

ISSN 1600-5368

Pyrimethaminium 2-{[4-(trifluoromethyl)phenyl]sulfanyl}benzoate dimethyl sulfoxide monosolvate

Thammarse S. Yamuna,^a Manpreet Kaur,^a Jerry P. Jasinski^b* and H.S. Yathirajan^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 27 April 2014; accepted 7 May 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.138; data-to-parameter ratio = 14.3.

In the cation of the title solvated molecular salt, C₁₂H₁₄- $ClN_4^+ \cdot C_{14}H_8F_3O_2S^- \cdot C_2H_6OS$ [systematic name of the cation: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium], the dihedral angle between the planes of the pyrimidinium and 4-chlorophenyl rings is $77.2 (5)^{\circ}$. In the anion, the planes of the benzene rings are twisted with respect to each other by $71.5(5)^{\circ}$. Disorder was modelled for the dimethyl sulfoxide solvent molecule over two set of sites in a 0.7487 (13): 0.2513 (13) ratio. In the crystal, the cations are linked by inversion-generated pairs of N-H···N hydrogen bonds, with an $R_2^2(8)$ graph-set motif. The cation donates two N-H···O hydrogen bonds to the anion, also generating an $R_2^2(8)$ loop. These interactions, along with cation-solvent N-H···O hydrogen bonds, and cation-anion $C-H \cdots F$, solvent-anion $C-H\cdots O$ and $C-H\cdots F$ interactions, result in a threedimensional network.

Related literature

For background to pyrimethamine, see: Kraut & Matthews (1987); Zuccotto *et al.* (1998). For supramolecular synthons, see: Desiraju (1995). For related structures, see: Balasubramani *et al.* (2005); Devi *et al.* (2006, 2007); Ebenezer & Muthiah (2010); Subashini *et al.* (2007); Thanigaimani *et al.* (2009); Yamuna *et al.* (2013).

 $\beta = 114.014 (3)^{\circ}$ V = 2897.88 (12) Å³

Cu $K\alpha$ radiation

 $0.36 \times 0.18 \times 0.06 \text{ mm}$

19462 measured reflections

5571 independent reflections

4889 reflections with $I > 2\sigma(I)$

 $\mu = 3.01 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.046$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{14}\text{ClN}_{4}^{+}\text{\cdot}C_{14}H_8F_3\text{O}_2\text{S}^{-1}\text{-}\\ \text{\cdot}C_2H_6\text{OS}\\ M_r = 625.11\\ \text{Monoclinic, }P2_1/c\\ a = 12.7422 \ (3) \\ \text{Å}\\ b = 22.2773 \ (3) \\ \text{Å}\\ c = 11.1761 \ (3) \\ \text{Å} \end{array}$

Data collection

Agilent Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Agilent, 2012) $T_{min} = 0.374, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 54 restraints $wR(F^2) = 0.138$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.72 \text{ e } \text{ Å}^{-3}$ 5571 reflections $\Delta \rho_{min} = -0.41 \text{ e } \text{ Å}^{-3}$ 389 parameters $\Delta \rho_{min} = -0.41 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N1-H1···O1	0.88	1.79	2.674 (2)	178
$N3-H3A\cdotsO1SA^{i}$	0.88	2.20	3.046 (6)	162
$N3-H3A\cdotsO1SB^{i}$	0.88	2.13	2.97 (2)	161
$N3-H3B\cdots O2$	0.88	1.93	2.809 (2)	176
$N4 - H4A \cdot \cdot \cdot N2^{ii}$	0.88	2.15	3.030(2)	175
$N4-H4B\cdots O1SA^{iii}$	0.88	2.25	2.962 (4)	138
$N4-H4B\cdots O1SB^{iii}$	0.88	2.06	2.740 (16)	133
C12−H12···F3 ⁱⁱⁱ	0.95	2.57	3.444 (2)	153
$C2SA - H2SB \cdots O2^{iv}$	0.98	2.44	3.376 (6)	160
$C2SB - H2SE \cdot \cdot \cdot F1^{v}$	0.98	2.55	3.16 (3)	120
$C2SB-H2SF\cdots O2^{iv}$	0.98	2.47	3.21 (2)	132

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting	information	for	this	paper	is	available	from	the	IUCr
electronic a	rchives (Refe	renc	e: HI	37223).					

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, 04203–04205.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311.
- Devi, P., Muthiah, P. T., Row, T. N. G. & Thiruvenkatam, V. (2007). Acta Cryst. E63, 04065–04066.
- Devi, P., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. E62, o3704–o3706.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, 0516.
- Kraut, J. & Matthews, D. A. (1987). Biological Macromolecules and Assemblies, edited by F. A. Jurnak & A. McPherson, Vol. 3, pp. 1–71. New York: John Wiley & Sons.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, 03775.
- Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, 042–045.
- Yamuna, T. S., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, 01704.
- Zuccotto, F., Martin, A. C. R., Laskowski, R. A., Thornton, J. M. & Gilbert, I. H. (1998). J. Comput. Aided Mol. Des. 12, 241–257.

