Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-[2-(4-Chloro-2-nitrostyryl)-1phenylsulfonyl-1H-indol-3-yl]propan-1one

M. Umadevi,^a V. Saravanan,^b R. Yamuna,^c* A. K. Mohanakrishnan^b and G. Chakkaravarthi^d*

^aResearch Scholar (Chemistry), Bharathiyar University, Coimbatore 641 046, Tamilnadu, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^cDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and ^dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068. India

Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Received 8 November 2013; accepted 12 November 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.150; data-to-parameter ratio = 20.6.

In the title compound, $C_{25}H_{19}ClN_2O_5S$, the phenyl ring forms dihedral angles of 79.62 (12) and 80.02 $(13)^{\circ}$ with the indole ring system and the benzene ring, respectively. The nitro group is twisted at an angle of $22.39 (11)^{\circ}$ with respect to the attached benzene ring. In the crystal, molecules assemble into double layers in the *ab* plane *via* $C-H \cdots O$ interactions.

Related literature

For the biological activity of indole derivatives, see: Okabe & Adachi (1998); Srivastava et al. (2011). For related structures, see: Chakkaravarthi et al. (2008, 2010).

Experimental

Crystal data

C25H19ClN2O5S	$\gamma = 79.541 \ (2)^{\circ}$
$M_r = 494.93$	V = 1156.01 (7) Å ³
Triclinic, P1	Z = 2
a = 8.4658 (3) Å	Mo $K\alpha$ radiation
b = 8.6643 (3) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 16.1126 (6) Å	T = 295 K
$\alpha = 84.196 \ (2)^{\circ}$	$0.28 \times 0.24 \times 0.20$ mm
$\beta = 87.768 \ (3)^{\circ}$	

Data collection

Bruker Kappa APEXII	25531 measured reflections
diffractometer	6333 independent reflections
Absorption correction: multi-scan	4536 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\min} = 0.922, \ T_{\max} = 0.943$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	308 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
6333 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10\cdots O1^{i}$	0.93	2.60	3.327 (3)	136
$C16-H16B\cdots O5^{ii}$	0.97	2.37	3.260 (3)	152

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5271).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Crvst. E64. 0749.

Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.

Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Srivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1-17.

supporting information

Acta Cryst. (2013). E69, o1784 [doi:10.1107/S1600536813031073]

(E)-1-[2-(4-Chloro-2-nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one

M. Umadevi, V. Saravanan, R. Yamuna, A. K. Mohanakrishnan and G. Chakkaravarthi

S1. Experimental

S1.1. Synthesis and crystallization

A solution of 1-(2-(bromomethyl)-1-(phenylsulfonyl)-1*H*-indol-3-yl)propan-1-one (5 g, 12.31 mmol) and triphenylphosphine (3.5 g, 13.54 mmol) in dry THF (100 ml) was refluxed for 6 h. After consumption of the starting material, the solvent was removed under vacuum and the solid washed with diethyl ether to give the phosphonium salt. Then, the mixture of phosphonium salt (8 g, 11.97 mmol), 4-chloro-2-nitrobenzaldehyde (2.45 g, 13.17 mmol) and K₂CO₃ (3.30 g, 23.95 mmol) in DCM (70 ml) was stirred at room temperature for 24 h. After completion of the reaction (monitored by TLC), it was diluted using DCM (30 ml), washed with water (2 x 100 ml) and dried (Na₂SO₄). Removal of solvent *in vacuo* followed by trituration of the crude product with MeOH (20 ml) afforded the title compound.

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined using riding model, with C—H = (0.93–0.97) Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. Owing to poor agreement, the (001) reflection was omitted from the final cycles of refinement.

S2. Results and discussion

In continuation of our studies on indole derivatives which are known to exhibit anti-microbial, anti-biotic, analgesic and anti-cancer activities (Okabe and Adachi, 1998; Srivastava *et al.*, 2011), we herewith report the crystal structure of the title compound (I). The geometric parameters of (I) (Fig. 1) are in close agreement with similar structures (Chakkaravarthi *et al.*, 2008; 2010).

