square planar mono-(Ervazici et al., 2008) or octahedral bis-complexes (Constable, 2007, 2008). For related symmetrical 4'-substituted terpyridine derivatives, see: Hofmeier & Schubert (2004); Andres & Schubert (2004).

Experimental

Crystal data

β

$C_{25}H_{24}N_{3}O_{3}P$	$V = 2209.53 (12) \text{ Å}^3$
$M_r = 445.44$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.5290 (4) Å	$\mu = 0.16 \text{ mm}^{-1}$
b = 13.0264 (4) Å	$T = 120 { m K}$
c = 14.5681 (5) Å	$0.40 \times 0.40 \times 0.30 \text{ mm}$
$\beta = 111.674 \ (3)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur (Sapphire2) diffractometer

Absorption correction: multi-scan (CrvsAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.957, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	291 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
3886 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

23115 measured reflections

 $R_{\rm int} = 0.027$

3886 independent reflections

2809 reflections with $I > 2\sigma(I)$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by CEITEC-Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) and GACR P207/11/0555.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2320).

References

- Andres, R. P. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.
- Constable, E. C. (2007). Chem. Soc. Rev. 36, 246-253.
- Constable, E. C. (2008). Coord. Chem. Rev. 252, 842-855.
- Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834-1895.
- Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.
- Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.
- Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1824 [doi:10.1107/S1600536813031541]

Diethyl [4-(2,2':6',2''-terpyridine-4'-yl)phenyl]phosphonate

Jan Chyba, Marek Necas and Jiri Pinkas

S1. Comment

The title compound was prepared as a precursor for our study of molecular aluminophosphate building blocks possessing metal-coordinating groups. The molecule presents the usual conformation of nitrogen atoms in the two pyridine rings as nearly antiperiplanar oriented to that of the central ring of the terpyridine moiety (Fig. 1). The P=O bond adopts an essentially *syn* conformation with the plane of the attached ring. The torsion angle O3–P1–C44–C43 is 6.93 (14)°. Thus, the ethyl groups are conveniently located below and above the plane of the ring. All four aromatic rings are planar, with r.m.s. deviations not exceeding 0.0066 Å.

S2. Experimental

To a mixture of diethylphosphite $(C_2H_3O)_2P(O)H$ (1.1 cm³, 8.5 mmol, Fluka), triethylamine (1.3 cm³, 9.4 mmol) and tetrakis(triphenylphosphine)palladium (0.337 g, 0.292 mmol), a solution of 4'-(4-bromophenyl)-2,2':6',2"-terpyridine (2.268 g, 5.841 mmol) in toluene (10 cm³) was added at 50 °C. The reaction mixture was stirred for 3.5 h at 90 °C and a white solid triethylammonium bromide precipitated. After cooling, the solid was filtered off and all volatile components were removed from the filtrate under vacuum. The final product was isolated by liquid chromatography (stationary phase: silicagel, mobile phase: petrolether, ethylacetate, triethylamine – 1:1:0.04). Yield 46.7% (1.215 g). M>.p. 122 °C. Single crystals suitable for X-ray diffraction analysis were obtained by a slow evaporation of a CHCl₃ solution.

NMR spectra were obtained on a Bruker AVANCE DRX 300 MHz spectrometer.

¹H NMR (300.13 MHz, CDCl₃): δ (p.p.m.) = 1.34 (t, 6H); 4.15 (m, 4H); 7.34 (m, 2H); 7.86 (m, 2H); 7.94 (AA'XX', m, 2H); 8.12 (AA'XX', m, 2H); 8.65 (m, 2H); 8.71 (m, 2H); 8.73 (s, 2H). ¹³C{¹H} NMR (75.48 MHz, CD₂Cl₂): δ (p.p.m.) = 16.8 (d, ³J_{PC} = 6.0 Hz); 62.7 (d, ²J_{PC} = 5.5 Hz); 119.1; 121.6; 124.4; 127.7 (d, ²J_{PC} = 15.4 Hz); 129.9 (d, ¹J_{PC} = 188.2 Hz); 132.8 (d, ³J_{PC} = 9.8 Hz); 137.2; 142.8 (d, ⁴J_{PC} = 3.2 Hz); 149.2; 149.6; 156.2; 156.6. ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂): δ (p.p.m.) = 18.8 (s).

Mass spectra were recorded on a quadrupole mass spectrometer TRIO 1000 series II, Finnigan MAT, Fisons Instruments, with resolution of 1 m/z in the range 0–1000 m/z. Mass spectrum (EI) m/z 445 (M^{+}).

IR spectra were measured on a IFS 28 Bruker spectrometer on samples prepared as KBr pellets (1.5 mg in 100 mg of KBr). IR (KBr pellet, cm⁻¹): *v* 3051 w, 2988 m, 2941 w, 2895 w, 1583 s, 1567 m, 1535 m, 1468 m, 1382 m, 1245 vs, 1163 m, 1132 m, 1058 s, 1024 vs, 972 vs, 958 s, 839 w, 794 s, 774 m, 747 m, 669 m, 622 w, 575 s, 533 m.

S3. Refinement

All H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms. The methyl H atoms were allowed to rotate about the C—C bond.

Figure 1

ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids.