Acta Cryst. (2014). E70, o683-o684 [doi:10.1107/S1600536814010411]

Pyrimethaminium 2-{[4-(trifluoromethyl)phenyl]sulfanyl}benzoate dimethyl sulfoxide monosolvate

Thammarse S. Yamuna, Manpreet Kaur, Jerry P. Jasinski and H.S. Yathirajan

S1. Comment

Pyrimethamine (trade name Daraprim; {5-(4-chlorophenyl)-6-ethyl-2,4- pyrimidinediamine} is an antifolate drug and a medication used in combination with other drugs for treatment of protozoan disease like toxoplasmosis, bacterial infections and some types of cancer (Zuccotto *et al.*, 1998; Kraut & Matthews, 1987). Pyrimethamine (PMN) exhibits a donor–acceptor–donor site, so that together with a complimentary molecule it can form three hydrogen bonds, yielding a robust supramolecular synthon (Desiraju, 1995). The crystal structure of 2-amino-4,6-dimethylpyrimidine-cinnamic acid (Balasubramani *et al.*, 2005), pyrimethaminium 3,5-dinitrobenzoate (Subashini *et al.*, 2007),pyrimethamine hydrogen adipate (Devi *et al.*, 2007),2-amino-4,6-dimethylpyrimidine-terephthalic acid (Devi *et al.*, 2006), 2-amino-4,6-dimethylpyrimidine-anthranilic acid (Ebenezer & Muthiah , 2010), 2-amino-4,6-dimethoxypyrimidinium picrate and pyrimethaminium picrate dimethyl sulfoxide solvate (Thanigaimani *et al.*, 2009) have been reported. Recently, the structure of [2-(4- (Trifluoromethyl)phenylsulfanyl]benzoic acid (Yamuna *et al.*, 2013) used in the preparation of the title compound was reported by our research group. As part of our studies in this area, this paper reports the crystal structure of the title compound, (I), (Fig. 1).

In the cation, the dihedral angle between the mean plane of the pyrimidinium and the 4-chlorophenyl ring is 77.2 (5)°. In the anion, the mean planes of the two phenyl rings are twisted with respect to each other by 71.5 (5)°. Disorder was modelled for the dimethyl sulfoxide solvent molecule over two sites in a 0.7487 (13):0.2513 (13) ratio. Within the asymmetric unit, cation-anion N—H···O hydrogen bonds (forming $R_2^2(8)$ graph-set ring motifs) along with cation-cation N—H···N hydrogen bonds are observed. In the crystal additional cation-cation N—H···N hydrogen bonds and cation-solvate N—H···O hydrogen bonds help to consolidate the packing (Fig. 2). Weak cation-anion C—H···F, and solvate-anion C—H···F are also observed (Table 1).

S2. Experimental

Pyrimethamine (0.5 g, 0.2010 mmol) and 2-(4-trifluoromethylphenyl sulfanyl)benzoic acid(0.599 g, 0.2010 mmol) were dissolved in 10 ml of hot dimethyl sulphoxide solution and stirred for 20 minutes and kept aside for slow evaporation. After few days, irregular colourless chunks of the title compound were developed (m.p: 383–388 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH₂); 0.98Å (CH₃) or 0.88Å (NH, NH₂). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH, NH₂) or 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me groups refined as rotating groups. Disorder was modelled for the S1S, O1S, C1S and C2S atoms of the dimethyl sulfoxide solvent molecule over two sites in a 0.7487 (13):0.2513 (13) ratio.

Figure 1

ORTEP drawing of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate N—H…O hydrogen bonds within the asymmetric unit forming $R_2^2(8)$ graph-set ring motifs.

Figure 2

Molecular packing for (I) viewed along the *c* axis. Dashed lines indicate cation-anion N—H···O hydrogen bonds (forming $R_2^2(8)$ graph-set ring motifs) along with cation-cation N—H···N hydrogen bonds, cation-solvate N—H···O hydrogen bonds and weak cation-anion C—H···F, and solvate-anion C—H···F interactions.