The phenyl ring makes the dihedral angle of 79.62 (12)° with the indole ring system. The phenyl ring (C1—C6) and the benzene ring (C20—C25) are inclined at an angle of 80.02 (13)°. The nitro group is twisted at an angle of 22.39 (11)° with respect to the attached benzene ring (C20—C25). The N1 atom is sp^2 hybridised as the bond angles around N1 atom sum 352.4°. Details of the C—H…O interactions are given in Table 2 - these lead to layers in the *ab* plane.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

(E)-1-[2-(4-Chloro-2-nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one

Crystal data	
$C_{25}H_{19}CIN_{2}O_{5}S$ $M_{r} = 494.93$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.4658 (3) Å b = 8.6643 (3) Å c = 16.1126 (6) Å a = 84.196 (2)° $\beta = 87.768$ (3)° $\gamma = 79.541$ (2)° V = 1156.01 (7) Å ³	Z = 2 F(000) = 512 $D_x = 1.422 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8917 reflections $\theta = 2.5-28.4^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.28 \times 0.24 \times 0.20 \text{ mm}$
Data collection Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.922$, $T_{max} = 0.943$ 25531 measured reflections 6333 independent reflections

4536 reflections with $I > 2\sigma(I)$	$h = -11 \rightarrow 11$
$R_{\rm int} = 0.029$	$k = -11 \rightarrow 11$
$\theta_{\rm max} = 29.5^{\circ}, \theta_{\rm min} = 2.4^{\circ}$	$l = -20 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.150$	neighbouring sites
S = 1.03	H-atom parameters constrained
6333 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0709P)^2 + 0.3517P]$
308 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.6620(2)	0.1560 (2)	0.44142 (11)	0.0497 (4)
C2	0.7468 (3)	0.1501 (4)	0.51342 (14)	0.0765 (7)
H2	0.8570	0.1131	0.5140	0.092*
C3	0.6662 (4)	0.1997 (5)	0.58429 (16)	0.0984 (11)
Н3	0.7215	0.1945	0.6336	0.118*
C4	0.5062 (4)	0.2564 (4)	0.58242 (17)	0.0920 (9)
H4	0.4537	0.2952	0.6298	0.110*
C5	0.4199 (4)	0.2573 (4)	0.51124 (19)	0.0991 (10)
H5	0.3093	0.2923	0.5115	0.119*
C6	0.4985 (3)	0.2060 (3)	0.43989 (15)	0.0781 (7)
H6	0.4420	0.2053	0.3916	0.094*
C7	0.6425 (2)	0.3393 (2)	0.23941 (10)	0.0408 (4)
C8	0.6569 (2)	0.4934 (2)	0.22907 (10)	0.0424 (4)
C9	0.7938 (2)	0.5131 (2)	0.27424 (11)	0.0439 (4)
C10	0.8617 (3)	0.6446 (2)	0.28430 (14)	0.0584 (5)
H10	0.8179	0.7435	0.2589	0.070*
C11	0.9950 (3)	0.6244 (3)	0.33266 (18)	0.0738 (7)
H11	1.0405	0.7113	0.3412	0.089*
C12	1.0626 (3)	0.4773 (3)	0.36883 (18)	0.0771 (7)
H12	1.1536	0.4675	0.4008	0.093*
C13	0.9999 (3)	0.3449 (3)	0.35916 (15)	0.0625 (5)
H13	1.0466	0.2461	0.3836	0.075*
C14	0.8635 (2)	0.3653 (2)	0.31128 (11)	0.0440 (4)
C15	0.5596 (2)	0.6261 (2)	0.17657 (12)	0.0516 (5)
C16	0.5615 (3)	0.6198 (3)	0.08490 (12)	0.0593 (5)
H16A	0.5066	0.5359	0.0729	0.071*
H16B	0.6722	0.5927	0.0657	0.071*
C17	0.4848 (4)	0.7702 (3)	0.03593 (16)	0.0880 (8)
H17A	0.3710	0.7884	0.0469	0.132*
H17B	0.5053	0.7613	-0.0226	0.132*
H17C	0.5291	0.8566	0.0523	0.132*