Diethyl [4-(2,2':6',2''-terpyridine-4'-yl)phenyl]phosphonate

Crystal data C₂₅H₂₄N₃O₃P $M_r = 445.44$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 12.5290 (4) Å b = 13.0264 (4) Å c = 14.5681 (5) Å $\beta = 111.674$ (3)° V = 2209.53 (12) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur (Sapphire2) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.4353 pixels mm⁻¹ F(000) = 936 $D_x = 1.339 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25622 reflections $\theta = 2.9-27.1^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 120 KPrism, colourless $0.40 \times 0.40 \times 0.30 \text{ mm}$

 ω scan Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\min} = 0.957, T_{\max} = 1.000$ 23115 measured reflections

3886 independent reflections	$h = -14 \rightarrow 14$
2809 reflections with $I > 2\sigma(I)$	$k = -15 \rightarrow 15$
$R_{\rm int} = 0.027$	$l = -17 \rightarrow 17$
$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.9^\circ$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 1.02	H-atom parameters constrained
3886 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2]$
291 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.50120 (4)	0.72076 (3)	-0.00200 (3)	0.02069 (12)	
01	0.46530 (9)	0.83650 (7)	-0.02492 (7)	0.0275 (3)	
O2	0.39364 (8)	0.67611 (7)	0.01687 (7)	0.0228 (3)	
O3	0.53164 (9)	0.66516 (8)	-0.07662 (7)	0.0272 (3)	
C11	0.89136 (13)	0.75905 (11)	0.39920 (11)	0.0200 (3)	
C12	0.98093 (13)	0.68836 (11)	0.43599 (11)	0.0209 (4)	
H12	0.9839	0.6300	0.3979	0.025*	
C13	1.06611 (13)	0.70391 (11)	0.52914 (11)	0.0207 (4)	
N14	1.06504 (10)	0.78575 (9)	0.58592 (9)	0.0217 (3)	
C15	0.97864 (13)	0.85442 (11)	0.54983 (11)	0.0190 (3)	
C16	0.89195 (13)	0.84309 (11)	0.45779 (10)	0.0185 (3)	
H16	0.8328	0.8931	0.4348	0.022*	
C21	1.16156 (13)	0.62884 (11)	0.57298 (11)	0.0213 (4)	
N22	1.15825 (11)	0.54273 (10)	0.52078 (9)	0.0263 (3)	
C23	1.24131 (14)	0.47314 (12)	0.56195 (12)	0.0291 (4)	
H23	1.2398	0.4117	0.5263	0.035*	
C24	1.32901 (14)	0.48532 (12)	0.65303 (12)	0.0291 (4)	
H24	1.3855	0.4335	0.6791	0.035*	
C25	1.33247 (14)	0.57469 (13)	0.70507 (12)	0.0303 (4)	
H25	1.3919	0.5859	0.7675	0.036*	
C26	1.24803 (13)	0.64732 (12)	0.66465 (11)	0.0252 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

