

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-[(1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl]-5*H*-dibenzo[*b*,*f*]azepine

B. C. Manjunath,^a K. S. Vinay Kumar,^b S. Madan Kumar,^a M. P. Sadashiva^b and N. K. Lokanath^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

Received 5 November 2013; accepted 7 November 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.135; data-to-parameter ratio = 13.1.

In the title compound, $C_{24}H_{20}N_4$, the azepine ring adopts a boat conformation. The dihedral angle between the benzene rings fused to the azepine ring is 49.40 (9)°. The triazole ring makes a dihedral angle of 77.88 (9)° with the terminal phenyl ring. In the crystal, molecules are linked *via* $C-H\cdots\pi$ interactions and a parallel slipped $\pi-\pi$ interaction [centroid-centroid distance = 3.7324 (9), normal distance = 3.4060 (6) and slippage = 1.526 Å], forming a three-dimensional network.

Related literature

For the use of dibenzo azepine derivatives in the preparation of carbamazepine, see: Rockliff & Davis (1966). For their antitumor properties, see: Al-Qawasmeh *et al.* (2009). For related structures, see: Abdoh *et al.* (2013); Manjunath *et al.* (2013). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental

Crystal data C₂₄H₂₀N₄

 $M_r = 364.44$

Monoclinic, $P2_1/c$	Z = 4
a = 11.4339 (10) Å	Cu $K\alpha$ radiation
b = 11.7140 (12) Å	$\mu = 0.60 \text{ mm}^{-1}$
c = 14.4527 (13) Å	T = 296 K
$\beta = 98.610 \ (4)^{\circ}$	$0.23 \times 0.22 \times 0.21 \text{ mm}$
V = 1913.9 (3) Å ³	

Data collection

11434 measured reflections
3160 independent reflections
2742 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.029$

 $R[F^{2} > 2\sigma(F^{2})] = 0.047$ $wR(F^{2}) = 0.135$ S = 1.06 $\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C9-C14 rings, respectively

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C18-H18A\cdots Cg2^{i}$ $C20-H20\cdots Cg1^{i}$	0.97 0.93	2.83 2.79	3.600 (2) 3.642 (2)	137 153

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2008).

We are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2664).

References

- Abdoh, M. M. M., Madan Kumar, S., Vinay Kumar, K. S., Manjunath, B. C., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, 017.
- Al-Qawasmeh, R. A., Lee, Y., Cao, M.-Y., Gu, X., Viau, S., Lightfoot, J., Wright, J. A. & Young, A. H. (2009). *Bioorg. Med. Chem.*, **19** 104–107.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manjunath, B. C., Vinay Kumar, K. S., Madan Kumar, S., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o1233.
- Rockliff, B. W. & Davis, E. H. (1966). Arch. Neurol. 15, 129-136.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1763 [doi:10.1107/S1600536813030547]

5-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-5H-dibenzo[b,f]azepine

B. C. Manjunath, K. S. Vinay Kumar, S. Madan Kumar, M. P. Sadashiva and N. K. Lokanath

S1. Comment

Dibenzo azepine derivatives have been shown to act as antitumor drugs (Al-Qawasmeh *et al.*, 2009). They are used in the prepration of carbamazepine, an anticonvulsant (Rockliff & Davis, 1966). As a part of our on-going research on the synthesis and crystal structural studies of dibenzo azepine derivatives (Abdoh *et al.*, 2013; Manjunath *et al.*, 2013), we present herein the crystal structure of the title compound.

The molecular structure of the title molecule is shown in Fig. 1. The seven-membered azepine ring adopts a boat conformation with puckering parameters (Cremer & Pople, 1975): $Q_2 = 0.6845$ (18) Å, Q3 = 0.2069 (17) Å, $\varphi_2 = 178.28$ (16)°, $\varphi_3 = 178.9$ (5)°, and a total puckering amplitude $Q_T = 0.7149$ (17) Å.