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-{[4-(trifluoromethyl)phenyl]sulfanyl}benzoate dimethyl sulfoxide monosolvate

Crystal	data
---------	------

$C_{12}H_{14}ClN_4{}^+\!\cdot\!C_{14}H_8F_3O_2S{}^-\!\cdot\!C_2H_6OS$
$M_r = 625.11$
Monoclinic, $P2_1/c$
a = 12.7422 (3) Å
b = 22.2773 (3) Å
c = 11.1761 (3) Å
$\beta = 114.014 (3)^{\circ}$
V = 2897.88 (12) Å ³
Z = 4

Data collection

Agilent Eos Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ F(000) = 1296 $D_x = 1.433 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 8424 reflections $\theta = 4.0-71.5^{\circ}$ $\mu = 3.01 \text{ mm}^{-1}$ T = 173 KIrregular, colourless $0.36 \times 0.18 \times 0.06 \text{ mm}$

 ω scans Absorption correction: multi-scan (*CrysAlis RED*; Agilent, 2012) $T_{\min} = 0.374, T_{\max} = 1.000$

19462 measured reflections	$\theta_{\rm max} = 71.4^{\circ}, \theta_{\rm min} = 3.8^{\circ}$
5571 independent reflections	$h = -15 \rightarrow 15$
4889 reflections with $I > 2\sigma(I)$	$k = -27 \rightarrow 27$
$R_{\rm int} = 0.046$	$l = -8 \rightarrow 13$

Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.138$	$w = 1/[\sigma^2(F_o^2) + (0.0872P)^2 + 1.2456P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
5571 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
389 parameters	$\Delta ho_{ m max} = 0.72$ e Å ⁻³
54 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL2012 (Sheldrick,
direct methods	2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
	Extinction coefficient: 0.00062 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.59857 (4)	0.47670 (2)	0.25721 (5)	0.02905 (16)	
F1	0.88133 (16)	0.63579 (7)	-0.0149 (2)	0.0652 (5)	
F2	0.85792 (17)	0.55628 (11)	-0.13276 (16)	0.0758 (6)	
F3	1.00185 (12)	0.56365 (7)	0.05033 (16)	0.0488 (4)	
01	0.45576 (13)	0.44517 (6)	0.36254 (16)	0.0343 (3)	
O2	0.40640 (15)	0.35336 (7)	0.40052 (19)	0.0431 (4)	
C13	0.45497 (17)	0.38898 (9)	0.3526 (2)	0.0304 (4)	
C14	0.51534 (17)	0.36331 (9)	0.2722 (2)	0.0311 (4)	
C14A	0.8891 (2)	0.57575 (11)	-0.0105 (2)	0.0410 (5)	
C15	0.57766 (16)	0.39873 (9)	0.2191 (2)	0.0280 (4)	
C16	0.61951 (18)	0.37158 (10)	0.1337 (2)	0.0356 (5)	
H16	0.6614	0.3949	0.0969	0.043*	
C17	0.6006 (2)	0.31154 (12)	0.1027 (3)	0.0504 (7)	
H17	0.6282	0.2942	0.0434	0.060*	
C18	0.5418 (2)	0.27616 (11)	0.1570 (4)	0.0593 (8)	
H18	0.5297	0.2346	0.1365	0.071*	
C19	0.5010 (2)	0.30267 (11)	0.2418 (3)	0.0466 (6)	
H19	0.4618	0.2785	0.2806	0.056*	
C20	0.68608 (17)	0.49999 (9)	0.17504 (19)	0.0277 (4)	
C21	0.63817 (18)	0.53953 (10)	0.0700(2)	0.0332 (4)	
