

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(3-chloro-2-methylanilinium) cyclohexaphosphate dihydrate

Raoudha Bel Haj Salah, Lamia Khederi* and Mohamed Rzaigui

Chemistry Laboratory of Materials, Sciences Faculty of Bizerta, 7021 Jarzouna, Bizerta, Tunisia

Correspondence e-mail: Lamia.khederi@fsb.rnu.tn

Received 5 November 2013; accepted 8 December 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.128; data-to-parameter ratio = 17.8.

In the organic/inorganic salt hydrate, $6C_7H_9ClN^+ \cdot P_6O_{18}^{6-} \cdot 2H_2O$, the cyclohexaphosphate anion resides on an inversion centre. The asymmetric unit consists of three cations, one halfanion and a water molecule. In the crystal, the water molecules and the $[P_6O_{18}]^{6-}$ anions are linked by $O-H\cdots O$ hydrogen bonds, generating infinite layers parallel to the *ab* plane. These layers are interconnected by the organic cations through N-H···O hydrogen bonds.

Related literature

For the properties of hybrid materials, see: Shi *et al.* (2000); Yokotani *et al.* (1989); Xiao *et al.* (2005); Koo *et al.* (2004). For related structures containing cyclohexaphosphate rings, see: Khedhiri *et al.* (2012); Amri *et al.* (2009); Marouani & Rzaigui (2010); Averbuch-Pouchot & Durif (1991). For bond lengths, see: Fábry *et al.* (2002). For the preparation of cyclohexaphosphoric acid, see: Schülke & Kayser (1985).

Experimental

Crystal data

 $\begin{array}{l} 6 C_7 H_9 C I N^+ \cdot P_6 O_{18}{}^{6-} \cdot 2 H_2 O \\ M_r = 1365.46 \\ \text{Triclinic, } P\overline{1} \\ a = 9.576 \ (5) \ \text{\AA} \\ b = 10.187 \ (4) \ \text{\AA} \\ c = 17.392 \ (5) \ \text{\AA} \\ a = 94.48 \ (2)^\circ \\ \beta = 103.74 \ (4)^\circ \end{array}$

 $\gamma = 112.25 (4)^{\circ}$ $V = 1498.5 (12) \text{ Å}^3$ Z = 1Mo Ka radiation $\mu = 0.52 \text{ mm}^{-1}$ T = 293 K $0.32 \times 0.22 \times 0.15 \text{ mm}$ 4800 reflections with $I > 2\sigma(I)$

intensity decay: 5%

2 standard reflections every 120 min

 $R_{\rm int} = 0.033$

Data collection

Enraf–Nonius CAD-4 diffractometer 7464 measured reflections 7229 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.128$	independent and constrained
S = 1.02	refinement
7229 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
405 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots O8$	0.95 (4)	1.76 (4)	2.705 (4)	179 (5)
$N1 - H1B \cdot \cdot \cdot O1W^{i}$	0.97 (4)	1.85 (4)	2.779 (4)	160 (3)
$N1 - H1C \cdot \cdot \cdot O4^{ii}$	0.94 (4)	1.83 (4)	2.766 (4)	173 (3)
$O1W - H1W \cdot \cdot \cdot O1^{iii}$	0.82 (5)	2.02 (6)	2.813 (4)	164 (5)
$O1W - H2W \cdot \cdot \cdot O5^{ii}$	0.82 (5)	2.14 (5)	2.934 (4)	163 (5)
$N2-H2A\cdots O5$	0.90 (4)	2.02 (4)	2.871 (4)	156 (4)
$N2-H2B\cdots O2^{iv}$	0.93 (5)	1.85 (5)	2.763 (4)	166 (3)
$N2-H2C\cdotsO1^{v}$	0.89 (4)	1.89 (4)	2.775 (4)	176 (4)
$N3-H3A\cdots O7^{iv}$	1.00 (5)	1.77 (5)	2.759 (4)	171 (5)
$N3-H3B\cdots O4^{ii}$	1.01 (4)	1.83 (4)	2.834 (4)	172 (4)
$N3-H3C\cdots O2^{iv}$	0.85 (4)	2.00 (4)	2.827 (4)	166 (3)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x + 1, -y + 2, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2652).