The dihedral angle between the two benzene rings, (C1-C6) and (C9-C14), fused to the azepine ring is 49.40 (9)°. The triazole ring (C16/N2-N4/C17) makes a dihedral angle of 77.88 (9)° with the terminal phenyl ring (C19-C24). The overall geometry of the title molecule is similar that of earlier reported structures (Abdoh *et al.*, 2013; Manjunath *et al.*, 2013).

In the crystal, molecules are connected by C—H··· π interactions (Table 1), and a slipped parallel π - π interaction involving inversion related terminal phenyl rings [*Cg3*···*Cg3*ⁱ = 3.7324 (9) Å; normal distance = 3.4060 (6) Å; slippage = 1.526 Å; *Cg3* is the centroid of ring (C20—C24); symmetry code: (i) = -*x* + 2, -*y* + 1, -*z* + 2]. These interactions result in the formation of a three-dimensional structure (Fig. 2).

S2. Experimental

5-(prop-2-yn-1-yl)-5*H*-dibenzo[*b*,*f*]azepine (2.1 mmol) was taken in a mixture of dichloromethane and water in the ratio 1:1, Cuprous iodide (0.21 mmol) was added followed by Sodium ascorbate (0.21 mmol) at room temperature. After 10 minutes, benzyl azide was added (2.3 mmol) at room temperature. The resulting reaction mixture was stirred for 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 × 20 ml), the combined ethyl acetate layer was washed with brine solution (2 × 25 ml). The organic layer was then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product obtained was purified by column chromatography over silica gel (60–120 mesh) using hexane:ethyl acetate (8:2) as eluent. The pure compound was recrystallized in ethyl acetate/hexane (1:1) to obtain light-yellow block-like crystals.

S3. Refinement

All the H atoms were fixed geometrically and allowed to ride on their parent atoms: C—H= 0.93–0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. The benzene ring (C19-C24) was refined as a regular hexagon.

Figure 1

A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A viewed along the *b* axis of the crystal packing of the title compound.

5-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-5H-dibenzo[b,f]azepine

Crystal data C₂₄H₂₀N₄

 $M_r = 364.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.4339 (10) Åb = 11.7140 (12) Åc = 14.4527 (13) Å $\beta = 98.610 (4)^\circ$ $V = 1913.9 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 10.7 pixels mm⁻¹ F(000) = 768 $D_x = 1.265 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3160 reflections $\theta = 3.9-64.7^{\circ}$ $\mu = 0.60 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.23 \times 0.22 \times 0.21 \text{ mm}$

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2013) $T_{\min} = 0.871, T_{\max} = 0.882$ 11434 measured reflections 3160 independent reflections

2742 reflections with $I > 2\sigma(I)$	$h = -13 \rightarrow 13$
$R_{\rm int} = 0.029$	$k = -6 \rightarrow 13$
$\theta_{\text{max}} = 64.7^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0672P)^2 + 0.668P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
3160 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
242 parameters	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0022 (4)
map	