H21	0.5591	0.5497	0.0388	0.040*	
C22	0.7044 (2)	0.56394 (10)	0.0109 (2)	0.0373 (5)	
H22	0.6714	0.5911	-0.0602	0.045*	
C23	0.81971 (19)	0.54862 (9)	0.0557 (2)	0.0314 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C24	0.86825 (18)	0.50883 (10)	0.1591 (2)	0.0330 (4)	
H24	0.9469	0.4979	0.1886	0.040*	
C25	0.80155 (18)	0.48508 (10)	0.2193 (2)	0.0316 (4)	
H25	0.8350	0.4584	0.2912	0.038*	
Cl1	0.08126 (6)	0.85545 (2)	0.33795 (7)	0.0507 (2)	
N1	0.28497 (13)	0.50285 (7)	0.39467 (15)	0.0239 (3)	
H1	0.3410	0.4845	0.3824	0.029*	
N2	0.12544 (14)	0.49511 (7)	0.44931 (16)	0.0257 (3)	
N3	0.22872 (16)	0.41131 (8)	0.44299 (19)	0.0341 (4)	
НЗА	0.1826	0.3888	0.4650	0.041*	
H3B	0.2859	0.3947	0.4300	0.041*	
N4	0.02748 (15)	0.57911 (8)	0.45960 (18)	0.0303(4)	
H4A	-0.0176	0 5560	0 4819	0.036*	
H4B	0.0160	0.6181	0.4525	0.036*	
C1	0.21210 (16)	0.47019 (8)	0.42950(18)	0.020	
C^2	0.11292 (16)	0.55510 (8)	0.12950(10) 0.43659(18)	0.0243(4)	
C3	0.11292(10) 0.18716(16)	0.59204 (8)	0.39895 (18)	0.0243(4)	
C4	0.10710(10) 0.27322(16)	0.59204(8) 0.56345(8)	0.37826(17)	0.0241(4) 0.0234(4)	
C4 C5	0.27522(10) 0.35677(18)	0.50345(0)	0.37820(17)	0.0234(4)	
	0.33077 (18)	0.53508 (3)	0.3344 (2)	0.0288 (4)	
	0.4549	0.5780	0.3803	0.035*	
пэр	0.3372	0.03/3	0.5514	0.033°	
	0.3271 (2)	0.58558 (11)	0.1887 (2)	0.0398 (5)	
H6A	0.3299	0.5405	0.1/21	0.060*	
H6B	0.3827	0.6049	0.1641	0.060*	
H6C	0.2497	0.5989	0.1367	0.060*	
C7	0.16593 (16)	0.65788 (8)	0.38331 (19)	0.0248 (4)	
C8	0.19577 (19)	0.69472 (9)	0.4931 (2)	0.0311 (4)	
H8	0.2334	0.6780	0.5782	0.037*	
C9	0.1710 (2)	0.75557 (9)	0.4791 (2)	0.0350 (5)	
H9	0.1923	0.7806	0.5541	0.042*	
C10	0.11506 (18)	0.77934 (9)	0.3554 (2)	0.0326 (5)	
C11	0.08432 (19)	0.74404 (10)	0.2442 (2)	0.0338 (5)	
H11	0.0462	0.7610	0.1593	0.041*	
C12	0.11064 (18)	0.68325 (9)	0.2598 (2)	0.0297 (4)	
H12	0.0904	0.6585	0.1845	0.036*	
S1SA	0.77732 (6)	0.71883 (3)	0.36675 (8)	0.0390 (2)	0.7487 (13)
O1SA	0.8835 (4)	0.68442 (14)	0.4534 (4)	0.0415 (8)	0.7487 (13)
C1SA	0.6760 (7)	0.6652 (8)	0.2710 (19)	0.0757 (14)	0.7487 (13)
H1SA	0.6414	0.6455	0.3246	0.114*	0.7487 (13)
H1SB	0.7144	0.6351	0.2389	0.114*	0.7487 (13)
H1SC	0.6159	0.6852	0.1965	0.114*	0.7487 (13)
C2SA	0.8085 (6)	0.7538 (3)	0.2407 (7)	0.0677 (16)	0.7487 (13)
H2SA	0.8725	0.7819	0.2803	0.102*	0.7487 (13)
H2SB	0.7405	0.7755	0.1809	0.102*	0.7487 (13)
H2SC	0.8297	0.7230	0.1919	0.102*	0.7487 (13)
S1SB	0.80800 (19)	0.68308 (10)	0.2873 (2)	0.0390 (2)	0.2513 (13)
O1SB	0.8765 (16)	0.6714 (6)	0.4284 (13)	0.0415 (8)	0.2513 (13)
C1SB	0.664 (2)	0.667 (3)	0.260 (6)	0.0757 (14)	0.2513 (13)

