

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

β -Li_{0.37}Na_{0.63}Fe(MoO₄)₂

Amira Souilem,* Mohamed Faouzi Zid and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: souilem_amira@yahoo.fr

Received 10 December 2013; accepted 10 January 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.003 Å; disorder in main residue; R factor = 0.020; wR factor = 0.051; data-to-parameter ratio = 12.8.

The title compound, lithium/sodium iron(III) bis[orthomolybdate(VI)], was obtained by a solid-state reaction. The main structure units are an FeO₆ octahedron, a distorted MoO₆ octahedron and an MoO₄ tetrahedron sharing corners. The crystal structure is composed of infinite double MoFeO₁₁ chains along the *b*-axis direction linked by corner-sharing to MoO₄ tetrahedra so as to form Fe₂Mo₃O₁₉ ribbons. The cohesion between ribbons via mixed Mo-O-Fe bridges leads to layers arranged parallel to the bc plane. Adjacent lavers are linked by corners shared between MoO₄ tetrahedra of one layer and FeO₆ octahedra of the other layer. The Na⁺ and Li⁺ ions partially occupy the same general position, with a site-occupancy ratio of 0.631 (9):0.369 (1). A comparison is made with $AFe(MoO_4)_2$ (A = Li, Na, K and Cs) structures.

Related literature

For the electrochemical performance of similar materials, see: Padhi et al. (1997); Prakash et al. (2000); Okuyama et al. (2001); Croce et al. (2003). For their physical properties, see: Nagpure et al. (2010); Prasad & Varma (1994); Chen et al. (2009); Tomohiro et al. (2002). For related structures, see: van der Lee et al. (2008); Klevtsova (1975); Bazarov et al. (2010). For bond-valence parameters, see: Brown & Altermatt, (1985).

Experimental . .

Crystal data	
Li _{0.37} Na _{0.63} Fe(MoO ₄) ₂	$\gamma = 105.661 \ (9)^{\circ}$
$M_r = 392.78$	V = 328.83 (7) Å ³
Triclinic, P1	Z = 2
a = 6.8860 (8) Å	Mo $K\alpha$ radiation
b = 7.2560 (9) Å	$\mu = 5.98 \text{ mm}^{-1}$
c = 7.3786 (9) Å	$T = 298 { m K}$
$\alpha = 91.060 \ (6)^{\circ}$	$0.28 \times 0.21 \times 0.14 \text{ mm}$
$\beta = 110.933 \ (9)^{\circ}$	

1431 independent reflections

intensity decay: 1.3%

 $R_{\rm int} = 0.015$

1380 reflections with $I > 2\sigma(I)$

2 standard reflections every 120 min

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\rm min} = 0.286, T_{\rm max} = 0.488$ 2838 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ 112 parameters $wR(F^2) = 0.051$ $\Delta \rho_{\rm max} = 1.23 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ S=1.191431 reflections

Table 1 Selected bond lengths (Å).

Mo1-O5	1.737 (3)	Fe1-O8 ^{iv}	1.961 (2)
Mo1-O6	1.768 (3)	Fe1-O3 ^v	1.975 (2)
Mo1-O1 ⁱ	1.775 (2)	Fe1-O2 ^v	2.002 (2)
Mo1-O2 ⁱⁱ	1.787 (2)	Fe1-O8 ^{vi}	2.041 (2)
Mo2-O4	1.701 (3)	Fe1-O1 ^v	2.101 (2)
Mo2-O7	1.707 (3)	Na1-O7 ^{vii}	2.123 (4)
Mo2-O8	1.880(2)	Na1-O5 ^v	2.211 (3)
Mo2-O3	1.884 (2)	Na1-O4	2.252 (4)
Mo2-O3 ⁱⁱⁱ	2.400 (3)	Na1-O1 ^v	2.286 (3)
Mo2-O5	2.636 (3)	Na1-O3 ^v	2.306 (3)
Fe1-O6	1.947 (3)	Na1-O7 ^{vi}	2.718 (4)
Symmetry codes: (i)	r v = 1 z (ii) $r =$	1 v - 1 z; (iii) $-r + 1$	1 - v + 1 - z (iv)

Symmetry codes. (1) x, y-x + 1, -y, -z + 1; (v) (vi) x, y, z + 1; (vii) -x+1, -y+1, -z+1;-x + 2, -y + 1, -z + 1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supporting information for this paper is available from the IUCr electronic archives (Reference: VN2079).