11201.2400.7030.7030.61461 (11)0.0194 (4)N320.89127 (10)1.01071 (10)0.57719 (9)0.0257 (3)C330.88630 (14)1.08950 (12)0.63477 (12)0.0286 (4)H330.82611.13810.60870.034*C340.96454 (14)1.10380 (12)0.76930.034*C351.05227 (15)1.03371 (12)0.76736 (12)0.0310 (4)H351.10731.04100.83260.037*C361.05986 (14)0.95269 (11)0.70898 (11)0.0251 (4)H361.12040.90420.73330.030*C410.79611 (13)0.74623 (10)0.30129 (10)0.0195 (3)C420.81495 (13)0.70342 (11)0.22064 (11)0.0237 (4)H420.88950.67980.22850.028*C430.72622 (13)0.69490 (11)0.12923 (11)0.0236 (4)H430.74080.66570.07530.028*C440.61595 (13)0.77839 (10)0.18963 (11)0.0199 (3)C450.59641 (13)0.76988 (11)0.1952 (11)0.0189 (3)C460.68515 (13)0.77839 (10)0.28663 (11)0.0192 (3)H450.52150.79210.19020.023*C510.3629 (14)0.8666 (12) $-0.10752 (12)$ 0.0311 (4)H51A0.30271.0206 -0.1796 0.041*H52B0.43990.9948 -0.1355 0.041*H52A0.30271.0020	Н26	1 2487	0 7095	0 6000	0.030*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.07814(13)	0.94306 (11)	0.61/61 (11)	0.030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N32	0.97814(13) 0.89127(10)	1.01071(10)	0.57719(9)	0.0174(4) 0.0257(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C33	0.89127(10) 0.88630(14)	1.01071(10) 1.08050(12)	0.37719(9) 0.63477(12)	0.0237(3)
1135 0.8201 1.1361 0.0087 0.0087 C34 0.9541 1.10380 0.73049 (12) 0.0281 H34 0.9577 1.1602 0.7693 $0.034*$ C35 1.05227 1.03371 120 0.76736 (12) 0.0310 H35 1.073 1.0410 0.8326 $0.037*$ C36 1.05986 (14) 0.95269 0.7333 $0.030*$ C41 0.79611 (13) 0.74623 (10) 0.30129 (10) C42 0.81495 0.77342 (11) 0.22064 (11) 0.0237 C43 0.72622 (13) 0.69490 (11) 0.12923 (11) 0.0236 C43 0.72622 (13) 0.69490 (11) 0.12923 (11) 0.0236 C44 0.61595 (13) 0.77881 (10) 0.11592 (11) 0.0199 C45 0.59641 (13) 0.77839 (10) 0.28863 (11) 0.0192 C46 0.68515 (13) 0.77839 (10) 0.28863 (11) 0.0192 C46 0.663515 (13) 0.77839 (10) 0.28863 (11) 0.0192 C47 0.36229 (14) 0.86636 (12) -0.10752 (12) 0.0314 H51B 0.3574 0.8284 -0.1678 $0.037*$ C52 0.36991 (14) 0.97985 (11) -0.12287 (12) H51B	U22	0.83650 (14)	1.03950 (12)	0.03477 (12)	0.0230(+)
C34 $0.9043 + (14)$ $1.10380 + (12)$ $0.73049 + (12)$ $0.0281 + (4)$ H34 0.9577 1.1602 0.7693 0.034^* C35 $1.05227 + (15)$ $1.03371 + (12)$ $0.76736 + (12)$ $0.0310 + (4)$ H35 1.1073 1.0410 0.8326 0.037^* C36 $1.05986 + (14)$ $0.95269 + (11)$ $0.70898 + (11)$ $0.0251 + (4)$ H36 1.1204 0.9042 0.7333 0.030^* C41 $0.79611 + (13)$ $0.74623 + (10)$ $0.30129 + (10)$ $0.0195 + (3)$ C42 $0.81495 + (13)$ $0.7342 + (11)$ $0.2206 + (11)$ $0.0237 + (4)$ H42 0.8895 0.6798 0.2285 0.028^* C43 $0.72622 + (13)$ $0.69490 + (11)$ $0.1292 + (11)$ $0.0236 + (4)$ H43 0.7408 0.6657 0.0753 0.028^* C44 $0.61595 + (13)$ $0.72881 + (10)$ $0.11592 + (11)$ $0.0189 + (3)$ C45 $0.59641 + (13)$ $0.77839 + (10)$ $0.28863 + (11)$ $0.0192 + (3)$ H45 $0.5215 + 0.7921 + 0.1902 + 0.024^*$ 0.024^* C46 $0.68515 + (13) + 0.77839 + (10) + 0.2287 + (12) + 0.0311 + (4)$ H51A $0.2930 + 0.8506 + -0.0927 + 0.037^*$ C51 $0.36229 + (14) + 0.86636 + (12) + 0.10752 + (12) + 0.0276 + (4)$ H51B $0.3574 + 0.8284 + -0.1678 + 0.037^*$ C52 $0.36991 + 0.99985 + (11) + 0.12287 + (12) + 0.0276 + (4)$ H52B $0.4399 + 0.9948 + -0.1355 + 0.041^*$ H52B $0.4399 + 0.9948 + -0.1325 + 0.0444 + 0.029^*$ </td <td>C34</td> <td>0.0201 0.06454 (14)</td> <td>1.1381</td> <td>0.0087 0.73040 (12)</td> <td>0.034</td>	C34	0.0201 0.06454 (14)	1.1381	0.0087 0.73040 (12)	0.034
1134 0.9377 1.1002 0.7033 0.034 C35 1.05227 (15) 1.03371 (12) 0.76736 (12) 0.0310 (4)H35 1.1073 1.0410 0.8326 $0.037*$ C36 1.05986 (14) 0.95269 (11) 0.70898 (11) 0.0251 (4)H36 1.1204 0.9042 0.7333 $0.030*$ C41 0.79611 (13) 0.74623 (10) 0.30129 (10) 0.0195 (3)C42 0.81495 (13) 0.70342 (11) 0.22064 (11) 0.0237 (4)H42 0.8895 0.6798 0.2285 $0.028*$ C43 0.72622 (13) 0.69490 (11) 0.12923 (11) 0.0236 (4)H43 0.7408 0.6657 0.0753 $0.028*$ C44 0.61595 (13) 0.72881 (10) 0.11592 (11) 0.0189 (3)C45 0.59641 (13) 0.77839 (10) 0.28863 (11) 0.0192 (3)H45 0.5215 0.7921 0.1902 $0.024*$ C46 0.68515 (13) 0.77839 (10) 0.28863 (11) 0.0192 (3)H46 0.6704 0.8064 0.3430 $0.023*$ C51 0.36229 (14) 0.86636 (12) -0.10752 (12) 0.0311 (4)H51A 0.2930 0.8506 -0.0927 $0.037*$ C52 0.36991 (14) 0.97985 (11) -0.12287 (12) 0.0276 (4)H52B 0.4399 0.9948 -0.1355 $0.041*$ H52B 0.4399 0.9948 -0.1355 $0.041*$ H52B 0.3357	U34	0.90434 (14)	1.10380 (12)	0.75049 (12)	0.0281(4)
C35 $1.0527 (15)$ $1.05371 (12)$ $0.7035 (12)$ $0.0316 (4)$ H35 1.1073 1.0410 0.8326 0.037^* C36 $1.05986 (14)$ $0.95269 (11)$ $0.70898 (11)$ $0.0251 (4)$ H36 1.1204 0.9042 0.7333 0.030^* C41 $0.79611 (13)$ $0.74623 (10)$ $0.30129 (10)$ $0.0195 (3)$ C42 $0.81495 (13)$ $0.70342 (11)$ $0.22064 (11)$ $0.0237 (4)$ H42 0.8895 0.6798 0.2285 0.028^* C43 $0.72622 (13)$ $0.69490 (11)$ $0.12923 (11)$ $0.0236 (4)$ H43 0.7408 0.6657 0.0753 0.028^* C44 $0.61595 (13)$ $0.72881 (10)$ $0.11592 (11)$ $0.0189 (3)$ C45 $0.59641 (13)$ $0.77839 (10)$ $0.28863 (11)$ $0.0199 (3)$ H45 0.5215 0.7921 0.1902 0.024^* C46 $0.68515 (13)$ $0.77839 (10)$ $0.28863 (11)$ $0.0192 (3)$ H46 0.6704 0.8064 0.3430 0.023^* C51 $0.36229 (14)$ $0.86636 (12)$ $-0.10752 (12)$ $0.0311 (4)$ H51A 0.2930 0.8506 -0.0927 0.037^* L52A 0.3027 1.0020 -0.1796 0.041^* H52B 0.4399 0.9948 -0.1355 0.041^* H52C 0.3720 1.0167 -0.0636 0.041^* L52A 0.3027 1.0020 -0.1796 0.041^* H52B 0.4399	C35	0.3377 1 05227 (15)	1.1002 1.03371(12)	0.70736(12)	0.034°
11331.10731.0470 0.8520 0.037^{+} C361.05986 (14) $0.95269 (11)$ $0.70898 (11)$ $0.0251 (4)$ H361.1204 0.9042 0.7333 0.030^{*} C41 $0.79611 (13)$ $0.74623 (10)$ $0.30129 (10)$ $0.0195 (3)$ C42 $0.81495 (13)$ $0.70342 (11)$ $0.22064 (11)$ $0.0237 (4)$ H42 0.8895 0.6798 0.2285 0.028^{*} C43 $0.72622 (13)$ $0.69490 (11)$ $0.12923 (11)$ $0.0236 (4)$ H43 0.7408 0.6657 0.0753 0.028^{*} C44 $0.61595 (13)$ $0.72881 (10)$ $0.11592 (11)$ $0.0189 (3)$ C45 $0.59641 (13)$ $0.76988 (11)$ $0.19754 (11)$ $0.0199 (3)$ H45 0.5215 0.7921 0.1902 0.024^{*} C46 $0.6515 (13)$ $0.77839 (10)$ $0.28863 (11)$ $0.0192 (3)$ H46 0.6704 0.8064 0.3430 0.023^{*} C51 $0.36229 (14)$ $0.86636 (12)$ $-0.10752 (12)$ $0.0311 (4)$ H51B 0.3574 0.8284 -0.1678 0.037^{*} C52 $0.36991 (14)$ $0.97985 (11)$ $-0.12287 (12)$ $0.0216 (4)$ H52B 0.4399 0.9948 -0.1355 0.041^{*} H52C 0.3720 1.0167 -0.0044 0.029^{*} C61 $0.39903 (14)$ $0.56972 (11)$ $0.56077 (12)$ $0.0214 (4)$ H61B 0.3522 0.5251 -0.0044 0.029^{*} <	U25	1.03227(13)	1.03371 (12)	0.70750 (12)	0.0310(4)
C30 1.05930 (14) 0.59269 (11) 0.70333 (11) 0.0221 (14)H36 1.1204 0.9042 0.7333 $0.030*$ C41 0.79611 (13) 0.74623 (10) 0.30129 (10) 0.0195 (3)C42 0.81495 (13) 0.70342 (11) 0.22064 (11) 0.0237 (4)H42 0.8895 0.6798 0.2285 $0.028*$ C43 0.72622 (13) 0.69490 (11) 0.12923 (11) 0.0236 (4)H43 0.7408 0.6657 0.0753 $0.028*$ C44 0.61595 (13) 0.72881 (10) 0.11592 (11) 0.0199 (3)C45 0.59641 (13) 0.76988 (11) 0.19754 (11) 0.0199 (3)H45 0.5215 0.7921 0.1902 $0.024*$ C46 0.68515 (13) 0.77839 (10) 0.28863 (11) 0.0192 (3)H46 0.6704 0.8064 0.3430 $0.023*$ C51 0.36229 (14) 0.86636 (12) -0.10752 (12) 0.0311 (4)H51A 0.2930 0.8506 -0.0927 $0.037*$ H51B 0.3574 0.8284 -0.1678 $0.037*$ C52 0.36991 (14) 0.97985 (11) -0.12287 (12) $0.0214*$ H52B 0.4399 0.9948 -0.1355 $0.041*$ H52B 0.4399 0.9948 -0.1355 $0.041*$ C61 0.39903 (14) 0.56972 (11) 0.05077 (12) 0.0241 (4)H61A 0.4794 0.5449 0.0748 $0.029*$ C62 0.35357	C36	1.1075	0.05260 (11)	0.8320	0.037°