References

- Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, 0654.
- Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Khedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst.
- E68, o2038–o2039.
 Koo, B. K., Ouellette, W., Burkholder, E. M., Golub, V., O'Connor, C. J. & Zubieta, J. (2004). *Solid State Sci.* 6, 461–468.
- Marouani, H. & Rzaigui, M. (2010). Acta Cryst. E66, o233.
- Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, F. N., Shen, Z., You, X. Z. & Duan, C. Y. (2000). J. Mol. Struct. 523, 143– 147.
- Xiao, D., An, H., Waag, E. & Xu, L. (2005). J. Mol. Struct. 738, 217-225.
- Yokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692–2693.

Acta Cryst. (2014). E70, o61 [https://doi.org/10.1107/S1600536813033230] Hexakis(3-chloro-2-methylanilinium) cyclohexaphosphate dihydrate Raoudha Bel Haj Salah, Lamia Khederi and Mohamed Rzaigui

S1. Comment

The interest of hybrid organic-inorganic materials has been continuously growing because of their potential applications in several fields (catalysis, biomoleculaire sciences and nonlinear optics) (Shi *et al.*, 2000, Yokotani *et al.*,1989). Interest of these compounds stems from the intriguing possibility of combining the features of both inorganic and organic systems within a single material (Koo *et al.*, 2004, Xiao *et al.*, 2005).

This paper reports synthesis and structural characterization of a new organic cyclohexaphosphate (I). The X-ray diffraction study of the title compound leads to the determination of its chemical formula. Configurations of the different organic and inorganic entities are depicted in the Figure 1. The examination of the atomic arrangement shows that the structure consists of inorganic layers made up from P_6O_{18} rings and water molecules connected *via* hydrogen bonds and extended in the *ab* plane. The organic 3-chloro-2-methylammonium cations are displayed in the interlayer spaces compensating their negative charges and establishing H-bonds with the oxygen atoms of the anionic framework as shown in Figure 2.

The geometry of the phosphoric ring is commonly observed in other cyclohexaphosphates with a ring of low symmetry (Khedhiri *et al.*, 2012, Marouani *et al.*, 2010, Amri *et al.*, 2009). P—O distances range from 1.468 (2) to 1.606 (2) Å and O(L)—P—O(L) angles from 99.71 (11) to 102.22 (12)°. However, the P—P—P angles values of 97.92 (4), 104.2 (4) and 113.6 (4)° show that the P₆O₁₈ ring is significantly distorted from the ideal value 120°. Nevertheless, this distortion is comparatively less important than that observed in Cs₆P₆O₁₈·6H₂O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot & Durif, 1991).

The three crystallography distinct cations involved in this structure exhibit C—C and N—C and C—Cl distances in the range usually found in other molecule analogues such as 4-chloro-2-methylaniline (Fábry *et al.*, 2002). The C—C—C and C—C—N angles are similar to those expected for sp2 hybridization. These groups are almost planar with an average deviation of 0.0018. The mean geometric features of the hydrogen bonds show multiple kinds of hydrogen bonds. The first one involves O—H…O contacts, with O…O distances ranging from 2.813 (4) to 2.934 (4) Å, link between the phosphoric rings which form a bidimensional anionic framework, parallel to the *ab* plane (Fig. 2). While the second one includes N—H…O contacts, involving weak links since the N…O distances range from 2.705 (4) to 3.079 (4) Å, assuring the cohesion of the network. In addition, some H phenyl atoms also form weak C—H…O(N) interactions with the C…O(N)separations of 2.872 (5)–3.316 (5) Å. All these hydrogen bonds, Van Der Waals, and electrostatic interactions between organic cations and cyclohexaphosphate anions increase the structure stability in the title compound.

S2. Experimental

Crystals of the title compound were synthesized by neutralization of an acidic aqueous solution of $H_6P_6O_{18}$ (10 ml, 3.5 mmol) by adding dropwise a solution of 3-chloro-2-methylaniline (21 mmol in 20 ml of ethanol). The resulting solution is then kept at room temperature for several days to give colourless crystals of the title compound which are stable under

normal conditions of temperature and humidity. The cyclohexaphosphoric acid used in this reaction was produced from an aqueous solution of $Li_6P_6O_{18}$ (Schulke *et al.*, 1985) passed through an ion exchange resin (Amberlite IR120)

S3. Refinement

Hydrogen atoms of the aromatic and methyl groups were placed at calculated positions with C—H = 0.93 and 0.96 Å, respectively and allowed to ride with $U_{iso}(H) = 1.5 U_{eq}(C)$. H atoms on water molecules and the coordinates of the hydrogen atoms at the NH₃ groups were located in Fourier difference maps and were refined freely simultaneously with individual U_{iso} values.

