metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

fac-[1,2-Bis(pyridin-4-yl)ethane- κN]tricarbonyl(1.10-phenanthroline- $\kappa^2 N, N'$)rhenium(I) hexafluoridophosphate acetonitrile monosolvate

Silvana Guilardi,^a* Antonio Otavio Toledo Patrocinio,^a Sinval Fernandes de Sousa^a and Javier Ellena^b

^aInstituto de Ouímica – UFU, Uberlândia–MG, Brazil, and ^bInstituto de Física de São Carlos - USP, 13500-970-São Carlos, SP, Brazil Correspondence e-mail: silvana@ufu.br

Received 9 June 2014; accepted 16 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.041; wR factor = 0.109; data-to-parameter ratio = 14.9.

The asymmetric unit of the title compound, $[\operatorname{Re}(C_{12}H_8N_2)(C_{12}H_{12}N_2)(CO)_3]\operatorname{PF}_6$ ·CH₃CN, contains one cation, one hexafluoridophosphate anion and one acetonitrile solvent molecule. The Re^I ion is coordinated by two N atoms from the 1,10-phenanthroline ligand and one N atom from the 1,2-bis(pyridin-4-yl)ethane ligand [mean Re-N = 2.191 (15) Å] and by three carbonyl ligands [mean Re-C = 1.926 (3) Å] in a distorted octahedral geometry. The electrostatic forces and weak $C-H \cdots F(O)$ hydrogen bonds pack cations and anions into the crystal with voids of 82 $Å^3$, which are filled by solvent molecules. The crystal packing exhibits short intermolecular $O \cdots O$ distance of 2.795 (5) Å between two cations related by inversion.

Related literature

For photophysical and photochemical properties of rhenium(I)-polypyridyl complexes, see: Li et al. (2012); Mizoguchi et al. (2009); Patrocinio et al. (2010, 2013); Thorp-Greenwood et al. (2012). For similar compounds and their crystal structures, see: Ranjan et al. (2003); Wenger et al. (2004); Ide et al. (1995). For details of the synthetic procedure, see: Patrocinio et al. (2010); Patrocinio & Murakami Iha (2008); Argazzi et al. (2001).

Experimental

Crystal data

$\beta = 100.879 \ (1)^{\circ}$
V = 2910.29 (8) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 4.31 \text{ mm}^{-1}$
T = 100 K
$0.29 \times 0.20 \times 0.13 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: Gaussian (Coppen et al., 1965) $T_{\min} = 0.386, T_{\max} = 0.613$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.109$ S = 1.096066 reflections

35034 measured reflections 6066 independent reflections 5415 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.106$

406 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.39 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -2.50 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
C13-H13···F4	0.93	2.47	3.377 (6)	166
C16-H16···F6	0.93	2.38	3.180 (6)	145
$C11-H11\cdots F5^{i}$	0.93	2.55	3.327 (6)	142
$C12-H12\cdots F1^{i}$	0.93	2.55	3.355 (6)	145
$C5-H5\cdots F1^{ii}$	0.93	2.52	3.382 (6)	154
C19−H19···F4 ⁱⁱⁱ	0.93	2.49	3.150 (6)	128
C20−H20···F5 ⁱⁱⁱ	0.93	2.45	3.317 (6)	154
$C21 - H21A \cdots F5^{iv}$	0.97	2.53	3.486 (6)	168
$C22-H22B\cdotsO1^{v}$	0.97	2.53	3.211 (8)	127

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 2, -y + 1, -z + 1; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

This work was supported financially by CAPES, CNPq and FAPEMIG. This work is also a collaboration research project of members of the Rede Mineira de Química (RQ - MG) also supported by FAPEMIG.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5465).

References

- Argazzi, R., Bertolasi, E., Chiorboli, C., Bignozzi, C. A., Itokazu, M. K. & Murakami Iha, N. Y. (2001). *Inorg. Chem.* **40**, 6885–6891.
- Coppens P., Leiserowitz L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.