11501.12040.50420.73530.050C410.79611 (13)0.74623 (10)0.30129 (10)0.0195 (3)C420.81495 (13)0.70342 (11)0.22064 (11)0.0237 (4)H420.88950.67980.22850.028*C430.72622 (13)0.69490 (11)0.12923 (11)0.0236 (4)H430.74080.66570.07530.028*C440.61595 (13)0.72881 (10)0.11592 (11)0.0189 (3)C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0216 (4)H52B0.43990.9948-0.13550.041*H52B0.43990.9948-0.13550.041*H52B0.43990.9948-0.13550.041*H52C0.3537 (15)0.56613 (12)0.13283 (11)0.0318 (4)H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62B0.27400.59070.10830.048*H62B	U36	1.03980 (14)	0.95209 (11)	0.70338 (11)	0.0231(4)
C41 $0.79011(13)$ $0.74023(10)$ $0.30129(10)$ $0.0193(3)$ C42 $0.81495(13)$ $0.70342(11)$ $0.22064(11)$ $0.0237(4)$ H42 0.8895 0.6798 0.2285 $0.028*$ C43 $0.72622(13)$ $0.69490(11)$ $0.12923(11)$ $0.0236(4)$ H43 0.7408 0.6657 0.0753 $0.028*$ C44 $0.61595(13)$ $0.72881(10)$ $0.11592(11)$ $0.0189(3)$ C45 $0.59641(13)$ $0.7698(11)$ $0.19754(11)$ $0.0199(3)$ H45 0.5215 0.7921 0.1902 $0.024*$ C46 $0.68515(13)$ $0.77839(10)$ $0.28863(11)$ $0.0192(3)$ H46 0.6704 0.8064 0.3430 $0.023*$ C51 $0.36229(14)$ $0.86636(12)$ $-0.10752(12)$ $0.0311(4)$ H51A 0.2930 0.8506 -0.0927 $0.037*$ H51B 0.3574 0.8284 -0.1678 $0.037*$ C52 $0.36991(14)$ $0.97985(11)$ $-0.12287(12)$ $0.0276(4)$ H52B 0.4399 0.9948 -0.1355 $0.041*$ H52B 0.4399 0.9948 -0.1355 $0.041*$ C61 $0.39903(14)$ $0.56972(11)$ $0.05077(12)$ $0.0241(4)$ H61B 0.3522 0.5251 -0.0044 $0.029*$ C62 $0.35357(15)$ $0.56613(12)$ $0.13283(11)$ $0.318(4)$ H62B 0.2740 0.5907 0.1083 $0.048*$ H62C 0.4008 0.6100 0.1874 <td>C41</td> <td>1.1204 0.70611 (12)</td> <td>0.3042 0.74623 (10)</td> <td>0.7555</td> <td>0.030°</td>	C41	1.1204 0.70611 (12)	0.3042 0.74623 (10)	0.7555	0.030°
C42 $0.31495(13)$ $0.70342(11)$ $0.22004(11)$ $0.0237(4)$ H42 0.8895 0.6798 0.2285 $0.028*$ C43 $0.72622(13)$ $0.69490(11)$ $0.12923(11)$ $0.0236(4)$ H43 0.7408 0.6657 0.0753 $0.028*$ C44 $0.61595(13)$ $0.72881(10)$ $0.11592(11)$ $0.0189(3)$ C45 $0.59641(13)$ $0.76988(11)$ $0.19754(11)$ $0.0199(3)$ H45 0.5215 0.7921 0.1902 $0.024*$ C46 $0.68515(13)$ $0.77839(10)$ $0.28863(11)$ $0.0192(3)$ H46 0.6704 0.8064 0.3430 $0.023*$ C51 $0.36229(14)$ $0.86636(12)$ $-0.10752(12)$ $0.0311(4)$ H51A 0.2930 0.8506 -0.0927 $0.037*$ C52 $0.36991(14)$ $0.97985(11)$ $-0.12287(12)$ $0.0276(4)$ H52B 0.4399 0.9948 -0.1355 $0.041*$ H52B 0.4399 0.9948 -0.1355 $0.041*$ H52C 0.3720 1.0167 -0.0636 $0.041*$ H52B 0.4399 0.9948 $-0.13283(11)$ $0.029*$ C61 $0.39903(14)$ $0.56972(11)$ $0.05077(12)$ $0.0241(4)$ H61A 0.4794 0.5449 0.748 $0.029*$ C62 $0.35357(15)$ $0.56613(12)$ $0.13283(11)$ $0.0318(4)$ H62B 0.2740 0.5907 0.1083 $0.048*$ H62B 0.2740 0.5907 0.1083 0.04	C41	0.79011(13) 0.81405(12)	0.74023(10) 0.70342(11)	0.30129(10) 0.22064(11)	0.0193(3)
11420.88930.07980.22630.028C430.72622 (13)0.69490 (11)0.12923 (11)0.0236 (4)H430.74080.66570.07530.028*C440.61595 (13)0.72881 (10)0.11592 (11)0.0189 (3)C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*H52C0.37201.0167-0.00440.029*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.318 (4)H62B0.27400.59070.10830.048*H62B0.27400.59070.10830.048*	U42	0.81495 (15)	0.70342 (11)	0.22004 (11)	0.0237 (4)
C430.72022 (13)0.09490 (11)0.12923 (11)0.0238 (4)H430.74080.66570.07530.028*C440.61595 (13)0.72881 (10)0.11592 (11)0.0189 (3)C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0122 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.318 (4)H62B0.27400.59070.10830.048*H62B0.27400.59070.10830.048*	П42 С43	0.0093 0.72622(12)	0.0798	0.2283 0.12022 (11)	0.028°
H450.74080.00370.007350.028*C440.61595 (13)0.72881 (10)0.11592 (11)0.0189 (3)C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.018 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	U43	0.72022 (13)	0.09490 (11)	0.12923 (11)	0.0230 (4)
C440.01393 (13)0.72881 (10)0.11392 (11)0.0189 (3)C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	П43	0.7408	0.0037	0.0735	0.028°
C430.39641 (13)0.76988 (11)0.19734 (11)0.0199 (3)H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62B0.27400.59070.10830.048*H62B0.27400.59070.10830.048*	C44	0.01595(15)	0.72881(10) 0.76088(11)	0.11592(11) 0.10754(11)	0.0189(3)
H450.52150.79210.19020.024*C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62B0.27400.59070.10830.048*H62B0.27400.59070.10830.048*	C43	0.59041 (15)	0.70988 (11)	0.19734 (11)	0.0199 (3)
C460.68815 (13)0.77839 (10)0.28883 (11)0.0192 (3)H460.67040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H45	0.5215	0.7921	0.1902	0.024*
H460.87040.80640.34300.023*C510.36229 (14)0.86636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*		0.68515 (13)	0.77839 (10)	0.28863 (11)	0.0192 (3)
CS10.36229 (14)0.88636 (12)-0.10752 (12)0.0311 (4)H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H46	0.6/04	0.8064	0.3430	0.023*
H51A0.29300.8506-0.09270.037*H51B0.35740.8284-0.16780.037*C520.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	C51	0.36229 (14)	0.86636 (12)	-0.10/52 (12)	0.0311 (4)
HS1B 0.3574 0.8284 -0.1678 0.037^* C52 $0.36991 (14)$ $0.97985 (11)$ $-0.12287 (12)$ $0.0276 (4)$ H52A 0.3027 1.0020 -0.1796 0.041^* H52B 0.4399 0.9948 -0.1355 0.041^* H52C 0.3720 1.0167 -0.0636 0.041^* C61 $0.39903 (14)$ $0.56972 (11)$ $0.05077 (12)$ $0.0241 (4)$ H61A 0.4794 0.5449 0.0748 0.029^* H61B 0.3522 0.5251 -0.0044 0.029^* C62 $0.35357 (15)$ $0.56613 (12)$ $0.13283 (11)$ $0.0318 (4)$ H62A 0.3562 0.4953 0.1563 0.048^* H62B 0.2740 0.5907 0.1083 0.048^*	HSIA	0.2930	0.8506	-0.0927	0.037*
CS20.36991 (14)0.97985 (11)-0.12287 (12)0.0276 (4)H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	HSIB	0.3574	0.8284	-0.1678	0.037*
H52A0.30271.0020-0.17960.041*H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	C52	0.36991 (14)	0.97985 (11)	-0.12287 (12)	0.0276 (4)
H52B0.43990.9948-0.13550.041*H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H52A	0.3027	1.0020	-0.1796	0.041*
H52C0.37201.0167-0.06360.041*C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H52B	0.4399	0.9948	-0.1355	0.041*
C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H52C	0.3720	1.0167	-0.0636	0.041*
H61A0.47940.54490.07480.029*H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	C61	0.39903 (14)	0.56972 (11)	0.05077 (12)	0.0241 (4)
H61B0.35220.5251-0.00440.029*C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H61A	0.4794	0.5449	0.0748	0.029*
C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H61B	0.3522	0.5251	-0.0044	0.029*
H62A0.35620.49530.15630.048*H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	C62	0.35357 (15)	0.56613 (12)	0.13283 (11)	0.0318 (4)
H62B0.27400.59070.10830.048*H62C0.40080.61000.18740.048*	H62A	0.3562	0.4953	0.1563	0.048*
H62C 0.4008 0.6100 0.1874 0.048*	H62B	0.2740	0.5907	0.1083	0.048*
	H62C	0.4008	0.6100	0.1874	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0205 (2)	0.0200 (2)	0.0200 (2)	-0.00170 (18)	0.00562 (18)	0.00025 (18)
01	0.0267 (7)	0.0211 (6)	0.0264 (6)	-0.0013 (5)	0.0002 (5)	0.0043 (5)
O2	0.0203 (6)	0.0203 (5)	0.0264 (6)	-0.0003 (5)	0.0069 (5)	0.0015 (5)
O3	0.0278 (7)	0.0316 (6)	0.0216 (6)	-0.0048 (5)	0.0086 (5)	-0.0032 (5)
C11	0.0192 (9)	0.0223 (8)	0.0202 (9)	-0.0005 (7)	0.0093 (7)	0.0025 (7)
C12	0.0212 (9)	0.0224 (8)	0.0189 (9)	-0.0014 (7)	0.0072 (8)	-0.0026 (7)
C13	0.0201 (9)	0.0222 (8)	0.0202 (9)	-0.0031 (7)	0.0079 (8)	0.0019 (7)
N14	0.0218 (8)	0.0241 (7)	0.0189 (7)	-0.0020 (6)	0.0072 (6)	0.0017 (6)
C15	0.0164 (9)	0.0224 (8)	0.0184 (8)	-0.0025 (7)	0.0069 (7)	0.0034 (7)