ORTEP drawing of (I) with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y, z]

Figure 2

Structure projection of (I) along the b axis. The H-phenyl and H-methyl atoms are omitted for figure clarity. Hydrogen bonds are shown as dashed lines.

Hexakis(3-chloro-2-methylanilinium) cyclohexaphosphate dihydrate

Crystal data	
$6C_7H_9ClN^+ \cdot P_6O_{18}^{-6-} \cdot 2H_2O$	$\gamma = 112.25 \ (4)^{\circ}$
$M_r = 1365.46$	$V = 1498.5 (12) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
Hall symbol: -P 1	F(000) = 704
a = 9.576 (5) Å	$D_{\rm x} = 1.513 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.187 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 17.392 (5) Å	Cell parameters from 25 reflections
$\alpha = 94.48 \ (2)^{\circ}$	$\theta = 9 - 11^{\circ}$
$\beta = 103.74 \ (4)^{\circ}$	$\mu = 0.52 ext{ mm}^{-1}$

T = 293 KPrism, colorless

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.033$
diffractometer	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Radiation source: fine-focus sealed tube	$h = -12 \rightarrow 12$
Graphite monochromator	$k = -13 \rightarrow 13$
non–profiled ω scans	$l = 0 \rightarrow 22$
7464 measured reflections	2 standard reflections every 120 min
7229 independent reflections	intensity decay: 5%
4800 reflections with $I > 2\sigma(I)$	

 $0.32 \times 0.22 \times 0.15 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
7229 reflections	and constrained refinement
405 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.4583P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.39 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.10693 (8)	0.76984 (7)	0.50600 (4)	0.0233 (2)
P2	0.32227 (7)	0.62757 (7)	0.52138 (4)	0.0217 (2)
P3	0.13627 (8)	0.34633 (7)	0.41193 (4)	0.0236 (2)
01	0.2396 (2)	0.9092 (2)	0.54611 (13)	0.0389 (7)
O2	-0.0196 (2)	0.7621 (2)	0.43465 (12)	0.0320 (6)
03	0.1712 (2)	0.6560 (2)	0.47796 (11)	0.0302 (6)
04	0.3518 (2)	0.6539 (2)	0.61045 (11)	0.0301 (6)
05	0.4520 (2)	0.7054 (2)	0.48872 (13)	0.0363 (7)
06	0.2550 (2)	0.4574 (2)	0.49312 (12)	0.0333 (6)
07	0.1293 (2)	0.4211 (2)	0.34254 (12)	0.0329 (6)
08	0.1743 (2)	0.2189 (2)	0.41061 (12)	0.0343 (6)
09	0.0321 (2)	0.6948 (2)	0.57240 (12)	0.0327 (6)
C11	0.34937 (16)	-0.02530 (14)	0.04005 (7)	0.0821 (5)