- Ide, S., Karacan, N. & Tufan, Y. (1995). Acta Cryst. C51, 2304–2305.
- Li, X., Chi, H.-J., Lu, G.-H., Xiao, G.-Y., Dong, Y., Zhang, D.-Y., Zhang, Z.-Q. & Hu, Z.-Z. (2012). Org. Electron. 13, 3138–3144.
- Mizoguchi, S. K., Patrocinio, A. O. T. & Murakami Iha, N. Y. (2009). Synth. Met. 159, 2315-2317.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Patrocinio, A. O. T., Brennaman, M. K., Meyer, T. J. & Murakami Iha, N. Y. (2010). J. Phys. Chem. A, **114**, 12129–12137.
- Patrocinio, A. O. T., Frin, K. P. M. & Murakami Iha, N. Y. (2013). *Inorg. Chem.* 52, 5889–5896.
- Patrocinio, A. O. T. & Murakami Iha, N. Y. (2008). Inorg. Chem. 47, 10851– 10857.
- Ranjan, S., Lin, S.-Y., Hwang, K.-C., Chi, Y., Ching, W.-L. & Liu, C.-S. (2003). *Inorg. Chem.* 42, 1248–1255.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thorp-Greenwood, F. L., Coogan, M. P., Mishra, L., Kumari, N., Rai, G. & Saripella, S. (2012). New J. Chem. 36, 64–72.
- Wenger, O. S., Henling, L. M., Day, M. W., Winkler, J. R. & Gray, H. B. (2004). *Inorg. Chem.* 43, 2043–2048.

Acta Cryst. (2014). E70, m278–m279 [https://doi.org/10.1107/S1600536814014135]

fac-[1,2-Bis(pyridin-4-yl)ethane- κN]tricarbonyl(1,10-phenanthroline- $\kappa^2 N, N'$)rhenium(I) hexafluoridophosphate acetonitrile monosolvate

Silvana Guilardi, Antonio Otavio Toledo Patrocinio, Sinval Fernandes de Sousa and Javier Ellena

S1. Comment

Rhenium(I) polypyridyl complexes exhibit very interesting photophysical and photochemical properties which can be exploited in the development of different photochemical molecular devices. Interesting examples can be found in the literature such as light emitting devices (Li *et al.*, 2012; Mizoguchi *et al.*, 2009), photoswitches (Patrocinio *et al.*, 2010, 2013), DNA sensors (Thorp-Greenwood *et al.*, 2012), among others. In this article, we describe the crystal structure of a Re^I polypyridyl complex having 1,2-bis(pyridin-4-yl)ethane (bpa) as ancillary ligand. This complex can be conveniently used as luminescent material and also as a construction unit for binuclear complex in intramolecular energy transfer studies.

The asymmetric unit in the title compound consists of the complex cation $[\text{Re}(\text{CO})_3(\text{phen})(\text{bpa})]^+$ (phen = 1,10phenanthroline), PF₆⁻ anion and one acetonitrile solvent molecule (Fig. 1). The Re¹ center has a distorted octahedral environment. It is coordinated by three carbonyl groups arranged in a facial fashion [mean Re–C distance of 1.926 (6) Å], two nitrogen atoms from phen ligand [mean Re–N distance of 2.183 (4) Å] and one nitrogen atom from bpa ligand [Re–N distance of 2.208 (4) Å]. The Re–C and Re–N distances were comparable to those of related systems (Ranjan *et al.*, 2003; Wenger *et al.*, 2004). The bidentate bite angle N–Re–N is 76.0 (2)°. The Re¹ lies -0.055 (4) Å from the least-squares plane of 1,10-phenanthroline. In the bpa ligand, the bond distance C21–C22 is 1.526 (8) Å. The C21 ethane carbon atom is nearly coplanar with N3-pyridyl moiety. The C21–C22–C23–C24 and C21–C22–C23–C27 torsion angles are 102.5 (7)° and -75.2 (8)°, respectively. These angles in the free bpa ligand are 78.0 (3)° and -99.5 (3)°, respectively (Ide *et al.*, 1995). The bond lengths in the structure of the free bpa ligand are shorter than those observed in the ligand coordinated to the metallic center. The PF₆⁻ anion adopts an octahedral geometry with P–F distances varied from 1.587 (4) to 1.612 (3) Å. The components of the structure are connected into a three-dimensional architecture by electrostatic forces and C— H…F and C—H…O hydrogen bonds (Table 1).