C18	0.5229 (2)	0.2611 (2)	0.20724 (10)	0.0442 (4)
H18	0.5563	0.1621	0.1884	0.053*
C19	0.3680 (2)	0.3249 (2)	0.20359 (11)	0.0467 (4)
H19	0.3352	0.4250	0.2212	0.056*
C20	0.2462 (2)	0.2449 (2)	0.17303 (11)	0.0453 (4)
C21	0.2582 (3)	0.0828 (2)	0.19095 (14)	0.0566 (5)
H21	0.3466	0.0271	0.2201	0.068*
C22	0.1449 (3)	0.0018 (2)	0.16730 (14)	0.0589 (5)
H22	0.1580	-0.1070	0.1796	0.071*
C23	0.0107 (2)	0.0832 (2)	0.12499 (12)	0.0518 (4)
C24	-0.0071 (2)	0.2427 (2)	0.10536 (12)	0.0487 (4)
H23	-0.0963	0.2976	0.0764	0.058*
C25	0.1097 (2)	0.3207 (2)	0.12932 (11)	0.0452 (4)
N1	0.77198 (17)	0.25460 (17)	0.28902 (9)	0.0427 (3)
N3	0.0859 (2)	0.4903 (2)	0.10290 (11)	0.0554 (4)
O1	0.6646 (2)	0.00599 (16)	0.31000 (9)	0.0651 (4)
O2	0.92318 (19)	0.02047 (18)	0.37066 (10)	0.0682 (4)
O3	0.4897 (3)	0.7364 (2)	0.20882 (12)	0.1283 (11)
05	-0.04694 (18)	0.55877 (18)	0.08461 (11)	0.0692 (4)
O6	0.2012 (2)	0.5539 (2)	0.09605 (17)	0.1115 (9)
S1	0.76175 (6)	0.08992 (5)	0.35118 (3)	0.04869 (14)
C11	-0.13374 (7)	-0.01698 (7)	0.09611 (4)	0.07319 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0570 (11)	0.0502 (10)	0.0409 (9)	-0.0105 (8)	-0.0042 (8)	0.0040 (7)
C2	0.0641 (14)	0.121 (2)	0.0511 (12)	-0.0321 (14)	-0.0066 (10)	-0.0076 (13)
C3	0.098 (2)	0.169 (3)	0.0489 (13)	-0.071 (2)	0.0058 (13)	-0.0239 (17)
C4	0.114 (3)	0.112 (2)	0.0570 (15)	-0.0362 (19)	0.0260 (16)	-0.0210 (15)
C5	0.0807 (18)	0.127 (3)	0.0700 (17)	0.0174 (18)	0.0207 (14)	0.0128 (17)
C6	0.0669 (14)	0.106 (2)	0.0486 (12)	0.0085 (14)	-0.0037 (10)	0.0089 (12)
C7	0.0405 (8)	0.0465 (9)	0.0314 (7)	0.0034 (7)	-0.0039 (6)	-0.0038 (6)
C8	0.0444 (9)	0.0458 (9)	0.0330 (8)	0.0039 (7)	-0.0042 (7)	-0.0044 (7)
C9	0.0421 (9)	0.0493 (9)	0.0373 (8)	-0.0004 (7)	-0.0008 (7)	-0.0048 (7)
C10	0.0591 (12)	0.0499 (11)	0.0654 (13)	-0.0074 (9)	-0.0074 (10)	-0.0043 (9)
C11	0.0639 (14)	0.0660 (14)	0.0959 (18)	-0.0182 (11)	-0.0190 (13)	-0.0110 (13)
C12	0.0568 (13)	0.0819 (17)	0.0943 (19)	-0.0116 (12)	-0.0320 (13)	-0.0059 (14)
C13	0.0503 (11)	0.0655 (13)	0.0677 (13)	0.0003 (9)	-0.0196 (10)	0.0001 (10)
C14	0.0398 (8)	0.0495 (9)	0.0400 (9)	-0.0013 (7)	-0.0029 (7)	-0.0035 (7)
C15	0.0597 (11)	0.0460 (10)	0.0443 (10)	0.0046 (8)	-0.0140 (8)	-0.0024 (8)
C16	0.0538 (11)	0.0768 (14)	0.0393 (9)	0.0031 (10)	-0.0010 (8)	0.0057 (9)
C17	0.117 (2)	0.0850 (18)	0.0532 (13)	-0.0059 (16)	-0.0168 (14)	0.0213 (12)
C18	0.0476 (9)	0.0459 (9)	0.0369 (8)	-0.0009 (7)	-0.0060 (7)	-0.0045 (7)
C19	0.0471 (9)	0.0481 (10)	0.0424 (9)	-0.0022 (8)	-0.0022 (7)	-0.0042 (7)
C20	0.0412 (9)	0.0489 (10)	0.0430 (9)	-0.0024 (7)	0.0006 (7)	-0.0014 (7)
C21	0.0533 (11)	0.0505 (11)	0.0612 (12)	-0.0003 (9)	-0.0098 (9)	0.0045 (9)
C22	0.0625 (12)	0.0478 (10)	0.0644 (13)	-0.0080 (9)	-0.0033 (10)	0.0017 (9)