N1	0.3436 (3)	0.1365 (3)	0.32844 (15)	0.0306 (8)
C1	0.2839 (3)	0.1210 (3)	0.24115 (17)	0.0308 (8)
C2	0.3467 (4)	0.0618 (3)	0.19071 (19)	0.0375 (10)
C3	0.2856 (4)	0.0540 (4)	0.1089 (2)	0.0483 (11)
C4	0.1740 (5)	0.1046 (4)	0.0786 (2)	0.0564 (11)
C5	0.1155 (4)	0.1631 (4)	0.1303 (2)	0.0560 (14)
C6	0.1694 (4)	0.1698 (3)	0.21233 (19)	0.0416 (10)
C7	0.4738 (5)	0.0117 (4)	0.2232 (2)	0.0579 (16)
C12	0.6890 (2)	0.81050 (16)	0.11837 (7)	0.1000 (6)
N2	0.7057 (3)	0.8023 (3)	0.41707 (15)	0.0281 (8)
C8	0.6282 (3)	0.7400 (3)	0.33153 (17)	0.0292 (8)
C9	0.6979(4)	0.8032(3)	0.27466 (18)	0.0359(10)
C10	0.6160 (5)	0.7370(4)	0.1948(2)	0.0546 (13)
C11	0.0100(5) 0.4744(6)	0.7570(1) 0.6175(5)	0.1737(3)	0.0310(19) 0.0785(18)
C12	0.4108(5)	0.5590(5)	0.2319(3)	0.0726(17)
C13	0.4874(4)	0.5590(5) 0.6200(4)	0.2315(3) 0.3115(2)	0.0720(17) 0.0464(11)
C14	0.1671(1) 0.8500(4)	0.0200(1) 0.9359(4)	0.3113(2) 0.2981(2)	0.0518(12)
C13	1.0171(2)	0.9397(4) 0.67872(17)	0.2901(2) 0.06613(8)	0.0010(12) 0.1091(7)
N3	0.8848(3)	0.07872(17) 0.5080(3)	0.00015(0)	0.1071(7)
C15	0.8371(3)	0.3080(3) 0.4084(3)	0.32103(13) 0.23430(18)	0.0317(0)
C16	0.0371(3) 0.0415(4)	0.4984(3) 0.5011(3)	0.23430(10) 0.10003(10)	0.0343(9)
C10 C17	0.9413(4) 0.8053(5)	0.5911(5) 0.5702(4)	0.19903(19) 0.1164(2)	0.0403(10)
C17	0.8933(3) 0.7528(7)	0.3702(4)	0.1104(2) 0.0704(3)	0.0041(14)
C10	0.7526(7)	0.4044(0) 0.2770(6)	0.0704(3) 0.1070(2)	0.109(2)
C19 C20	0.0314(0)	0.3770(0)	0.1070(3)	0.103(2)
C20	0.0930 (4)	0.3940(4)	0.1898(2) 0.2407(2)	0.0662(12)
C21	1.0981(4)	0.7057(4)	0.2497(3)	0.0616(14)
UIW	0.5687(3)	0.0657(3)	0.599/7(17)	0.0498 (9)
HIA	0.284 (4)	0.166 (4)	0.357(2)	0.056 (11)*
HIB	0.350 (4)	0.050 (4)	0.346 (2)	0.049 (10)*
HIC	0.446 (4)	0.210 (4)	0.3448 (19)	0.039 (9)*
H4	0.13811	0.0993/	0.02333	0.0851*
H5	0.03996	0.19805	0.11032	0.0839*
H6	0.12852	0.20698	0.24769	0.0624*
H7A	0.49965	0.02657	0.28092	0.0874*
H7B	0.43730	-0.08912	0.20193	0.0874*
H7C	0.56571	0.06563	0.20757	0.0874*
H2A	0.640 (4)	0.755 (4)	0.445 (2)	0.047 (10)*
H2B	0.797 (5)	0.786 (4)	0.431 (2)	0.059 (11)*
H2C	0.726 (4)	0.896 (4)	0.427 (2)	0.043 (9)*
H11	0.42203	0.57662	0.11971	0.1168*
H12	0.31566	0.47788	0.21759	0.1088*
H13	0.44471	0.58085	0.35145	0.0694*
H14A	0.88732	0.96426	0.35569	0.0779*
H14B	0.92709	0.91552	0.27887	0.0779*
H14C	0.83286	1.01277	0.27464	0.0779*
H3A	0.979 (5)	0.484 (5)	0.334 (3)	0.089 (15)*
H3B	0.802 (5)	0.442 (4)	0.344 (2)	0.066 (12)*
H3C	0.912 (4)	0.591 (4)	0.348 (2)	0.058 (12)*