S2. Experimental

The *fac*-[Re(CO)₃(phen)(bpa)]PF₆ compound (phen = 1,10-phenanthroline, bpa = 1,2-bis(4-pyridyl)ethane) was prepared following the procedures described earlier (Patrocinio *et al.*, 2010; Patrocinio & Murakami Iha, 2008; Argazzi *et al.*, 2001). Briefly, [ClRe(CO)₅] and an excess of the polipyridyl ligand were refluxed in toluene for 5–7 h to yield a yellow solid, *fac*-[ClRe(CO)₃(NN)]. The product was collected by filtration and recrystallized from CH₂Cl₂ by slow addition of n-pentane. Then, the *fac*-[ClRe(CO)₃(NN)] complexes were suspended in argon-saturated CH₂Cl₂ and trifluoromethane-sulfonic acid was added to reaction mixture to yield the respective intermediates *fac*-[Re(CO)₃(NN)(CF₃SO₃)], which were precipitated by slow addition of ethyl ether. Finally, an excess of the bpa ligand were added to *fac*-[Re(CO)₃(NN) (CF₃SO₃)] in methanol and the mixture were kept in reflux under argon atmosphere during 8–9 h. After cooling, the final products were obtained by addition of solid NH₄PF₆. The solids were separated by filtration, washed with water to

remove the NH_4PF_6 excess and ethyl ether to dry *fac*-[Re(CO)₃(phen)(bpa)]PF₆ were crystallized by slow diffusion of diethyl ether into an acetonitrile solution at room temperature.

S3. Refinement

H atoms were included in calculated positions (C–H = 0.93 Å for aromatic H, C–H = 0.97 Å for methylene H and C–H = 0.96 Å for methyl H), and refined using a riding model with $U_{iso}(H) = 1.2$ or 1.5 U_{eq} of the carrier atom.

A view of the asymmetric unit of the title compound, showing the atom labeling and 30% probability displacement ellipsoids.

fac-[1,2-Bis(pyridin-4-yl)ethane- κN]tricarbonyl(1,10-phenanthroline- $\kappa^2 N$,N')rhenium(I) hexafluoridophosphate acetonitrile monosolvate

F(000) = 1600

 $\theta = 2.9 - 26.7^{\circ}$

 $\mu = 4.31 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.106$

 $h = -13 \rightarrow 13$

 $k = -18 \rightarrow 20$

 $l = -21 \rightarrow 21$

Prism. colourless

 $0.29 \times 0.20 \times 0.13$ mm

 $\theta_{\text{max}} = 26.6^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

35034 measured reflections

6066 independent reflections

5415 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.873 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 20552 reflections

Crystal data

 $[\operatorname{Re}(\operatorname{C}_{12}\operatorname{H}_8\operatorname{N}_2)(\operatorname{C}_{12}\operatorname{H}_{12}\operatorname{N}_2)(\operatorname{CO})_3]\operatorname{PF}_6\cdot\operatorname{C}_2\operatorname{H}_3\operatorname{N}_{M_r} = 820.69$ Monoclinic, $P2_1/n$ a = 10.5992 (2) Å b = 16.1201 (3) Å c = 17.3449 (2) Å $\beta = 100.879$ (1)° V = 2910.29 (8) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: Enraf–Nonius FR590 Graphite monochromator Detector resolution: 9 pixels mm⁻¹ CCD rotation images, thick slices scans Absorption correction: gaussian (Coppens *et al.*, 1965) $T_{min} = 0.386, T_{max} = 0.613$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.09	H-atom parameters constrained
6066 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0541P)^2 + 8.7438P]$
406 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.39 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.50 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -2.50 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. a grid of 8 x 8 x 8 = 512 sampling points was used in the absorption correction **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Re	0.804584 (18)	0.150099 (11)	0.635436 (10)	0.01716 (9)
01	0.5921 (4)	0.0300 (3)	0.5622 (2)	0.0328 (9)