H1SD	0.6569	0.6245	0.2787	0.114*	0.2513 (13)
H1SE	0.6132	0.6754	0.1683	0.114*	0.2513 (13)
H1SF	0.6409	0.6919	0.3175	0.114*	0.2513 (13)
C2SB	0.794 (2)	0.7625 (7)	0.270 (3)	0.0677 (16)	0.2513 (13)
H2SD	0.8687	0.7799	0.2820	0.102*	0.2513 (13)
H2SE	0.7697	0.7788	0.3355	0.102*	0.2513 (13)
H2SF	0.7372	0.7723	0.1819	0.102*	0.2513 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0340 (3)	0.0260 (3)	0.0308 (3)	0.00097 (17)	0.0168 (2)	-0.00265 (17)
F1	0.0647 (11)	0.0439 (9)	0.0959 (14)	-0.0030 (7)	0.0418 (10)	0.0216 (8)
F2	0.0761 (12)	0.1208 (17)	0.0363 (9)	-0.0481 (12)	0.0287 (8)	-0.0166 (9)
F3	0.0403 (8)	0.0504 (8)	0.0605 (9)	-0.0097 (6)	0.0254 (7)	-0.0024 (7)
01	0.0374 (8)	0.0294 (7)	0.0446 (9)	0.0013 (6)	0.0254 (7)	-0.0030 (6)
O2	0.0435 (9)	0.0340 (8)	0.0627 (11)	-0.0035 (7)	0.0327 (8)	0.0002 (7)
C13	0.0246 (9)	0.0316 (10)	0.0342 (10)	0.0011 (8)	0.0113 (8)	-0.0016 (8)
C14	0.0214 (9)	0.0295 (10)	0.0404 (11)	0.0033 (7)	0.0104 (8)	-0.0022 (8)
C14A	0.0433 (13)	0.0408 (12)	0.0387 (12)	-0.0119 (10)	0.0165 (10)	-0.0029 (9)
C15	0.0216 (9)	0.0274 (9)	0.0315 (10)	0.0038 (7)	0.0070 (8)	-0.0039 (7)
C16	0.0268 (10)	0.0390 (11)	0.0427 (12)	0.0001 (8)	0.0158 (9)	-0.0111 (9)
C17	0.0368 (12)	0.0470 (14)	0.0759 (18)	-0.0015 (10)	0.0316 (13)	-0.0260 (13)
C18	0.0477 (14)	0.0316 (12)	0.113 (3)	-0.0061 (11)	0.0467 (16)	-0.0258 (14)
C19	0.0344 (12)	0.0321 (11)	0.0814 (19)	-0.0024 (9)	0.0319 (12)	-0.0079 (11)
C20	0.0308 (10)	0.0260 (9)	0.0264 (10)	-0.0011 (7)	0.0117 (8)	-0.0030 (7)
C21	0.0288 (10)	0.0332 (10)	0.0326 (11)	0.0002 (8)	0.0074 (8)	0.0022 (8)
C22	0.0373 (12)	0.0365 (11)	0.0302 (11)	-0.0028 (9)	0.0057 (9)	0.0069 (8)
C23	0.0346 (11)	0.0302 (10)	0.0272 (10)	-0.0089 (8)	0.0105 (8)	-0.0066 (8)
C24	0.0284 (10)	0.0376 (11)	0.0312 (10)	0.0006 (8)	0.0102 (8)	-0.0032 (8)
C25	0.0330 (11)	0.0343 (10)	0.0259 (10)	0.0050 (8)	0.0104 (8)	0.0032 (8)
Cl1	0.0609 (4)	0.0217 (3)	0.0834 (5)	0.0048 (2)	0.0435 (4)	-0.0001 (2)
N1	0.0252 (8)	0.0232 (8)	0.0268 (8)	-0.0005 (6)	0.0143 (6)	-0.0013 (6)
N2	0.0249 (8)	0.0244 (8)	0.0302 (8)	-0.0024 (6)	0.0138 (7)	0.0021 (6)
N3	0.0383 (10)	0.0228 (8)	0.0514 (11)	0.0008 (7)	0.0289 (9)	0.0049 (7)
N4	0.0288 (8)	0.0240 (8)	0.0451 (10)	0.0000 (6)	0.0222 (8)	0.0037 (7)
C1	0.0251 (9)	0.0238 (9)	0.0241 (9)	-0.0021 (7)	0.0101 (7)	-0.0006 (7)
C2	0.0241 (9)	0.0252 (9)	0.0234 (9)	-0.0029 (7)	0.0096 (7)	0.0004 (7)
C3	0.0259 (9)	0.0243 (9)	0.0228 (9)	-0.0029 (7)	0.0105 (7)	0.0002 (7)
C4	0.0253 (9)	0.0252 (9)	0.0208 (9)	-0.0046 (7)	0.0105 (7)	-0.0023 (6)
C5	0.0305 (10)	0.0272 (9)	0.0349 (11)	-0.0057 (7)	0.0197 (9)	-0.0018 (7)
C6	0.0437 (13)	0.0488 (13)	0.0344 (12)	-0.0031 (10)	0.0235 (10)	0.0052 (9)
C7	0.0244 (9)	0.0228 (9)	0.0323 (10)	-0.0036 (7)	0.0167 (8)	-0.0012 (7)
C8	0.0369 (11)	0.0303 (10)	0.0302 (10)	-0.0063 (8)	0.0177 (9)	-0.0022 (8)
C9	0.0453 (12)	0.0272 (10)	0.0418 (12)	-0.0095 (9)	0.0272 (10)	-0.0111 (8)
C10	0.0351 (11)	0.0208 (9)	0.0528 (13)	-0.0014 (8)	0.0289 (10)	-0.0015 (8)
C11	0.0378 (11)	0.0279 (10)	0.0385 (11)	0.0044 (8)	0.0185 (9)	0.0061 (8)
C12	0.0361 (11)	0.0249 (9)	0.0302 (10)	-0.0002 (8)	0.0155 (8)	-0.0032 (7)