H18	0.72554	0.45254	0.01451	0.1635*	
H19	0.55476	0.30596	0.07609	0.1573*	
H20	0.62411	0.33662	0.21526	0.0991*	
H21A	1.10761	0.70244	0.30568	0.0919*	
H21B	1.18180	0.68856	0.23587	0.0919*	
H21C	1.10459	0.79895	0.23990	0.0919*	
H1W	0.476 (6)	0.015 (5)	0.576 (3)	0.085 (17)*	
H2W	0.583 (5)	0.135 (5)	0.577 (3)	0.083 (16)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0201 (3)	0.0222 (3)	0.0295 (4)	0.0093 (3)	0.0095 (3)	0.0054 (3)
P2	0.0176 (3)	0.0215 (3)	0.0254 (4)	0.0070 (3)	0.0073 (3)	0.0033 (3)
P3	0.0206 (3)	0.0227 (3)	0.0275 (4)	0.0079 (3)	0.0090 (3)	0.0033 (3)
01	0.0334 (11)	0.0220 (10)	0.0539 (14)	0.0051 (9)	0.0112 (10)	0.0025 (9)
O2	0.0303 (10)	0.0385 (11)	0.0341 (11)	0.0197 (9)	0.0102 (9)	0.0125 (9)
O3	0.0270 (10)	0.0348 (11)	0.0308 (10)	0.0192 (9)	0.0038 (8)	-0.0019 (8)
O4	0.0260 (10)	0.0332 (10)	0.0258 (10)	0.0085 (8)	0.0053 (8)	0.0021 (8)
05	0.0253 (10)	0.0401 (12)	0.0422 (12)	0.0070 (9)	0.0173 (9)	0.0110 (10)
O6	0.0344 (11)	0.0223 (10)	0.0355 (11)	0.0100 (9)	0.0005 (9)	0.0018 (8)
O7	0.0339 (11)	0.0351 (11)	0.0329 (11)	0.0134 (9)	0.0153 (9)	0.0102 (9)
08	0.0363 (11)	0.0281 (10)	0.0425 (12)	0.0163 (9)	0.0142 (9)	0.0032 (9)
09	0.0232 (9)	0.0468 (12)	0.0355 (11)	0.0167 (9)	0.0146 (8)	0.0169 (9)
Cl1	0.1113 (10)	0.0872 (8)	0.0560 (6)	0.0345 (7)	0.0527 (7)	0.0022 (6)
N1	0.0265 (13)	0.0326 (14)	0.0310 (13)	0.0116 (11)	0.0078 (10)	0.0014 (11)
C1	0.0283 (14)	0.0289 (14)	0.0277 (14)	0.0048 (12)	0.0073 (12)	0.0018 (12)
C2	0.0372 (16)	0.0324 (16)	0.0406 (18)	0.0076 (13)	0.0194 (14)	0.0029 (13)
C3	0.055 (2)	0.0407 (19)	0.0402 (19)	0.0060 (16)	0.0233 (17)	-0.0002 (15)
C4	0.057 (2)	0.066 (2)	0.0317 (18)	0.013 (2)	0.0083 (17)	0.0068 (17)
C5	0.046 (2)	0.070 (3)	0.044 (2)	0.0226 (19)	0.0013 (17)	0.0090 (18)
C6	0.0369 (17)	0.0464 (19)	0.0375 (18)	0.0168 (15)	0.0061 (14)	0.0010 (14)
C7	0.065 (2)	0.068 (3)	0.068 (3)	0.042 (2)	0.040 (2)	0.023 (2)
Cl2	0.1609 (14)	0.1171 (11)	0.0480 (6)	0.0661 (10)	0.0541 (8)	0.0379 (7)
N2	0.0295 (13)	0.0284 (13)	0.0300 (13)	0.0137 (11)	0.0109 (11)	0.0083 (10)
C8	0.0295 (14)	0.0285 (14)	0.0311 (15)	0.0142 (12)	0.0078 (12)	0.0051 (12)
C9	0.0436 (17)	0.0363 (16)	0.0364 (17)	0.0218 (14)	0.0167 (14)	0.0103 (13)
C10	0.078 (3)	0.063 (2)	0.0319 (18)	0.035 (2)	0.0210 (18)	0.0123 (17)
C11	0.094 (4)	0.076 (3)	0.039 (2)	0.025 (3)	-0.005 (2)	-0.010 (2)
C12	0.062 (3)	0.058 (3)	0.057 (3)	-0.002 (2)	-0.004 (2)	-0.011 (2)
C13	0.0406 (18)	0.0370 (18)	0.050 (2)	0.0044 (15)	0.0136 (16)	0.0016 (15)
C14	0.051 (2)	0.047 (2)	0.062 (2)	0.0133 (17)	0.0319 (18)	0.0225 (18)
Cl3	0.1496 (14)	0.1094 (11)	0.0706 (8)	0.0299 (10)	0.0648 (9)	0.0485 (8)
N3	0.0322 (14)	0.0333 (14)	0.0278 (13)	0.0114 (12)	0.0081 (11)	0.0076 (11)
C15	0.0356 (16)	0.0332 (16)	0.0313 (15)	0.0114 (13)	0.0074 (13)	0.0090 (12)
C16	0.0448 (18)	0.0356 (17)	0.0379 (17)	0.0138 (14)	0.0111 (15)	0.0092 (14)
C17	0.080 (3)	0.059 (2)	0.040 (2)	0.011 (2)	0.020 (2)	0.0190 (18)
C18	0.126 (5)	0.109 (4)	0.033 (2)	-0.002(4)	0.002 (3)	0.012 (3)