02	0.9983 (4)	0.0058 (2)	0.6471 (2)	0.0302 (9)
03	0.8369 (4)	0.1791 (3)	0.46486 (19)	0.0268 (8)
N1	0.7658 (4)	0.1315 (3)	0.7536(2)	0.0199 (9)
N2	0.6642 (4)	0.2458 (3)	0.6470 (2)	0.0193 (8)
N3	0.9448 (4)	0.2463 (3)	0.6853 (2)	0.0196 (8)
N4	1.3479 (5)	0.6998 (3)	0.9550 (3)	0.0292 (10)
N5	0.7950 (6)	0.3895 (4)	0.8097 (4)	0.0460 (14)
C1	0.6701 (5)	0.0737 (3)	0.5915 (3)	0.0225 (11)
C2	0.9281 (5)	0.0614 (3)	0.6420 (3)	0.0234 (11)
C3	0.8273 (5)	0.1710 (3)	0.5297 (3)	0.0244 (11)
C4	0.8152 (5)	0.0726 (3)	0.8044 (3)	0.0237 (11)
H4	0.8778	0.0375	0.7916	0.028*
C5	0.7759 (6)	0.0619 (4)	0.8764 (3)	0.0304 (12)
H5	0.8109	0.0193	0.9099	0.036*
C6	0.6858 (6)	0 1141 (4)	0.8979 (3)	0.0278(12)
H6	0.6604	0.108	0.946	0.033*
C7	0.6330 (5)	0.1772 (3)	0.8453(3)	0.0221 (10)
C8	0.5392(5)	0.2344(3)	0.8619(3)	0.0221(10)
H8	0.5104	0.2306	0.9092	0.0228 (10)
C9	0.4913 (5)	0.2900	0.8094(3)	0.027
С) Н0	0.4314	0.3322	0.8219	0.0228 (10)
C10	0.4314 0.5316 (5)	0.3013(3)	0.0219 0.7355(3)	0.027
C10	0.3310(5) 0.4825(6)	0.3620(3)	0.7555(3) 0.6783(3)	0.0255(12)
UП H11	0.4023 (0)	0.4012	0.6881	0.0235 (12)
C12	0.5247 (6)	0.4012 0.3614 (3)	0.6080(3)	0.031
U12 H12	0.3247 (0)	0.3014 (3)	0.0080 (3)	0.0200 (12)
C13	0.4927	0.4001	0.5095	0.031
U13	0.6138 (5)	0.3028 (3)	0.5341 (5)	0.0213 (10)
C14	0.0433	0.3039 0.1824 (2)	0.3403	0.020°
C14 C15	0.0737(3) 0.6230(5)	0.1634(3) 0.2452(3)	0.7730(3) 0.7174(3)	0.0182(9)
C15	0.0230(3)	0.2433(3)	0.7174(3)	0.0109(10)
	0.9405 (5)	0.3204 (3)	0.0488 (3)	0.0223 (10)
H10 C17	0.8911	0.3283	0.6009	0.027^{*}
U17	1.0259 (5)	0.3845 (3)	0.6794 (3)	0.0241 (11)
HI/	1.0224	0.4346	0.6526	0.029*
C18	1.1111 (5)	0.3/4/(3)	0.7497(3)	0.0222 (10)
C19	1.1136 (5)	0.2970 (3)	0.7860 (3)	0.0229 (11)
HI9	1.1716	0.2868	0.8324	0.02/*
C20	1.0294 (5)	0.2353 (3)	0.7528 (3)	0.0212 (10)
H20	1.0316	0.1844	0.7781	0.025*
C21	1.1946 (5)	0.4445 (3)	0.7878 (3)	0.0237 (10)
H21A	1.2319	0.4734	0.7484	0.028*
H21B	1.2641	0.4223	0.8268	0.028*
C22	1.1154 (6)	0.5050 (4)	0.8268 (4)	0.0398 (15)
H22A	1.0503	0.5301	0.7868	0.048*
H22B	1.072	0.4747	0.8624	0.048*
C23	1.1966 (5)	0.5727 (4)	0.8718 (3)	0.0286 (13)
C24	1.1984 (6)	0.6522 (3)	0.8408 (4)	0.0302 (13)
H24	1.1498	0.6645	0.7917	0.036*