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.43569 (11)	0.09444 (13)	0.81026 (9)	0.0380 (4)
N2	0.75967 (14)	0.07129 (16)	0.84538 (13)	0.0587 (6)
N3	0.83816 (14)	0.15341 (17)	0.84788 (13)	0.0615 (6)
N4	0.78072 (13)	0.25199 (14)	0.84990 (10)	0.0466 (5)
C1	0.42570 (14)	0.13226 (14)	0.71500 (11)	0.0362 (5)
C2	0.50035 (15)	0.09093 (17)	0.65474 (12)	0.0444 (6)
C3	0.49640 (18)	0.13523 (19)	0.56554 (13)	0.0529 (7)
C4	0.41693 (18)	0.22002 (19)	0.53381 (13)	0.0552 (7)
C5	0.34204 (17)	0.26084 (17)	0.59263 (13)	0.0493 (6)
C6	0.34446 (15)	0.21923 (15)	0.68381 (12)	0.0397 (5)
C7	0.26469 (16)	0.26982 (16)	0.74219 (13)	0.0472 (6)
C8	0.21604 (16)	0.21843 (17)	0.80959 (14)	0.0502 (6)
C9	0.22998 (15)	0.10011 (17)	0.83926 (12)	0.0434 (6)
C10	0.33367 (14)	0.03702 (16)	0.83579 (11)	0.0390 (5)
C11	0.33787 (16)	-0.07699 (17)	0.86185 (13)	0.0486 (6)
C12	0.24221 (19)	-0.1295 (2)	0.89303 (15)	0.0606 (8)
C13	0.14115 (19)	-0.0676 (2)	0.89868 (16)	0.0654 (8)
C14	0.13561 (18)	0.0451 (2)	0.87236 (14)	0.0577 (7)
C15	0.54828 (15)	0.04203 (17)	0.85030 (13)	0.0450 (6)
C16	0.65211 (14)	0.11824 (16)	0.84764 (11)	0.0404 (6)
C17	0.66473 (15)	0.23304 (17)	0.85105 (13)	0.0473 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C18	0.84716 (19)	0.3590 (2)	0.86075 (13)	0.0559 (7)
C19	0.86839 (10)	0.39520 (10)	0.96072 (6)	0.0391 (5)
C20	0.78941 (10)	0.47031 (11)	0.99293 (9)	0.0577 (7)
C21	0.80418 (14)	0.50082 (13)	1.08690 (11)	0.0767 (10)
C22	0.89793 (16)	0.45624 (15)	1.14866 (7)	0.0805 (10)
C23	0.97691 (13)	0.38113 (14)	1.11645 (8)	0.0791 (9)
C24	0.96214 (10)	0.35062 (11)	1.02248 (9)	0.0527 (7)
H2	0.55350	0.03280	0.67480	0.0530*
H3	0.54780	0.10750	0.52670	0.0630*
H4	0.41380	0.24930	0.47370	0.0660*
Н5	0.28820	0.31780	0.57110	0.0590*
H7	0.24560	0.34630	0.73130	0.0570*
H8	0.16780	0.26350	0.84110	0.0600*
H11	0.40610	-0.11910	0.85840	0.0580*
H12	0.24630	-0.20610	0.91000	0.0730*
H13	0.07700	-0.10200	0.92020	0.0790*
H14	0.06700	0.08620	0.87660	0.0690*
H15A	0.55930	-0.02740	0.81610	0.0540*
H15B	0.54470	0.02110	0.91480	0.0540*
H17	0.60590	0.28730	0.85360	0.0570*
H18A	0.80330	0.41800	0.82330	0.0670*
H18B	0.92240	0.34900	0.83840	0.0670*
H20	0.72670	0.50010	0.95160	0.0690*
H21	0.75130	0.55110	1.10850	0.0920*
H22	0.90780	0.47670	1.21150	0.0970*
H23	1.03960	0.35130	1.15780	0.0950*
H24	1.01500	0.30040	1.00090	0.0630*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0325 (7)	0.0412 (8)	0.0377 (7)	-0.0023 (6)	-0.0028 (5)	0.0018 (6)
N2	0.0383 (8)	0.0599 (11)	0.0768 (12)	-0.0014 (8)	0.0054 (8)	-0.0219 (9)
N3	0.0411 (9)	0.0662 (12)	0.0775 (12)	-0.0055 (8)	0.0101 (8)	-0.0265 (9)
N4	0.0411 (8)	0.0578 (10)	0.0396 (8)	-0.0123 (7)	0.0016 (6)	-0.0084 (7)
C1	0.0342 (8)	0.0356 (9)	0.0361 (8)	-0.0059 (7)	-0.0032 (6)	-0.0037 (7)
C2	0.0399 (9)	0.0466 (11)	0.0447 (10)	-0.0010 (8)	-0.0001 (7)	-0.0063 (8)
C3	0.0518 (11)	0.0648 (14)	0.0422 (10)	-0.0080 (10)	0.0078 (8)	-0.0096 (9)
C4	0.0608 (12)	0.0639 (14)	0.0385 (10)	-0.0142 (10)	-0.0008 (9)	0.0034 (9)
C5	0.0500 (10)	0.0450 (11)	0.0478 (10)	-0.0040 (8)	-0.0091 (8)	0.0054 (8)
C6	0.0386 (9)	0.0344 (9)	0.0431 (9)	-0.0048 (7)	-0.0035 (7)	-0.0015 (7)
C7	0.0455 (10)	0.0356 (10)	0.0584 (11)	0.0037 (8)	0.0011 (8)	-0.0026 (8)
C8	0.0419 (10)	0.0499 (12)	0.0589 (11)	0.0036 (8)	0.0079 (8)	-0.0119 (9)
C9	0.0395 (9)	0.0497 (11)	0.0399 (9)	-0.0034 (8)	0.0028 (7)	-0.0061 (8)
C10	0.0374 (9)	0.0445 (11)	0.0329 (8)	-0.0062 (7)	-0.0018 (6)	-0.0020(7)
C11	0.0439 (10)	0.0497 (12)	0.0490 (10)	-0.0051 (8)	-0.0038 (8)	0.0070 (8)
C12	0.0601 (13)	0.0582 (14)	0.0602 (12)	-0.0146 (10)	-0.0019 (10)	0.0169 (10)
C13	0.0521 (12)	0.0800 (17)	0.0652 (13)	-0.0177 (11)	0.0120 (10)	0.0137 (12)