References

- Bazarov, B. G., Namsaraeva, T. V., Klevtsova, R. F., Anshits, A. G., Vereshchagina, T. A., Glinskaya, L. A., Fedorov, K. N. & Bazarova, Zh. G. (2010). Kristallografiya, 55, 634-636.
- Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chen, J. G., Ang, L., Wang, C. & Wei, Y. (2009). J. Alloys Compd, 478, 604-607.
- Croce, F., Epifanio, A. D., Reale, P., Settimi, L. & Scrosati, B. (2003). J. Electrochem. Soc. 150, A576-A581.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Klevtsova, P. F. (1975). Dokl. Akad. Nauk. SSSR, 221, 1322-1325.
- Lee, A. van der, Beaurain, M. & Armand, P. (2008). Acta Cryst. C64, i1-i4.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Nagpure, M., Shinde, K. N., Kumar, V., Ntwaeaborwa, O. M., Dhoble, S. J. & Swart, H. C. (2010). J. Alloys Compd, 492, 384-388.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Okuyama, R., Nakashima, H., Sano, T. & Nomura, E. (2001). J. Power Sources, 93, 50-54.
- Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997). J. Electrochem. Soc. 144, 1188-1194.

inorganic compounds

Prakash, J., Redey, L. & Vissers, D. R. (2000). J. Power Sources, 87, 195–200.

Prasad, K. V. R. & Varma, K. B. R. (1994). Ferroelectrics, 158, 205–210.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Tomohiro, S., Mikio, H., Kohei, K., Takayo, O., Wada, S. & Hiroshi, M. (2002).
 J. Cryst. Growth, 241, 159–164.

supporting information

Acta Cryst. (2014). E70, i9-i10 [doi:10.1107/S1600536814000646]

β -Li_{0.37}Na_{0.63}Fe(MoO₄)₂

Amira Souilem, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

La révolution technologique de ces dernières années a donné vie aux batteries rechargeables au lithium (LiFePO₄) (Padhi *et al.*, 1997) qui sont un dispositif important pour le stockage de l'énergie électrique. L'avantage de l'utilisation du lithium est qu'il possède le potentiel électrochimique le plus élevé par rapport à l'électrode à hydrogène standard ce qui confère à la batterie une plus haute tension.

Les ressources terrestres limitées en lithium ainsi que son cout noté assez cher nous a incité à substituer ce dernier par le sodium vu son abondance et son faible cout (les batteries rechargeables au sodium (Na-NiCl2) et sodium-soufre) (Prakash *et al.*, 2000; Okuyama *et al.*, 2001). De plus le remplacement de l'élément Ni par le molybdène, a permis d'améliorer les performances électrochimiques de ces matériaux (Croce *et al.*, 2003).

Afin de suivre cette démarche de développement, ce travail est une contribution à l'étude des composés appartenant à la grande famille des molybdates de fer, de métaux alcalins et pseudo-alcalins. Ils possèdent plusieurs domaines d'applications notamment catalyse, électriques, ferroélectriques, magnétiques (Nagpure *et al.*, 2010; Prasad & Varma, 1994; Chen *et al.*, 2009; Tomohiro *et al.*, 2002).

En effet, une nouvelle phase de formulation $Li_{0.37}Na_{0.63}FeMo_2O_8$ a été obtenue par voie sèche. L'unité asymétrique est formée d'un octaèdre FeO₆, un second de type MoO₆ et d'un tétraèdre MoO₄ (Fig. 1a). Deux unités formulaires centrosymétriques se regroupent par partage de sommets donnant lieu à un dimère cyclique (Fig. 1b). La structure peut être décrite au moyen de chaînes classiques MoFeO₁₁, de type MO₃ (M = W, Mo, V, Cr, Fe, Ti), formées par des octaèdres MoO₆ et FeO₆ partageant que des sommets (Fig. 2a). Chaque chaîne se regroupe, par mise en commun d'arêtes entre octaèdre de même natue, avec son adjacente pour conduire à des doubles chaînes (Fig. 2 b) similaires à celles rencontrées dans la série d'oxydes $AMM'O_6$ (M' = V, Mn, Cr). Les tétraèdre MoO₄ se lient par partage de sommets aux doubles chaînes pour former des rubans de type Fe₂Mo₃O₁₉ (Fig. 3). Ces derniers se regroupent par formation de ponts mixtes Mo–O–Fe entre tétraèdres MoO₄ et octaèdres FeO₆ pour conduire à des couches disposées parallèlement aux plans *bc* (Fig. 3). La jonction de ses dernières par partage de sommets entre tétraèdres MoO₄ et octaèdres FeO₆ appartenant respectivement à deux couches adjacentes conduit à une charpente tridimensionnelle (Fig. 4). La projection de la structure du composé Li_{0.37}Na_{0.63}FeMo₂O₈ selon la direction [101] révèle la présence de canaux où résident les cations Li⁺ et Na⁺ (Fig. 5).