C23	0.0503 (10)	0.0574 (11)	0.0486 (10)	-0.0131 (9)	0.0045 (8)	-0.0052 (8)
C24	0.0388 (9)	0.0563 (11)	0.0482 (10)	-0.0044 (8)	0.0006 (7)	-0.0001 (8)
C25	0.0395 (9)	0.0479 (9)	0.0447 (9)	-0.0028 (7)	0.0035 (7)	0.0015 (7)
N1	0.0420 (7)	0.0436 (8)	0.0389 (7)	0.0004 (6)	-0.0064 (6)	0.0001 (6)
N3	0.0441 (8)	0.0534 (9)	0.0655 (10)	-0.0064 (7)	-0.0053 (7)	0.0068 (8)
O1	0.0916 (11)	0.0455 (7)	0.0589 (9)	-0.0115 (7)	-0.0143 (8)	-0.0052 (6)
O2	0.0624 (9)	0.0575 (8)	0.0722 (10)	0.0174 (7)	-0.0096 (7)	0.0063 (7)
O3	0.205 (3)	0.0840 (13)	0.0636 (11)	0.0794 (16)	-0.0502 (14)	-0.0264 (10)
O5	0.0509 (8)	0.0593 (9)	0.0903 (12)	0.0050 (7)	-0.0109 (8)	0.0038 (8)
O6	0.0654 (11)	0.0756 (12)	0.189 (2)	-0.0286 (9)	-0.0420 (13)	0.0514 (14)
S1	0.0554 (3)	0.0407 (2)	0.0451 (2)	0.00326 (19)	-0.00822 (19)	0.00039 (18)
Cl1	0.0676 (4)	0.0741 (4)	0.0840 (4)	-0.0276 (3)	-0.0047 (3)	-0.0088(3)

Geometric parameters (Å, °)

C1—C6	1.374 (3)	C15—O3	1.185 (2)	
C1—C2	1.380 (3)	C15—C16	1.483 (3)	
C1—S1	1.747 (2)	C16—C17	1.506 (3)	
C2—C3	1.373 (4)	C16—H16A	0.9700	
C2—H2	0.9300	C16—H16B	0.9700	
C3—C4	1.355 (5)	C17—H17A	0.9600	
С3—Н3	0.9300	C17—H17B	0.9600	
C4—C5	1.383 (5)	С17—Н17С	0.9600	
C4—H4	0.9300	C18—C19	1.329 (3)	
C5—C6	1.378 (4)	C18—H18	0.9300	
С5—Н5	0.9300	C19—C20	1.468 (3)	
С6—Н6	0.9300	C19—H19	0.9300	
С7—С8	1.355 (3)	C20—C21	1.391 (3)	
C7—N1	1.427 (2)	C20—C25	1.399 (2)	
C7—C18	1.454 (2)	C21—C22	1.373 (3)	
С8—С9	1.437 (2)	C21—H21	0.9300	
C8—C15	1.493 (2)	C22—C23	1.387 (3)	
C9—C10	1.393 (3)	C22—H22	0.9300	
C9—C14	1.394 (2)	C23—C24	1.369 (3)	
C10-C11	1.371 (3)	C23—C11	1.725 (2)	
С10—Н10	0.9300	C24—C25	1.382 (3)	
C11—C12	1.379 (4)	C24—H23	0.9300	
C11—H11	0.9300	C25—N3	1.468 (2)	
C12—C13	1.373 (3)	N1—S1	1.6720 (15)	
С12—Н12	0.9300	N3—O6	1.202 (2)	
C13—C14	1.388 (3)	N3—O5	1.205 (2)	
С13—Н13	0.9300	O1—S1	1.4153 (16)	
C14—N1	1.418 (2)	O2—S1	1.4230 (15)	
C6—C1—C2	121.4 (2)	C17—C16—H16A	108.5	
C6-C1-S1	118.79 (16)	C15—C16—H16B	108.5	
C2-C1-S1	119.75 (18)	C17—C16—H16B	108.5	
C3—C2—C1	119.1 (3)	H16A—C16—H16B	107.5	