C16	0.0163 (9)	0.0208 (8)	0.0182 (8)	0.0013 (6)	0.0062 (7)	0.0032 (6)
C21	0.0192 (9)	0.0248 (8)	0.0197 (9)	-0.0030 (7)	0.0071 (8)	0.0022 (7)
N22	0.0253 (8)	0.0261 (7)	0.0269 (8)	0.0017 (6)	0.0087 (7)	0.0025 (6)
C23	0.0293 (11)	0.0248 (9)	0.0349 (10)	0.0012 (8)	0.0139 (9)	0.0029 (7)
C24	0.0203 (10)	0.0293 (9)	0.0350 (10)	0.0028 (7)	0.0070 (8)	0.0124 (8)
C25	0.0211 (10)	0.0368 (10)	0.0271 (10)	-0.0033 (8)	0.0021 (8)	0.0060 (8)
C26	0.0226 (10)	0.0262 (9)	0.0236 (9)	-0.0025 (7)	0.0048 (8)	0.0001 (7)
C31	0.0166 (9)	0.0228 (9)	0.0194 (9)	-0.0028 (7)	0.0073 (8)	0.0028 (7)
N32	0.0215 (8)	0.0285 (7)	0.0246 (8)	-0.0009 (6)	0.0057 (6)	-0.0042 (6)
C33	0.0219 (10)	0.0310 (9)	0.0323 (10)	-0.0005 (8)	0.0093 (8)	-0.0069 (8)
C34	0.0291 (10)	0.0322 (9)	0.0263 (10)	-0.0074 (8)	0.0141 (9)	-0.0106 (7)
C35	0.0308 (11)	0.0379 (10)	0.0195 (9)	-0.0040 (8)	0.0038 (8)	-0.0041 (8)
C36	0.0243 (10)	0.0276 (9)	0.0191 (9)	0.0010 (7)	0.0028 (8)	0.0013 (7)
C41	0.0199 (9)	0.0171 (8)	0.0198 (9)	-0.0010 (6)	0.0054 (8)	0.0011 (6)
C42	0.0167 (9)	0.0273 (9)	0.0261 (10)	0.0034 (7)	0.0066 (8)	-0.0026 (7)
C43	0.0246 (10)	0.0257 (9)	0.0215 (9)	-0.0001 (7)	0.0098 (8)	-0.0044 (7)
C44	0.0197 (9)	0.0152 (7)	0.0216 (9)	-0.0007 (7)	0.0072 (7)	0.0020 (6)
C45	0.0165 (9)	0.0192 (8)	0.0231 (9)	0.0022 (7)	0.0063 (8)	0.0022 (7)
C46	0.0227 (9)	0.0156 (7)	0.0205 (9)	0.0016 (7)	0.0093 (8)	-0.0009 (6)
C51	0.0262 (10)	0.0300 (9)	0.0292 (10)	0.0014 (8)	0.0011 (8)	0.0062 (8)
C52	0.0260 (10)	0.0269 (9)	0.0275 (9)	0.0029 (7)	0.0070 (8)	0.0034 (7)
C61	0.0239 (10)	0.0180 (8)	0.0294 (9)	-0.0006 (7)	0.0087 (8)	0.0017 (7)
C62	0.0351 (11)	0.0312 (9)	0.0287 (10)	-0.0044 (8)	0.0115 (9)	0.0024 (8)