C19	0.086 (4)	0.101 (4)	0.050 (3)	-0.022 (3)	-0.015 (3)	0.001 (3)
C20	0.050 (2)	0.061 (2)	0.049 (2)	-0.0095 (19)	-0.0008 (18)	0.0114 (19)
C21	0.050 (2)	0.051 (2)	0.068 (3)	-0.0003 (18)	0.022 (2)	0.017 (2)
O1W	0.0428 (15)	0.0427 (14)	0.0590 (16)	0.0150 (12)	0.0074 (13)	0.0182 (13)

Geometric parameters (Å, °)

C11—C3	1.741 (4)	C4—C5	1.373 (6)
Cl2—C10	1.737 (4)	C5—C6	1.384 (5)
Cl3—C17	1.734 (5)	C4—H4	0.9300
P1—O2	1.487 (2)	С5—Н5	0.9300
P1—O9	1.596 (2)	С6—Н6	0.9300
P1—O3	1.599 (2)	С7—Н7С	0.9600
P1—O1	1.475 (2)	С7—Н7В	0.9600
P2—O5	1.468 (2)	С7—Н7А	0.9600
P2—O3	1.606 (2)	C8—C9	1.388 (4)
P2—O4	1.490 (2)	C8—C13	1.377 (5)
P2—O6	1.591 (2)	C9—C14	1.502 (5)
P3—O9 ⁱ	1.601 (2)	C9—C10	1.391 (5)
Р3—О7	1.478 (2)	C10-C11	1.378 (7)
P3—O8	1.475 (2)	C11—C12	1.365 (7)
P3—O6	1.606 (2)	C12—C13	1.371 (6)
O1W—H1W	0.82 (5)	C11—H11	0.9300
O1W—H2W	0.82 (5)	C12—H12	0.9300
N1—C1	1.462 (4)	С13—Н13	0.9300
N1—H1C	0.94 (4)	C14—H14C	0.9600
N1—H1B	0.97 (4)	C14—H14A	0.9600
N1—H1A	0.95 (4)	C14—H14B	0.9600
N2—C8	1.462 (4)	C15—C16	1.391 (5)
N2—H2B	0.93 (5)	C15—C20	1.372 (5)
N2—H2A	0.90 (4)	C16—C21	1.508 (6)
N2—H2C	0.89 (4)	C16—C17	1.373 (5)
N3—C15	1.453 (4)	C17—C18	1.377 (7)
N3—H3C	0.85 (4)	C18—C19	1.367 (8)
N3—H3B	1.01 (4)	C19—C20	1.378 (6)
N3—H3A	1.00 (5)	C18—H18	0.9300
C1—C6	1.375 (5)	С19—Н19	0.9300
C1—C2	1.392 (5)	С20—Н20	0.9300
C2—C7	1.500 (6)	C21—H21C	0.9600
C2—C3	1.387 (5)	C21—H21A	0.9600
C3—C4	1.370 (6)	C21—H21B	0.9600
O1—P1—O2	120.42 (13)	С5—С6—Н6	120.00
O1—P1—O3	110.23 (13)	С1—С6—Н6	120.00
O1—P1—O9	108.66 (12)	С2—С7—Н7С	109.00
O2—P1—O3	105.54 (12)	С2—С7—Н7А	109.00
O2—P1—O9	110.27 (13)	С2—С7—Н7В	109.00
O3—P1—O9	99.71 (11)	H7A—C7—H7B	109.00