S1SA	0.0363 (4)	0.0300 (3)	0.0499 (4)	0.0043 (3)	0.0168 (3)	0.0011 (3)
O1SA	0.0374 (12)	0.0271 (19)	0.0538 (19)	0.0023 (15)	0.0121 (14)	0.0044 (13)
C1SA	0.067 (3)	0.0428 (19)	0.078 (4)	-0.012 (2)	-0.011 (3)	-0.003 (2)
C2SA	0.063 (3)	0.073 (3)	0.080 (4)	0.018 (2)	0.041 (2)	0.033 (3)
S1SB	0.0363 (4)	0.0300 (3)	0.0499 (4)	0.0043 (3)	0.0168 (3)	0.0011 (3)
O1SB	0.0374 (12)	0.0271 (19)	0.0538 (19)	0.0023 (15)	0.0121 (14)	0.0044 (13)
C1SB	0.067 (3)	0.0428 (19)	0.078 (4)	-0.012 (2)	-0.011 (3)	-0.003 (2)
C2SB	0.063 (3)	0.073 (3)	0.080 (4)	0.018 (2)	0.041 (2)	0.033 (3)

Geometric parameters (Å, °)

S1—C15	1.782 (2)	N4—C2	1.329 (3)
S1—C20	1.786 (2)	C2—C3	1.440 (3)
F1—C14A	1.341 (3)	C3—C4	1.367 (3)
F2C14A	1.331 (3)	C3—C7	1.489 (3)
F3—C14A	1.343 (3)	C4—C5	1.501 (3)
O1—C13	1.256 (3)	С5—Н5А	0.9900
O2—C13	1.252 (3)	С5—Н5В	0.9900
C13—C14	1.514 (3)	C5—C6	1.531 (3)
C14—C15	1.410 (3)	С6—Н6А	0.9800
C14—C19	1.387 (3)	С6—Н6В	0.9800
C14A—C23	1.492 (3)	С6—Н6С	0.9800
C15—C16	1.405 (3)	С7—С8	1.394 (3)
С16—Н16	0.9500	C7—C12	1.389 (3)
C16—C17	1.378 (3)	C8—H8	0.9500
С17—Н17	0.9500	C8—C9	1.386 (3)
C17—C18	1.386 (4)	С9—Н9	0.9500
C18—H18	0.9500	C9—C10	1.378 (3)
C18—C19	1.385 (4)	C10—C11	1.386 (3)
С19—Н19	0.9500	C11—H11	0.9500
C20—C21	1.394 (3)	C11—C12	1.389 (3)
C20—C25	1.388 (3)	C12—H12	0.9500
C21—H21	0.9500	S1SA—O1SA	1.513 (4)
C21—C22	1.378 (3)	S1SA—C1SA	1.765 (14)
C22—H22	0.9500	S1SA—C2SA	1.791 (5)
C22—C23	1.388 (3)	C1SA—H1SA	0.9800
C23—C24	1.387 (3)	C1SA—H1SB	0.9800
C24—H24	0.9500	C1SA—H1SC	0.9800
C24—C25	1.385 (3)	C2SA—H2SA	0.9800
C25—H25	0.9500	C2SA—H2SB	0.9800
Cl1—C10	1.741 (2)	C2SA—H2SC	0.9800
N1—H1	0.8800	S1SB—O1SB	1.482 (13)
N1—C1	1.356 (2)	S1SB—C1SB	1.78 (2)
N1—C4	1.362 (2)	S1SB—C2SB	1.780 (15)
N2—C1	1.332 (3)	C1SB—H1SD	0.9800
N2—C2	1.347 (2)	C1SB—H1SE	0.9800
N3—H3A	0.8800	C1SB—H1SF	0.9800
N3—H3B	0.8800	C2SB—H2SD	0.9800

N3—C1	1.327 (3)	C2SB—H2SE	0.9800	
N4—H4A	0.8800	C2SB—H2SF	0.9800	
N4—H4B	0.8800			
C15—S1—C20	102.95 (9)	C4—C3—C7	124.00 (17)	
O1—C13—C14	116.17 (18)	N1—C4—C3	119.40 (17)	
O2—C13—O1	125.6 (2)	N1—C4—C5	115.78 (17)	
O2—C13—C14	118.25 (19)	C3—C4—C5	124.80 (17)	
C15—C14—C13	123.22 (18)	C4—C5—H5A	109.1	
C19—C14—C13	117.7 (2)	C4—C5—H5B	109.1	
C19—C14—C15	118.9 (2)	C4—C5—C6	112.35 (16)	
F1—C14A—F3	105.48 (19)	H5A—C5—H5B	107.9	
F1—C14A—C23	111.9 (2)	C6—C5—H5A	109.1	
F2	107.5 (2)	C6—C5—H5B	109.1	
F2—C14A—F3	105.4 (2)	С5—С6—Н6А	109.5	
F2—C14A—C23	112.77 (19)	C5—C6—H6B	109.5	
F3—C14A—C23	113.3 (2)	С5—С6—Н6С	109.5	
C14—C15—S1	119.98 (15)	H6A—C6—H6B	109.5	
C16—C15—S1	121.39 (17)	H6A—C6—H6C	109.5	
C16—C15—C14	118.62 (19)	H6B—C6—H6C	109.5	
C15—C16—H16	119.6	C8—C7—C3	120.35 (18)	
C17—C16—C15	120.9 (2)	C12—C7—C3	120.80 (17)	
С17—С16—Н16	119.6	C12—C7—C8	118.76 (18)	
С16—С17—Н17	119.6	С7—С8—Н8	119.7	
C16—C17—C18	120.8 (2)	C9—C8—C7	120.6 (2)	
С18—С17—Н17	119.6	С9—С8—Н8	119.7	
С17—С18—Н18	120.7	С8—С9—Н9	120.3	
C19 - C18 - C17	118.5 (2)	C10-C9-C8	119.33 (19)	
C19—C18—H18	120.7	C10-C9-H9	120.3	
С14—С19—Н19	118.9	C9—C10—C11	119.36 (17)	
C18—C19—C14	122.2 (2)	C9—C10—C11	121.61 (19)	
C18—C19—H19	118.9	C_{11} $-C_{10}$ $-C_{11}$	119.03 (18)	
$C_{21} - C_{20} - S_{1}$	117 75 (16)	C10-C11-H11	120.8	
$C_{25} - C_{20} - S_{1}$	122.71 (16)	C10-C11-C12	1183(2)	
$C_{25} = C_{20} = C_{21}$	119 23 (19)	C_{12} $-C_{11}$ $-H_{11}$	120.8	
C_{20} C_{21} H_{21}	119.7	C7-C12-C11	121.40 (19)	
$C_{22} = C_{21} = C_{20}$	120.6 (2)	C7-C12-H12	1193	
$C^{22} = C^{21} = H^{21}$	119 7	$C_{11} - C_{12} - H_{12}$	119.3	
$C_{21} = C_{22} = H_{22}$	120.2	O1SA = S1SA = C1SA	106.8 (5)	
$C_{21} = C_{22} = C_{23}$	1197(2)	O1SA = S1SA = C2SA	107.3(3)	
C_{23} C_{22} H_{22}	120.2	C1SA = S1SA = C2SA	99 2 (7)	
$C_{22} = C_{23} = C_{14A}$	1184(2)	S1SA - C1SA - H1SA	109 5	
$C_{22} = C_{23} = C_{14}$	1213(2)	SISA—CISA—HISB	109.5	
C_{24} C_{23} C_{22}	120 3 (2)	SISA—CISA—HISC	109.5	
C23—C24—H24	120.2	HISA—CISA—HISB	109.5	
$C_{25} - C_{24} - C_{23}$	119.7 (2)	HISA—CISA—HISC	109.5	
C25-C24-H24	120.2	H1SB—C1SA—H1SC	109.5	
C20—C25—H25	119.8	S1SA—C2SA—H2SA	109.5	