Geometric parameters (Å, °)

P1—O3	1.4691 (10)	C33—C34	1.389 (2)
P1	1.5734 (10)	С33—Н33	0.9500
P1	1.5822 (10)	C34—C35	1.376 (2)
P1-C44	1.7902 (16)	C34—H34	0.9500
O1—C51	1.4553 (17)	C35—C36	1.381 (2)
O2—C61	1.4644 (16)	С35—Н35	0.9500
C11—C16	1.3865 (19)	С36—Н36	0.9500
C11—C12	1.397 (2)	C41—C42	1.3972 (19)
C11—C41	1.493 (2)	C41—C46	1.397 (2)
C12—C13	1.397 (2)	C42—C43	1.389 (2)
С12—Н12	0.9500	C42—H42	0.9500
C13—N14	1.3524 (18)	C43—C44	1.394 (2)
C13—C21	1.493 (2)	C43—H43	0.9500
N14—C15	1.3520 (18)	C44—C45	1.4053 (19)
C15—C16	1.387 (2)	C45—C46	1.386 (2)
C15—C31	1.4928 (19)	C45—H45	0.9500
C16—H16	0.9500	C46—H46	0.9500
C21—N22	1.3472 (18)	C51—C52	1.503 (2)
C21—C26	1.395 (2)	C51—H51A	0.9900
N22—C23	1.3429 (19)	C51—H51B	0.9900
C23—C24	1.384 (2)	C52—H52A	0.9800
С23—Н23	0.9500	С52—Н52В	0.9800