C14	0.0428 (11)	0.0732 (15)	0.0582 (12)	-0.0036 (10)	0.0108 (9)	0.0013 (10)
C15	0.0368 (9)	0.0465 (11)	0.0478 (10)	-0.0007 (8)	-0.0066 (7)	0.0048 (8)
C16	0.0347 (9)	0.0487 (11)	0.0351 (9)	-0.0011 (7)	-0.0040 (7)	-0.0034 (7)
C17	0.0356 (9)	0.0521 (12)	0.0521 (10)	0.0000 (8)	-0.0006 (8)	0.0013 (9)
C18	0.0566 (12)	0.0647 (14)	0.0451 (10)	-0.0223 (10)	0.0032 (9)	0.0003 (9)
C19	0.0352 (8)	0.0382 (10)	0.0422 (9)	-0.0097 (7)	0.0005 (7)	0.0027 (7)
C20	0.0457 (11)	0.0518 (13)	0.0753 (14)	-0.0038 (9)	0.0080 (9)	-0.0076 (10)
C21	0.0734 (16)	0.0795 (18)	0.0832 (17)	-0.0254 (14)	0.0317 (14)	-0.0304 (14)
C22	0.107 (2)	0.088 (2)	0.0506 (13)	-0.0487 (17)	0.0250 (13)	-0.0149 (13)
C23	0.0800 (16)	0.0812 (18)	0.0630 (14)	-0.0326 (14)	-0.0319 (12)	0.0246 (13)
C24	0.0437 (10)	0.0481 (12)	0.0618 (12)	-0.0041 (8)	-0.0064 (9)	0.0076 (9)

Geometric parameters (Å, °)

N1—C1	1.435 (2)	C19—C20	1.3900 (17)	
N1-C10	1.442 (2)	C19—C24	1.3900 (16)	
N1-C15	1.465 (2)	C20—C21	1.390 (2)	
N2—N3	1.312 (3)	C21—C22	1.390 (2)	
N2-C16	1.352 (2)	C22—C23	1.390 (2)	
N3—N4	1.331 (2)	C23—C24	1.3900 (18)	
N4—C17	1.347 (2)	С2—Н2	0.9300	
N4—C18	1.462 (3)	С3—Н3	0.9300	
C1—C2	1.394 (2)	C4—H4	0.9300	
C1—C6	1.407 (2)	С5—Н5	0.9300	
С2—С3	1.384 (3)	С7—Н7	0.9300	
C3—C4	1.378 (3)	C8—H8	0.9300	
C4—C5	1.379 (3)	C11—H11	0.9300	
С5—С6	1.401 (3)	C12—H12	0.9300	
С6—С7	1.458 (3)	C13—H13	0.9300	
С7—С8	1.335 (3)	C14—H14	0.9300	
С8—С9	1.453 (3)	C15—H15A	0.9700	
C9—C10	1.404 (2)	C15—H15B	0.9700	
C9—C14	1.401 (3)	C17—H17	0.9300	
C10-C11	1.387 (3)	C18—H18A	0.9700	
C11—C12	1.388 (3)	C18—H18B	0.9700	
C12—C13	1.377 (3)	C20—H20	0.9300	
C13—C14	1.373 (3)	C21—H21	0.9300	
C15—C16	1.491 (3)	C22—H22	0.9300	
C16—C17	1.353 (3)	C23—H23	0.9300	
C18—C19	1.490 (2)	C24—H24	0.9300	
C1-N1-C10	116.01 (13)	C19—C24—C23	120.00 (12)	
C1—N1—C15	116.59 (13)	C1—C2—H2	119.00	
C10—N1—C15	113.59 (14)	С3—С2—Н2	120.00	
N3—N2—C16	108.78 (17)	С2—С3—Н3	120.00	
N2—N3—N4	107.39 (15)	С4—С3—Н3	120.00	
N3—N4—C17	110.32 (16)	C3—C4—H4	121.00	
N3—N4—C18	119.74 (16)	C5—C4—H4	120.00	