C_{24} C_{25} C_{20}	120 43 (19)	S1SA_C2SA_H2SB	109.5
$C_{24} = C_{25} = C_{26}$	110.8	S1SA C2SA H2SC	109.5
$C_{1} = C_{2} = C_{2} = C_{1} = C_{1}$	119.0	$\frac{1125}{125}$	109.5
$C_1 = N_1 = C_4$	119.5	H2SA = C2SA = H2SC	109.5
$C_1 = N_1 = C_1$	110.2	$\frac{1125A}{125A} = \frac{125A}{125C}$	109.5
C_{4} N_{2} C_{2}	117.3	$\begin{array}{c} 1125D - C25A - 1125C \\ 0.15D - C15D \\ 0.15D \\ 0$	109.5
$U_1 = N_2 = U_2$	117.81 (10)	O1SD = S1SD = C1SD	105.0(19) 106.2(10)
$\Pi JA - NJ - \Pi JD$	120.0	C1SD = S1SD = C2SD	100.3(10)
C1 = N3 = H2D	120.0	C15D - S15D - C25D	97.8 (18)
CI - N3 - H3B	120.0	SISB—CISB—HISD	109.5
H4A—N4—H4B	120.0	SISB—CISB—HISE	109.5
C2—N4—H4A	120.0	SISB—CISB—HISF	109.5
C2—N4—H4B	120.0	HISD—CISB—HISE	109.5
N2-C1-N1	122.34 (17)	H1SD—C1SB—H1SF	109.5
N3—C1—N1	117.82 (17)	H1SE—C1SB—H1SF	109.5
N3—C1—N2	119.84 (17)	S1SB—C2SB—H2SD	109.5
N2—C2—C3	122.31 (17)	S1SB—C2SB—H2SE	109.5
N4—C2—N2	116.76 (17)	S1SB—C2SB—H2SF	109.5
N4—C2—C3	120.92 (17)	H2SD—C2SB—H2SE	109.5
C2—C3—C7	119.20 (17)	H2SD—C2SB—H2SF	109.5
C4—C3—C2	116.79 (17)	H2SE—C2SB—H2SF	109.5
\$1-C15-C16-C17	-178.56 (19)	C25—C20—C21—C22	-0.4 (3)
S1—C20—C21—C22	173.43 (17)	Cl1—C10—C11—C12	-179.21 (16)
S1—C20—C25—C24	-173.98 (16)	N1-C4-C5-C6	76.0 (2)
F1—C14A—C23—C22	53.3 (3)	N2-C2-C3-C4	-1.0 (3)
F1-C14A-C23-C24	-126.9 (2)	N2—C2—C3—C7	178.32 (17)
F2-C14A-C23-C22	-68.0 (3)	N4—C2—C3—C4	179.53 (18)
F2-C14A-C23-C24	111.8 (3)	N4—C2—C3—C7	-1.2 (3)
F3—C14A—C23—C22	172.42 (19)	C1—N1—C4—C3	0.9 (3)
F3—C14A—C23—C24	-7.8 (3)	C1—N1—C4—C5	-177.64 (17)
O1—C13—C14—C15	5.1 (3)	C1—N2—C2—N4	-178.57 (18)
O1—C13—C14—C19	-170.1 (2)	C1—N2—C2—C3	1.9 (3)
O2-C13-C14-C15	-176.7(2)	C2—N2—C1—N1	-1.5(3)
O2-C13-C14-C19	8.1 (3)	C2—N2—C1—N3	178.96 (18)
C13-C14-C15-S1	54(3)	$C_{2}-C_{3}-C_{4}-N_{1}$	-0.4(3)
C_{13} C_{14} C_{15} C_{16}	-172.93(19)	$C_2 - C_3 - C_4 - C_5$	177.92(17)
C_{13} C_{14} C_{19} C_{18}	172.7.(2)	$C_{2} - C_{3} - C_{7} - C_{8}$	75 3 (2)
C_{14} C_{15} C_{16} C_{17}	-0.3(3)	$C_2 = C_3 = C_7 = C_{12}^2$	-1012(2)
$C_{14} = C_{13} = C_{14} = C_{15}$	179.2(2)	$C_2 = C_3 = C_4 = C_5 = C_6$	-1024(2)
$C_{15} = S_{1} = C_{20} = C_{21}$	113.10(17)	C_{3} C_{7} C_{8} C_{9}	-17674(19)
$C_{15} = S_{1} = C_{20} = C_{25}$	-73.32(10)	$C_3 = C_7 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	176.74(19)
$C_{13} = S_{1} = C_{20} = C_{23}$	-2.6(4)	$C_4 = N_1 = C_1 = N_2$	1/0.20(19)
$C_{13} = C_{14} = C_{13} = C_{18}$	2.0(4)	C4 = N1 = C1 = N2	0.1(3)
$C_{13} = C_{10} = C_{17} = C_{18}$	1.3(4)	C4 = C1 = C1	1/9.08(17)
C10 - C17 - C10 - C19	0.7(3)	$C_{4} = C_{2} = C_{7} = C_{12}$	103.4(2)
C17 - C16 - C19 - C14	1.1 (3)	$C_{4} = C_{2} = C_{4} = C_{1}$	170 (9 (17)
$C_{19} = C_{14} = C_{15} = C_{16}$	-1/9.52(18)	$C_{1} = C_{2} = C_{4} = C_{5}$	-1/9.08(1/)
C19 - C14 - C15 - C16	2.2 (3)	$C_{1} = C_{2} = C_{4} = C_{2}$	-1.5(3)
C20—S1—C15—C14	1 / /.34 (16)	C/C8C10	0.8 (3)