C24—C25	1.381 (2)	С52—Н52С	0.9800
C24—H24	0.9500	C61—C62	1.503 (2)
C25—C26	1.379 (2)	C61—H61A	0.9900
C25—H25	0.9500	C61—H61B	0.9900
C26—H26	0.9500	C62—H62A	0.9800
C_{31} N32	1 3491 (18)	C62—H62B	0.9800
$C_{31} - C_{36}$	1 384 (2)	C62 - H62D	0.9800
N32—C33	1 3414 (19)	002 11020	0.7000
102 000	1.5 11 (17)		
03—P1—01	116 57 (6)	C33—C34—H34	121.0
03-P1-O2	114 70 (6)	C_{34} C_{35} C_{36} C_{36}	119 57 (15)
01 - P1 - 02	101 19 (6)	C_{34} C_{35} H_{35}	120.2
$O_1 = 1 = O_2$ $O_2 = P_1 = C_4 A$	101.17(0) 113.77(7)	$C_{34} = C_{35} = H_{35}$	120.2
03 - 11 - 044	102 29 (6)	$C_{35} = C_{35} = C_{35}$	120.2 110 17 (15)
$O_{1} = 1 = C_{44}$	102.29(0) 106.77(6)	$C_{35} = C_{36} = C_{31}$	120.4
$C_{2} = 1 = C_{44}$	100.77(0) 121.80(0)	$C_{33} = C_{30} = H_{30}$	120.4
$C_{51} = 01 = F_1$	121.09(9)	$C_{31} = C_{30} = H_{30}$	120.4
$C_{01} = 02 = P_1$	116.03(9) 117.61(14)	C42 - C41 - C40	118.32(14)
	117.01(14)	C42 - C41 - C11	121.02(14)
C10-C11-C41	119.81 (13)	C40 - C41 - C11	119.86 (13)
C12— $C11$ — $C41$	122.57 (13)	C43 - C42 - C41	120.96 (14)
CII = CI2 = CI3	119.64 (14)	C43—C42—H42	119.5
C11—C12—H12	120.2	C41—C42—H42	119.5
С13—С12—Н12	120.2	C42—C43—C44	120.62 (14)
N14—C13—C12	122.12 (14)	C42—C43—H43	119.7
N14—C13—C21	116.23 (13)	C44—C43—H43	119.7
C12—C13—C21	121.62 (13)	C43—C44—C45	118.44 (14)
C15—N14—C13	118.11 (13)	C43—C44—P1	121.22 (11)
N14—C15—C16	122.29 (13)	C45—C44—P1	120.34 (12)
N14—C15—C31	117.10 (13)	C46—C45—C44	120.79 (14)
C16—C15—C31	120.59 (13)	C46—C45—H45	119.6
C11—C16—C15	120.22 (13)	C44—C45—H45	119.6
C11—C16—H16	119.9	C45—C46—C41	120.65 (13)
C15—C16—H16	119.9	C45—C46—H46	119.7
N22—C21—C26	122.35 (14)	C41—C46—H46	119.7
N22—C21—C13	116.81 (13)	O1—C51—C52	107.47 (12)
C26—C21—C13	120.83 (14)	O1—C51—H51A	110.2
C23—N22—C21	116.92 (13)	С52—С51—Н51А	110.2
N22—C23—C24	124.10 (15)	O1—C51—H51B	110.2
N22—C23—H23	117.9	С52—С51—Н51В	110.2
С24—С23—Н23	117.9	H51A—C51—H51B	108.5
C25—C24—C23	118.39 (15)	С51—С52—Н52А	109.5
C25—C24—H24	120.8	С51—С52—Н52В	109.5
C23—C24—H24	120.8	H52A—C52—H52B	109.5
C26—C25—C24	118.71 (15)	С51—С52—Н52С	109.5
С26—С25—Н25	120.6	H52A—C52—H52C	109.5
C24—C25—H25	120.6	H52B—C52—H52C	109.5
C25—C26—C21	119.51 (15)	O2—C61—C62	108.30 (12)
C25—C26—H26	120.2	O2—C61—H61A	110.0