C17—N4—C18	129.54 (17)	C4—C5—H5	119.00
N1—C1—C2	121.60 (15)	C6—C5—H5	119.00
N1—C1—C6	119.02 (14)	С6—С7—Н7	116.00
C2—C1—C6	119.21 (15)	С8—С7—Н7	116.00
C1—C2—C3	120.93 (17)	С7—С8—Н8	116.00
C2—C3—C4	120.55 (18)	С9—С8—Н8	116.00
C3—C4—C5	118.96 (18)	C10-C11-H11	119.00
C4—C5—C6	122.16 (18)	C12—C11—H11	119.00
C1—C6—C5	118.19 (16)	C11—C12—H12	120.00
C1—C6—C7	123.32 (16)	C13—C12—H12	120.00
C5—C6—C7	118.48 (16)	C12—C13—H13	120.00
C6—C7—C8	127.16 (18)	C14—C13—H13	120.00
C7—C8—C9	127.32 (18)	C9—C14—H14	119.00
C8—C9—C10	123.20 (16)	C13—C14—H14	119.00
C8—C9—C14	118.92 (17)	N1—C15—H15A	109.00
C10-C9-C14	117.88 (18)	N1—C15—H15B	109.00
N1—C10—C9	118.91 (16)	C16—C15—H15A	109.00
N1-C10-C11	121.50 (15)	C16—C15—H15B	109.00
C9-C10-C11	119.49 (16)	H15A—C15—H15B	108.00
C10-C11-C12	121.22 (18)	N4—C17—H17	127.00
C_{11} $-C_{12}$ $-C_{13}$	119.7 (2)	C16—C17—H17	127.00
C12-C13-C14	119.6 (2)	N4—C18—H18A	110.00
C9—C14—C13	122.1 (2)	N4—C18—H18B	109.00
N1-C15-C16	113.27 (16)	C19—C18—H18A	109.00
N2-C16-C15	119.20 (17)	C19—C18—H18B	109.00
N2-C16-C17	108.23 (16)	H18A—C18—H18B	108.00
C15—C16—C17	132.50 (16)	C19—C20—H20	120.00
N4—C17—C16	105.26 (16)	C21—C20—H20	120.00
N4—C18—C19	110.77 (15)	C20—C21—H21	120.00
C18—C19—C20	119.02 (12)	C22—C21—H21	120.00
C18—C19—C24	120.91 (13)	C21—C22—H22	120.00
C20—C19—C24	120.00 (10)	C23—C22—H22	120.00
C19—C20—C21	120.00 (12)	C22—C23—H23	120.00
C20—C21—C22	120.00 (14)	C24—C23—H23	120.00
C21—C22—C23	120.00 (11)	C19—C24—H24	120.00
C22—C23—C24	120.00 (12)	C23—C24—H24	120.00
C10—N1—C1—C2	-118.27(18)	C1—C6—C7—C8	-32.0(3)
C10—N1—C1—C6	66.5 (2)	C5—C6—C7—C8	149.4 (2)
C15—N1—C1—C2	19.7 (2)	C6—C7—C8—C9	-1.0(3)
C15—N1—C1—C6	-155.60 (16)	C7—C8—C9—C10	31.6 (3)
C1—N1—C10—C9	-68.6 (2)	C7—C8—C9—C14	-147.9(2)
C1—N1—C10—C11	114.98 (18)	C8—C9—C10—N1	6.2 (3)
C15—N1—C10—C9	152.20 (15)	C8—C9—C10—C11	-177.34 (17)
C15—N1—C10—C11	-24.2 (2)	C14—C9—C10—N1	-174.34 (16)
C1—N1—C15—C16	57.8 (2)	C14—C9—C10—C11	2.1 (3)
C10—N1—C15—C16	-163.24 (14)	C8—C9—C14—C13	177.84 (19)
C16—N2—N3—N4	-1.2 (2)	C10-C9-C14-C13	-1.7 (3)
	· /		