O3—P2—O4	110.07 (12)	H7A—C7—H7C	109.00
O3—P2—O5	108.64 (12)	H7B—C7—H7C	109.00
O3—P2—O6	100.22 (12)	N2—C8—C13	117.5 (3)
O4—P2—O5	118.09 (13)	C9—C8—C13	123.1 (3)
O4—P2—O6	106.34 (12)	N2—C8—C9	119.4 (3)
O5—P2—O6	112.00 (12)	C10-C9-C14	122.5 (3)
O6—P3—O7	110.89 (12)	C8—C9—C14	122.0 (3)
O6—P3—O8	106.05 (12)	C8—C9—C10	115.5 (3)
O6—P3—O9 ⁱ	102.62 (12)	Cl2—C10—C9	119.5 (3)
O7—P3—O8	121.53 (13)	C9—C10—C11	122.1 (4)
O7—P3—O9 ⁱ	104.67 (12)	Cl2—C10—C11	118.4 (3)
$O8 - P3 - O9^{i}$	109.53 (12)	C10—C11—C12	120.2 (4)
P1—O3—P2	130.72 (13)	C11—C12—C13	119.9 (5)
P2—O6—P3	134.20 (14)	C8—C13—C12	119.2 (4)
P1-09-P3 ⁱ	133.29 (14)	C12—C11—H11	120.00
H1W—O1W—H2W	101 (5)	C10-C11-H11	120.00
H1A—N1—H1B	108 (3)	C13—C12—H12	120.00
H1A—N1—H1C	107 (3)	C11—C12—H12	120.00
C1—N1—H1B	114 (2)	С8—С13—Н13	120.00
C1—N1—H1C	107 (2)	C12—C13—H13	120.00
H1B—N1—H1C	108 (3)	C9—C14—H14C	109.00
C1—N1—H1A	113 (2)	C9—C14—H14B	109.00
H2B—N2—H2C	112 (4)	H14A—C14—H14C	109.00
H2A—N2—H2B	110 (3)	C9—C14—H14A	109.00
H2A—N2—H2C	109 (4)	H14A—C14—H14B	109.00
C8—N2—H2A	108 (2)	H14B—C14—H14C	109.00
C8—N2—H2B	107 (2)	C16—C15—C20	122.3 (3)
C8—N2—H2C	111 (2)	N3—C15—C16	118.9 (3)
C15—N3—H3B	116 (2)	N3—C15—C20	118.8 (3)
H3B—N3—H3C	104 (3)	C15—C16—C21	121.1 (3)
C15—N3—H3C	114 (2)	C17—C16—C21	122.5 (4)
C15—N3—H3A	107 (3)	C15—C16—C17	116.4 (3)
H3A—N3—H3C	107 (4)	Cl3—C17—C18	117.5 (3)
H3A—N3—H3B	109 (4)	C16—C17—C18	122.2 (4)
C2—C1—C6	122.5 (3)	Cl3—C17—C16	120.3 (3)
N1—C1—C6	117.9 (3)	C17—C18—C19	119.9 (5)
N1—C1—C2	119.6 (3)	C18—C19—C20	119.7 (5)
C3—C2—C7	122.4 (3)	C15—C20—C19	119.3 (4)
C1—C2—C7	121.9 (3)	C17—C18—H18	120.00
C1—C2—C3	115.7 (3)	C19—C18—H18	120.00
Cl1—C3—C2	119.6 (3)	С20—С19—Н19	120.00
C2—C3—C4	123.0 (4)	C18—C19—H19	120.00
Cl1—C3—C4	117.4 (3)	С15—С20—Н20	120.00
C3—C4—C5	119.6 (3)	С19—С20—Н20	120.00
C4—C5—C6	119.7 (4)	C16—C21—H21B	109.00
C1—C6—C5	119.5 (3)	C16—C21—H21C	109.00
C5—C4—H4	120.00	C16—C21—H21A	109.00
C2 C4 114	120.00	U21A C21 U21C	100.00