L'examen des facteurs géométriques dans la structure montre qu'ils sont en bon accord avec ceux rencontrés dans la littérature (van der Lee *et al.*, 2008; Klevtsova 1975; Bazarov *et al.*, 2010).

D'autre part, le calcul des valences de liaisons (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des cations suivants: Mo1(5,919), Mo2(6,033), Fe1(3,059) et (Na/Li)(1,184).

Un examen rigoureux de différentes structures trouvées dans la littérature révèle que le matériau étudié est un nouveau membre d'une famille de formule AFeMo₂O₈ (A= Na, Li, K, Cs) incluant NaFe(MoO₄)₂ (Klevtsova, 1975), LiFe(MoO₄)₂ (van der Lee *et al.*, 2008) et CsFe(MoO₄)₂ (Bazarov *et al.*, 2010).

Les structures des molybdates de fer ayant comme groupe d'espace *P*-3*m* (Bazarov *et al.*, 2010) ou *C*2/*c* (Klevtsova, 1975), ont le même type de couches où le molybdène occupe seulement les sites tétraédriques. Dans le cas des composés ayant une formulation analogue de type *A*Fe(MoO₄)₂ cristallisant dans le système triclinique, on peut rencontrer le molybdène occupant totalement les sites tétraédriques (A = Li; van der Lee *et al.*, 2008) (forme α) donnant naissance à de nouveaux types de couches. Dans le composé étudié, Li_{0.37}Na_{0.63}FeMo₂O₈ (forme β), le molybdène occupe les sites tétraédriques cet aussi octaédriques. Cette différence dans l'occupation des sites a donné lieu à de nouveaux types de doubles chaînes (Fig. 6).

S2. Experimental

La synthèse de $Li_{0.37}Na_{0.63}FeMo_2O_8$ a été effectuée par réaction à l'état solide, à partir d'un mélange de carbonate de sodium (FLUKA, 71350), carbonate de lithium (AZIENDA CHIMICA, 104094819), de nitrate de fer (FLUKA 44949) et de molybdate d'ammonium (FLUKA, 69858) dans des rapports molaires Li:Na:Fe:Mo respectivement égaux à 1:3:4:8. Après un broyage poussé dans un mortier en agate, le mélange est placé dans un creuset en porcelaine, puis porté dans un premier temps à une température de 673 K pendant 4 heures, en vue d'éliminer les produits volatils. Un second traitement thermique a été effectué à la température de synthèse proche de la fusion, 1143 K pendant 72 heures. Le résidu final a subi ensuite un refroidissement lent de (5°/12 h) jusqu'à 1043 K, suivi d'un autre plus rapide (50°/24 h) jusqu'à la température ambiante. Des cristaux de couleur verdâtre sont séparés à l'eau bouillante.

S3. Refinement

L'utilisation des fonctions SUMP et EADP autorisées par le programme *SHELX*, pour les ions Na1 et Li1 conduit à des ellipsoïdes bien définis. De plus, les densités d'électrons maximum et minimum restants dans la Fourier-différence sont acceptables et sont situées respectivements à 0.85 Å de O6 et à 0.80 Å de Mo1.

L'affinement a été réalisé en considérant les atomes d'oxygène O5 et O3 dans la sphère de coordination de d'atome de Molybdène Mo2. En effet le calcul des valences de charges utilisant la formule de Brown (Brown & Altermatt (1985)), montre que ces dernières sont égales à 0.2853 v.u. et 0.1559 v.u. respectivement pour O3 et O5. Elles sont donc considérées non négligeables et ces deux atomes peuvent par conséquent compléter l'environnement octaèdrique $(d(Mo2-O5^{iv})= 2.600 (3) \text{ Å})$ de l'atome Mo2 et sa charge (+6.033).

Figure 1

(*a*): Unité asymétrique dans le composé Li_{0.37}Na_{0.63}FeMo₂O₈. Les éllipsoïdes ont été définis avec 50% de probabilité, (*b*): Nouvelle unité centrosymétrique. [*Symmetry codes*: (i) 1 - x, 2 - y, 1 - z; (ii) 2 - x, 2 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) x, y, z; (v) 1 - x, 1 - y, 1 - z; (viii) x, 1 + y, z].