C20-S1-C15-C16	-4.38 (19)	C8—C7—C12—C11	-0.4 (3)
C20—C21—C22—C23	0.5 (3)	C8—C9—C10—Cl1	178.69 (16)
C21—C20—C25—C24	-0.5 (3)	C8—C9—C10—C11	-0.9 (3)
C21—C22—C23—C14A	179.9 (2)	C9—C10—C11—C12	0.4 (3)
C21—C22—C23—C24	0.2 (3)	C10-C11-C12-C7	0.2 (3)
C22—C23—C24—C25	-1.0 (3)	C12—C7—C8—C9	-0.2 (3)
C23—C24—C25—C20	1.2 (3)		

Hydrogen-bond geometry (Å, °)

D H	ם ת	Ц /	D 1	D U <i>1</i>
	<i>D</i> —11	II···A	D···A	$D = \Pi^{**}A$
N1—H1···O1	0.88	1.79	2.674 (2)	178
N3—H3A···O1SA ⁱ	0.88	2.20	3.046 (6)	162
N3—H3 A ···O1 SB^{i}	0.88	2.13	2.97 (2)	161
N3—H3 <i>B</i> ···O2	0.88	1.93	2.809 (2)	176
N4—H4A····N2 ⁱⁱ	0.88	2.15	3.030 (2)	175
N4—H4 <i>B</i> ···O1 <i>SA</i> ⁱⁱⁱ	0.88	2.25	2.962 (4)	138
N4—H4 <i>B</i> ···O1 <i>SB</i> ⁱⁱⁱ	0.88	2.06	2.740 (16)	133
C12—H12···F3 ⁱⁱⁱ	0.95	2.57	3.444 (2)	153
C2 <i>SA</i> —H2 <i>SB</i> ···O2 ^{iv}	0.98	2.44	3.376 (6)	160
C2SB— $H2SE$ ···F1 ^v	0.98	2.55	3.16 (3)	120
C2SB—H2SF····O2 ^{iv}	0.98	2.47	3.21 (2)	132

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+3/2, z+1/2.