С3—С2—Н2	120.5	С16—С17—Н17А	109.5
C1—C2—H2	120.5	C16—C17—H17B	109.5
C4—C3—C2	120.0 (3)	H17A—C17—H17B	109.5
С4—С3—Н3	120.0	C16—C17—H17C	109.5
С2—С3—Н3	120.0	H17A—C17—H17C	109.5
C_{3} C_{4} C_{5}	121.1 (3)	H17B $C17$ $H17C$	109.5
$C_3 - C_4 - H_4$	110 5	C19 - C18 - C7	122.80 (17)
$C_5 = C_4 = H_4$	110.5	$C_{10} = C_{10} = C_{10}$	112.00 (17)
C_{3}	119.5	C7 C18 U18	110.0
$C_0 - C_3 - C_4$	119.0 (3)	C/-C18-H18	118.0
С6—С5—Н5	120.2	C18 - C19 - C20	123.04 (17)
С4—С5—Н5	120.2	С18—С19—Н19	118.5
C1—C6—C5	118.7 (2)	С20—С19—Н19	118.5
С1—С6—Н6	120.6	C21—C20—C25	115.37 (17)
С5—С6—Н6	120.6	C21—C20—C19	119.73 (16)
C8—C7—N1	108.46 (15)	C25—C20—C19	124.82 (16)
C8—C7—C18	129.63 (15)	C22—C21—C20	122.68 (18)
N1—C7—C18	121.90 (15)	C22—C21—H21	118.7
C7—C8—C9	108.69 (15)	C20—C21—H21	118.7
C7—C8—C15	128.84 (16)	C21—C22—C23	119.55 (19)
C9-C8-C15	122.37(17)	C21—C22—H22	120.2
C10-C9-C14	119.98(17)	C_{23} C_{22} H_{22}	120.2
C10 - C9 - C8	13232(17)	$C_{23} = C_{23} = C_{23}$	120.2 120.32(19)
$C_{10} = C_{20} = C_{30}$	102.02(17) 107.70(16)	$C_{24} = C_{23} = C_{22}$	120.32(1)
C14 - C9 - C8	107.70 (10)	$C_{24} = C_{23} = C_{11}$	119.70(10)
	118.2 (2)		119.98 (16)
C11—C10—H10	120.9	C23—C24—C25	118.76 (17)
C9—C10—H10	120.9	C23—C24—H23	120.6
C10—C11—C12	121.1 (2)	C25—C24—H23	120.6
C10—C11—H11	119.5	C24—C25—C20	123.31 (17)
C12—C11—H11	119.5	C24—C25—N3	115.63 (15)
C13—C12—C11	122.2 (2)	C20—C25—N3	121.01 (16)
C13—C12—H12	118.9	C14—N1—C7	107.57 (13)
C11—C12—H12	118.9	C14—N1—S1	120.91 (11)
C12—C13—C14	116.9 (2)	C7—N1—S1	123.89 (12)
C12—C13—H13	121.5	O6—N3—O5	122.39 (18)
C14—C13—H13	121.5	06—N3—C25	118.61 (16)
C_{13} C_{14} C_{9}	121.65 (19)	05 - N3 - C25	118 88 (16)
C13 - C14 - N1	130.80(18)	$01 - 10^{-10}$	120.22(10)
C_{0} C_{14} N_{1}	107.55(14)	O1 S1 V1	126.22(10) 106.22(8)
$C_{2} = C_{1} = C_{1}$	107.55(14) 122.04(18)	$O_2 S_1 N_1$	106.22(8)
03 - 015 - 010	122.04(10)	02 - 31 - N1	100.01(9)
	119.14 (17)		109.03 (10)
	118./1 (16)		109.04 (10)
C15—C16—C17	114.9 (2)	NI—SI—CI	104.52 (8)
C15—C16—H16A	108.5		
C6—C1—C2—C3	-1.9 (4)	C25—C20—C21—C22	0.3 (3)
\$1—C1—C2—C3	-178.8 (2)	C19—C20—C21—C22	177.18 (19)
C1—C2—C3—C4	-1.3 (5)	C20—C21—C22—C23	-1.1 (3)
$C_2 - C_3 - C_4 - C_5$	3.6 (5)	$C_{21} - C_{22} - C_{23} - C_{24}$	1.4 (3)
	(.)		(.)