Figure 2

(*a*): Représentation d'une chaîne simple formée par les octaèdres MO_6 (M=Mo, Fe), (*b*): Représentation d'une chaîne double.

Projection de la couche selon le plan bc mettant en évidence la jonction des rubans.

Projection de la structure de Li_{0.37}Na_{0.63}FeMo₂O₈ selon *c* montrant la jonction entre couches.

Projection de la structure de Li_{0.37}Na_{0.63}FeMo₂O₈ selon [101] montrant les tunnels où résident les cations.

Figure 6

Jonction des polyèdres dans la structure de, (a): LiFe(MoO₄)₂ et (b): Li_{0.37}Na_{0.63}FeMo₂O₈.

Lithium/sodium iron(III) bis[orthomolybdate(VI)]

Crystal data

Li_{0.37}Na_{0.63}Fe(MoO₄)₂ $M_r = 392.78$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.8860 (8) Å b = 7.2560 (9) Å c = 7.3786 (9) Å a = 91.060 (6)° $\beta = 110.933$ (9)° $\gamma = 105.661$ (9)° V = 328.83 (7) Å³ Z = 2 F(000) = 364 $D_x = 3.967 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 11-15^{\circ}$ $\mu = 5.98 \text{ mm}^{-1}$ T = 298 KPrism, green $0.28 \times 0.21 \times 0.14 \text{ mm}$ Data collection

Enraf-Nonius CAD-4	1431 independent reflections
diffractometer	1380 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.015$
Graphite monochromator	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
$\omega/2\theta$ scans	$h = -8 \rightarrow 8$
Absorption correction: ψ scan	$k = -9 \rightarrow 9$
(North <i>et al.</i> , 1968)	$l = -9 \rightarrow 9$
$T_{\min} = 0.286, \ T_{\max} = 0.488$	2 standard reflections every 120 min
2838 measured reflections	intensity decay: 1.3%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