C21—C26—H26	120.2	C62—C61—H61A	110.0
N32—C31—C36	122.19 (14)	O2—C61—H61B	110.0
N32—C31—C15	116.16 (13)	С62—С61—Н61В	110.0
C36—C31—C15	121.60 (13)	H61A—C61—H61B	108.4
C33—N32—C31	117.64 (13)	C61—C62—H62A	109.5
N32—C33—C34	123.48 (15)	C61—C62—H62B	109.5
N32—C33—H33	118.3	H62A—C62—H62B	109.5
С34—С33—Н33	118.3	С61—С62—Н62С	109.5
C35—C34—C33	117.94 (15)	H62A—C62—H62C	109.5
С35—С34—Н34	121.0	H62B—C62—H62C	109.5
O3—P1—O1—C51	64.82 (12)	N14—C15—C31—C36	-2.4 (2)
O2—P1—O1—C51	-60.30 (12)	C16—C15—C31—C36	176.11 (13)
C44—P1—O1—C51	-170.42 (11)	C36—C31—N32—C33	0.3 (2)
O3—P1—O2—C61	59.59 (11)	C15—C31—N32—C33	177.95 (12)
O1—P1—O2—C61	-174.05 (10)	C31—N32—C33—C34	-0.9 (2)
C44—P1—O2—C61	-67.41 (11)	N32—C33—C34—C35	0.7 (2)
C16—C11—C12—C13	0.5 (2)	C33—C34—C35—C36	0.1 (2)
C41—C11—C12—C13	-178.66 (13)	C34—C35—C36—C31	-0.6 (2)
C11—C12—C13—N14	0.1 (2)	N32—C31—C36—C35	0.4 (2)
C11—C12—C13—C21	178.06 (13)	C15—C31—C36—C35	-177.07 (14)
C12-C13-N14-C15	-0.6 (2)	C16—C11—C41—C42	145.39 (14)
C21—C13—N14—C15	-178.60 (12)	C12—C11—C41—C42	-35.5 (2)
C13—N14—C15—C16	0.4 (2)	C16—C11—C41—C46	-33.99 (19)
C13—N14—C15—C31	178.91 (12)	C12—C11—C41—C46	145.12 (14)
C12-C11-C16-C15	-0.6 (2)	C46—C41—C42—C43	1.4 (2)
C41—C11—C16—C15	178.51 (13)	C11—C41—C42—C43	-177.99 (13)
N14—C15—C16—C11	0.2 (2)	C41—C42—C43—C44	-0.1 (2)
C31-C15-C16-C11	-178.24 (12)	C42—C43—C44—C45	-1.2 (2)
N14—C13—C21—N22	174.58 (12)	C42—C43—C44—P1	178.75 (11)
C12-C13-C21-N22	-3.5 (2)	O3—P1—C44—C43	6.93 (14)
N14—C13—C21—C26	-4.2 (2)	O1—P1—C44—C43	-119.67 (12)
C12-C13-C21-C26	177.82 (13)	O2—P1—C44—C43	134.48 (11)
C26—C21—N22—C23	1.4 (2)	O3—P1—C44—C45	-173.13 (11)
C13—C21—N22—C23	-177.27 (12)	O1—P1—C44—C45	60.27 (12)
C21—N22—C23—C24	-0.6 (2)	O2—P1—C44—C45	-45.58 (13)
N22—C23—C24—C25	-0.5 (2)	C43—C44—C45—C46	1.3 (2)
C23—C24—C25—C26	0.6 (2)	P1-C44-C45-C46	-178.67 (11)
C24—C25—C26—C21	0.2 (2)	C44—C45—C46—C41	0.0 (2)
N22—C21—C26—C25	-1.3 (2)	C42—C41—C46—C45	-1.3 (2)
C13—C21—C26—C25	177.38 (14)	C11—C41—C46—C45	178.09 (13)
N14—C15—C31—N32	179.95 (12)	P1	-166.13 (10)
C16—C15—C31—N32	-1.51 (19)	P1—O2—C61—C62	135.67 (11)