N3-N2-C16-C15 $N3-N2-C16-C17$ $N2-N3-N4-C17$ $N2-N3-N4-C18$ $N3-N4-C17-C16$ $C18-N4-C17-C16$ $N3-N4-C18-C19$ $C17-N4-C18-C19$ $N1-C1-C2-C3$ $C6-C1-C2-C3$ $N1-C1-C6-C5$ $N1-C1-C6-C5$ $N1-C1-C6-C5$ $C2-C1-C6-C7$ $C2-C1-C6-C7$ $C2-C1-C6-C7$ $C1-C2-C3-C4$ $C2-C3-C4-C5$	-176.98 (16) 0.4 (2) 1.5 (2) 174.94 (16) -1.3 (2) -173.84 (16) -95.86 (19) 76.1 (2) -174.45 (17) 0.8 (3) 175.42 (16) -3.2 (3) 0.1 (2) -178.55 (17) -1.1 (3) 0.6 (3)	$\begin{array}{c} N1 &C10 &C11 &C12 \\ C9 &C10 &C11 &C12 \\ C10 &C11 &C12 &C13 \\ C11 &C12 &C13 &C14 \\ C12 &C13 &C14 &C9 \\ N1 &C15 &C16 &N2 \\ N1 &C15 &C16 &C17 \\ N2 &C16 &C17 &N4 \\ C15 &C16 &C17 &N4 \\ C15 &C16 &C17 &N4 \\ N4 &C18 &C19 &C20 \\ N4 &C18 &C19 &C24 \\ C18 &C19 &C24 \\ C23 \\ C20 &C19 &C24 \\C23 \\ C19 &C20 &C21 \\ \end{array}$	$\begin{array}{c} 175.13\ (17)\\ -1.2\ (3)\\ -0.2\ (3)\\ 0.8\ (3)\\ 0.2\ (3)\\ -153.38\ (16)\\ 30.0\ (3)\\ 0.5\ (2)\\ 177.41\ (17)\\ -93.75\ (18)\\ 83.06\ (19)\\ 176.83\ (15)\\ -0.02\ (19)\\ -176.77\ (15)\\ 0.0\ (2)\\ 0.0\ (2)\\ \end{array}$
$\begin{array}{c} C_{2} & C_{1} & C_{0} & C_{7} \\ C_{1} & C_{2} & C_{3} & C_{4} \\ C_{2} & C_{3} & C_{4} & C_{5} \\ C_{3} & C_{4} & C_{5} & C_{6} \\ C_{4} & C_{5} & C_{6} & C_{1} \\ C_{4} & C_{5} & C_{6} & C_{7} \end{array}$	-1.1 (3) 0.6 (3) 0.3 (3) -0.6 (3) 178.08 (18)	C10 C19 C24 C23 C20-C19-C24-C23 C19-C20-C21-C22 C20-C21-C22-C23 C21-C22-C23-C24 C22-C23-C24-C19	0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C9-C14 rings, respectively

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C18—H18 A ···Cg2 ⁱ	0.97	2.83	3.600 (2)	137
C20—H20···Cg1 ⁱ	0.93	2.79	3.642 (2)	153

Symmetry code: (i) -x+1, y+1/2, -z+3/2.