C4—C5—H5	120.00	H21B—C21—H21C	110.00
С6—С5—Н5	120.00	H21A—C21—H21B	109.00
O1—P1—O3—P2	38.7 (2)	C3—C4—C5—C6	-0.3 (6)
O2—P1—O3—P2	170.22 (16)	C4C5C1	1.6 (5)
O9—P1—O3—P2	-75.42 (19)	N2-C8-C9-C10	-179.9 (3)
O2—P1—O9—P3 ⁱ	-19.0 (2)	N2-C8-C9-C14	-1.1 (5)
O3—P1—O9—P3 ⁱ	-129.62 (18)	C13—C8—C9—C10	-0.1 (5)
O1—P1—O9—P3 ⁱ	115.04 (19)	C13—C8—C9—C14	178.7 (4)
O4—P2—O3—P1	33.9 (2)	N2-C8-C13-C12	179.7 (4)
O5—P2—O3—P1	-96.79 (18)	C9—C8—C13—C12	-0.2 (6)
O5—P2—O6—P3	-79.6 (2)	C8—C9—C10—Cl2	177.9 (3)
O6—P2—O3—P1	145.66 (17)	C8—C9—C10—C11	0.6 (6)
O3—P2—O6—P3	35.4 (2)	C14—C9—C10—Cl2	-1.0 (6)
O4—P2—O6—P3	150.01 (19)	C14—C9—C10—C11	-178.3 (4)
O7—P3—O6—P2	22.7 (2)	Cl2—C10—C11—C12	-178.1 (4)
O8—P3—O6—P2	156.50 (19)	C9-C10-C11-C12	-0.8 (8)
O9 ⁱ —P3—O6—P2	-88.6 (2)	C10-C11-C12-C13	0.5 (8)
$O6^{i} - P3^{i} - O9 - P1$	61.0 (2)	C11—C12—C13—C8	-0.1 (7)
O7 ⁱ —P3 ⁱ —O9—P1	176.90 (17)	N3-C15-C16-C17	175.3 (3)
O8 ⁱ —P3 ⁱ —O9—P1	-51.3 (2)	N3-C15-C16-C21	-3.4 (5)
N1—C1—C2—C3	-178.7 (3)	C20-C15-C16-C17	-2.3 (5)
N1—C1—C2—C7	0.6 (5)	C20-C15-C16-C21	179.0 (4)
C6—C1—C2—C3	-0.4 (5)	N3-C15-C20-C19	-175.0 (4)
C6—C1—C2—C7	178.8 (3)	C16—C15—C20—C19	2.5 (6)
N1-C1-C6-C5	177.0 (3)	C15—C16—C17—Cl3	-179.5 (3)
C2-C1-C6-C5	-1.3 (5)	C15—C16—C17—C18	0.6 (7)
C1—C2—C3—C11	-177.2 (3)	C21—C16—C17—Cl3	-0.8 (6)
C1—C2—C3—C4	1.9 (5)	C21—C16—C17—C18	179.3 (5)
C7—C2—C3—Cl1	3.6 (5)	Cl3—C17—C18—C19	-179.2 (5)
C7—C2—C3—C4	-177.3 (4)	C16—C17—C18—C19	0.7 (9)
Cl1—C3—C4—C5	177.5 (3)	C17—C18—C19—C20	-0.5 (9)
C2—C3—C4—C5	-1.6 (6)	C18—C19—C20—C15	-1.0 (8)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1A…O8	0.95 (4)	1.76 (4)	2.705 (4)	179 (5)
N1—H1 B ···O1 W ⁱⁱ	0.97 (4)	1.85 (4)	2.779 (4)	160 (3)
N1—H1C····O4 ⁱⁱⁱ	0.94 (4)	1.83 (4)	2.766 (4)	173 (3)
$O1W$ — $H1W$ ··· $O1^{iv}$	0.82 (5)	2.02 (6)	2.813 (4)	164 (5)
O1W— $H2W$ ···O5 ⁱⁱⁱ	0.82 (5)	2.14 (5)	2.934 (4)	163 (5)
N2—H2A···O5	0.90 (4)	2.02 (4)	2.871 (4)	156 (4)
N2—H2 B ···O2 ^v	0.93 (5)	1.85 (5)	2.763 (4)	166 (3)
N2—H2C···O1 ^{vi}	0.89 (4)	1.89 (4)	2.775 (4)	176 (4)
N3—H3A····O7 ^v	1.00 (5)	1.77 (5)	2.759 (4)	171 (5)

N3—H3 <i>B</i> ····O4 ⁱⁱⁱ	1.01 (4)	1.83 (4)	2.834 (4)	172 (4)
N3—H3 <i>C</i> ···O2 ^v	0.85 (4)	2.00 (4)	2.827 (4)	166 (3)

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) x+1, y, z; (vi) -x+1, -y+2, -z+1.