Least-squares matrix: full map $w = 1/[\sigma^2(F_0^2) + (0.021P)^2 + 0.8764P]$ $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.051$ where $P = (F_0^2 + 2F_c^2)/3$ *S* = 1.19 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.23 \text{ e} \text{ Å}^{-3}$ 1431 reflections 112 parameters $\Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0119 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	л	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.18308 (4)	0.03418 (4)	0.28342 (4)	0.00999 (11)	
Mo2	0.66625 (5)	0.42440 (4)	0.20010 (5)	0.01552 (11)	
Fe1	0.39452 (8)	0.09553 (7)	0.81999 (7)	0.00988 (13)	
Na1	0.7648 (4)	0.4490 (3)	0.7567 (4)	0.0221 (8)	0.631 (9)
Li1	0.7648 (4)	0.4490 (3)	0.7567 (4)	0.0221 (8)	0.369 (9)
01	0.3163 (4)	0.8758 (3)	0.2278 (4)	0.0137 (5)	
O2	0.8946 (4)	0.9550 (4)	0.1547 (4)	0.0145 (5)	
03	0.5285 (4)	0.6200 (3)	0.1475 (4)	0.0171 (5)	
O4	0.7530 (5)	0.4334 (4)	0.4476 (4)	0.0267 (6)	
05	0.2937 (4)	0.2661 (4)	0.2401 (4)	0.0203 (6)	
06	0.2403 (4)	0.0424 (4)	0.5373 (4)	0.0205 (6)	
07	0.8963 (5)	0.5147 (4)	0.1521 (5)	0.0284 (7)	
O8	0.5823 (4)	0.1597 (3)	0.1114 (3)	0.0118 (5)	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.00649 (16)	0.01197 (16)	0.01053 (16)	0.00259 (11)	0.00226 (11)	-0.00055 (10)
Mo2	0.01547 (17)	0.00794 (16)	0.01610 (17)	0.00378 (12)	-0.00234 (12)	-0.00076 (11)
Fe1	0.0090 (2)	0.0088 (2)	0.0107 (2)	0.00255 (17)	0.00243 (18)	0.00021 (17)
Na1	0.0196 (12)	0.0174 (12)	0.0338 (14)	0.0070 (9)	0.0138 (10)	0.0076 (9)
Li1	0.0196 (12)	0.0174 (12)	0.0338 (14)	0.0070 (9)	0.0138 (10)	0.0076 (9)
01	0.0108 (11)	0.0136 (12)	0.0192 (13)	0.0043 (9)	0.0079 (10)	0.0032 (10)
O2	0.0079 (11)	0.0197 (13)	0.0160 (12)	0.0042 (9)	0.0046 (9)	-0.0008 (10)
O3	0.0194 (13)	0.0091 (11)	0.0184 (13)	0.0053 (10)	0.0015 (10)	-0.0009 (9)
04	0.0291 (15)	0.0247 (15)	0.0164 (14)	0.0096 (12)	-0.0039 (11)	-0.0030 (11)
05	0.0191 (13)	0.0144 (12)	0.0253 (14)	0.0021 (10)	0.0080 (11)	-0.0002 (11)
O6	0.0158 (13)	0.0329 (15)	0.0112 (12)	0.0074 (11)	0.0034 (10)	-0.0008 (11)
07	0.0238 (15)	0.0207 (14)	0.0334 (17)	0.0006 (12)	0.0069 (13)	0.0042 (12)
08	0.0124 (11)	0.0097 (11)	0.0119 (11)	0.0034 (9)	0.0028 (9)	0.0014 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Mo1-05	1.737 (3)	Fe1—O8 ^{iv}	1.961 (2)	
Mo1-06	1.768 (3)	Fe1—O3 ^v	1.975 (2)	
Mo1-O1 ⁱ	1.775 (2)	Fe1—O2 ^v	2.002 (2)	
Mo1-O2 ⁱⁱ	1.787 (2)	Fe1—O8 ^{vi}	2.041 (2)	
Mo2—O4	1.701 (3)	Fe1—O1 ^v	2.101 (2)	
Mo2—O7	1.707 (3)	Na1—O7 ^{vii}	2.123 (4)	
Mo2—O8	1.880 (2)	Na1—O5 ^v	2.211 (3)	
Mo2—O3	1.884 (2)	Na1—O4	2.252 (4)	
Mo2—O3 ⁱⁱⁱ	2.400 (3)	Na1—O1 ^v	2.286 (3)	
Mo2—O5	2.636 (3)	Na1—O3 ^v	2.306 (3)	
Fe1—O6	1.947 (3)	Na1—O7 ^{vi}	2.718 (4)	
O5-Mo1-O6	107.29 (13)	O6—Fe1—O8 ^{iv}	101.81 (11)	
O5-Mo1-O1 ⁱ	110.16 (12)	O6—Fe1—O3 ^v	99.65 (12)	
06-Mo1-01 ⁱ	106.37 (12)	$O8^{iv}$ —Fe1—O3 ^v	156.83 (11)	
O5-Mo1-O2 ⁱⁱ	110.72 (12)	O6—Fe1—O2 ^v	88.11 (11)	
O6—Mo1—O2 ⁱⁱ	108.81 (12)	$O8^{iv}$ —Fe1— $O2^{v}$	92.41 (10)	
O1 ⁱ —Mo1—O2 ⁱⁱ	113.22 (11)	O3 ^v —Fe1—O2 ^v	96.92 (11)	
O4—Mo2—O7	105.39 (15)	O6—Fe1—O8 ^{vi}	174.67 (11)	
O4—Mo2—O8	103.81 (12)	$O8^{iv}$ —Fe1— $O8^{vi}$	78.88 (11)	
O7—Mo2—O8	103.08 (13)	O3 ^v —Fe1—O8 ^{vi}	78.95 (10)	
O4—Mo2—O3	103.37 (13)	O2 ^v —Fe1—O8 ^{vi}	97.16 (10)	
O7—Mo2—O3	103.71 (13)	O6—Fe1—O1 ^v	87.72 (11)	
O8—Mo2—O3	134.72 (11)	$O8^{iv}$ —Fe1—O1 ^v	84.61 (10)	
O4—Mo2—O3 ⁱⁱⁱ	168.20 (13)	O3 ^v —Fe1—O1 ^v	87.65 (10)	
O7—Mo2—O3 ⁱⁱⁱ	86.38 (13)	O2 ^v —Fe1—O1 ^v	174.27 (10)	

supporting information

O8—Mo2—O3 ⁱⁱⁱ	72.08 (9)	$O8^{vi}$ —Fe1—O1 ^v	87.08 (10)
O3—Mo2—O3 ⁱⁱⁱ	73.94 (11)		

Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) x, y, z+1; (vii) -x+2, -y+1, -z+1.