C^{2} C^{4} C^{5} C^{6}	2.7(5)	C21 C22 C22 C11	170 10 (17)
$C_{3} - C_{4} - C_{5} - C_{6}$	-2.7(5)		-1/9.18(1/)
$C_2 = C_1 = C_6 = C_5$	2.7 (4)	$C_{22} = C_{23} = C_{24} = C_{25}$	-0.7(3)
SI_CI_C6_C5	179.7 (2)	CII—C23—C24—C25	1/9./9 (14)
C4—C5—C6—C1	-0.4 (5)	C23—C24—C25—C20	-0.1 (3)
N1—C7—C8—C9	-1.87 (19)	C23—C24—C25—N3	177.42 (17)
C18—C7—C8—C9	179.19 (17)	C21—C20—C25—C24	0.4 (3)
N1—C7—C8—C15	174.39 (17)	C19—C20—C25—C24	-176.37 (17)
C18—C7—C8—C15	-4.6 (3)	C21—C20—C25—N3	-177.05 (18)
C7—C8—C9—C10	179.8 (2)	C19—C20—C25—N3	6.2 (3)
C15—C8—C9—C10	3.2 (3)	C13—C14—N1—C7	179.4 (2)
C7—C8—C9—C14	0.9 (2)	C9—C14—N1—C7	-1.50 (18)
C15—C8—C9—C14	-175.62 (16)	C13—C14—N1—S1	28.8 (3)
C14—C9—C10—C11	-1.5 (3)	C9—C14—N1—S1	-152.11 (13)
C8—C9—C10—C11	179.8 (2)	C8—C7—N1—C14	2.11 (19)
C9-C10-C11-C12	1.6 (4)	C18—C7—N1—C14	-178.85 (15)
C10-C11-C12-C13	-0.7 (4)	C8—C7—N1—S1	151.63 (13)
C11—C12—C13—C14	-0.3 (4)	C18—C7—N1—S1	-29.3 (2)
C12—C13—C14—C9	0.4 (3)	C24—C25—N3—O6	-155.4 (2)
C12—C13—C14—N1	179.3 (2)	C20—C25—N3—O6	22.2 (3)
C10-C9-C14-C13	0.5 (3)	C24—C25—N3—O5	20.7 (3)
C8—C9—C14—C13	179.57 (18)	C20—C25—N3—O5	-161.72 (19)
C10-C9-C14-N1	-178.64 (17)	C14—N1—S1—O1	-178.89 (13)
C8—C9—C14—N1	0.39 (19)	C7—N1—S1—O1	35.43 (16)
C7—C8—C15—O3	121.1 (3)	C14—N1—S1—O2	-49.93 (15)
C9—C8—C15—O3	-63.1 (3)	C7—N1—S1—O2	164.38 (14)
C7—C8—C15—C16	-62.5 (3)	C14—N1—S1—C1	65.22 (15)
C9—C8—C15—C16	113.3 (2)	C7—N1—S1—C1	-80.47 (15)
O3—C15—C16—C17	6.7 (4)	C6-C1-S1-O1	-37.0(2)
C8-C15-C16-C17	-169.6(2)	C2-C1-S1-O1	139.98 (19)
C8—C7—C18—C19	-39.8(3)	C6-C1-S1-O2	-170.50(19)
N1-C7-C18-C19	141 39 (18)	$C_{2} = C_{1} = S_{1} = O_{2}$	65(2)
C7-C18-C19-C20	-178 51 (16)	C6-C1-S1-N1	76 5 (2)
C_{18} C_{19} C_{20} C_{21}	37 1 (3)	C_{2} C_{1} S_{1} N_{1}	-1065(2)
C18 - C19 - C20 - C25	-146.33(19)		100.5 (2)
C10 - C19 - C20 - C23	140.33 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C10—H10…O1 ⁱ	0.93	2.60	3.327 (3)	136
C16—H16 <i>B</i> …O5 ⁱⁱ	0.97	2.37	3.260 (3)	152

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*, *z*.