C25	1.2736 (6)	0.7129 (3)	0.8839 (3)	0.0276 (12)
H25	1.2727	0.7658	0.8624	0.033*
C26	1.3481 (6)	0.6218 (4)	0.9832 (3)	0.0323 (13)
H26	1.3998	0.6103	1.0315	0.039*
C27	1.2757 (6)	0.5582 (4)	0.9441 (3)	0.0339 (13)
H27	1.2798	0.5055	0.9662	0.041*
C28	0.8459 (7)	0.3541 (4)	0.8642 (4)	0.0392 (16)
C29	0.9137 (7)	0.3104 (5)	0.9339 (4)	0.0464 (16)
H29A	0.9862	0.2814	0.9212	0.07*
H29B	0.8565	0.2714	0.9513	0.07*
H29C	0.9427	0.3498	0.975	0.07*
Р	0.72529 (14)	0.43615 (8)	0.41578 (7)	0.0227 (3)
F1	0.6050 (3)	0.4560 (2)	0.45748 (19)	0.0332 (7)
F2	0.7573 (3)	0.53361 (19)	0.41536 (18)	0.0299 (7)
F3	0.8432 (4)	0.4168 (2)	0.3742 (2)	0.0422 (9)
F4	0.6912 (4)	0.33928 (19)	0.4165 (2)	0.0399 (9)
F5	0.6330 (3)	0.44566 (19)	0.33112 (17)	0.0294 (7)
F6	0.8144 (4)	0.4265 (2)	0.50075 (19)	0.0373 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re	0.01953 (14)	0.01844 (14)	0.01390 (12)	0.00022 (7)	0.00417 (8)	0.00007 (6)
O1	0.033 (2)	0.034 (2)	0.031 (2)	-0.0109 (18)	0.0033 (17)	-0.0095 (17)
02	0.031 (2)	0.027 (2)	0.033 (2)	0.0107 (17)	0.0089 (17)	0.0046 (16)
03	0.033 (2)	0.037 (2)	0.0114 (17)	-0.0021 (18)	0.0074 (14)	0.0034 (15)
N1	0.028 (2)	0.023 (2)	0.0108 (18)	0.0000 (18)	0.0081 (16)	0.0028 (16)
N2	0.024 (2)	0.017 (2)	0.0179 (19)	0.0026 (16)	0.0055 (16)	0.0011 (16)
N3	0.019 (2)	0.021 (2)	0.0177 (19)	-0.0012 (17)	0.0015 (16)	0.0001 (16)
N4	0.036 (3)	0.024 (2)	0.026 (2)	-0.003(2)	0.0039 (19)	-0.0001 (19)
N5	0.043 (3)	0.043 (3)	0.049 (3)	-0.006(3)	0.001 (3)	-0.008 (3)
C1	0.021 (3)	0.030 (3)	0.018 (2)	0.002 (2)	0.0066 (19)	-0.001 (2)
C2	0.027 (3)	0.027 (3)	0.017 (2)	-0.005 (2)	0.007 (2)	0.002 (2)
C3	0.018 (3)	0.019 (2)	0.034 (3)	-0.001(2)	0.002 (2)	-0.001 (2)
C4	0.025 (3)	0.025 (3)	0.023 (2)	0.004 (2)	0.011 (2)	0.010(2)
C5	0.046 (4)	0.027 (3)	0.020 (2)	0.009 (2)	0.009 (2)	0.007 (2)
C6	0.030 (3)	0.036 (3)	0.018 (2)	0.003 (2)	0.008 (2)	0.002 (2)
C7	0.021 (3)	0.028 (3)	0.017 (2)	-0.004(2)	0.0031 (19)	-0.004 (2)
C8	0.026 (3)	0.026 (3)	0.018 (2)	-0.002(2)	0.0067 (19)	-0.003 (2)
С9	0.022 (3)	0.026 (3)	0.022 (2)	0.000 (2)	0.008 (2)	-0.005 (2)
C10	0.022 (3)	0.016 (2)	0.024 (2)	-0.0013 (19)	0.0051 (19)	-0.0038 (19)
C11	0.028 (3)	0.027 (3)	0.021 (3)	0.007 (2)	0.002 (2)	-0.002(2)
C12	0.024 (3)	0.025 (3)	0.028 (3)	0.002 (2)	0.003 (2)	0.007 (2)
C13	0.022 (3)	0.024 (3)	0.019 (2)	0.000 (2)	0.0039 (19)	0.005 (2)
C14	0.018 (2)	0.020 (2)	0.016 (2)	-0.0026 (19)	0.0016 (18)	-0.0006 (18)
C15	0.019 (2)	0.020 (2)	0.018 (2)	-0.0019 (19)	0.0054 (18)	-0.0004 (19)
C16	0.026 (3)	0.024 (3)	0.017 (2)	0.000 (2)	0.0020 (19)	0.003 (2)
C17	0.028 (3)	0.020 (3)	0.024 (3)	0.000 (2)	0.006 (2)	0.005 (2)

C18	0.021 (3)	0.021 (3)	0.026 (3)	0.001 (2)	0.009 (2)	-0.001 (2)
C19	0.023 (3)	0.027 (3)	0.017 (2)	-0.001 (2)	0.0006 (19)	0.002 (2)
C20	0.027 (3)	0.020 (2)	0.017 (2)	-0.001 (2)	0.0037 (19)	0.0004 (19)
C21	0.028 (3)	0.024 (3)	0.020 (2)	-0.003 (2)	0.006 (2)	-0.001 (2)
C22	0.025 (3)	0.034 (3)	0.061 (4)	-0.003 (3)	0.010 (3)	-0.019 (3)
C23	0.022 (3)	0.027 (3)	0.039 (3)	-0.004 (2)	0.012 (2)	-0.012 (2)
C24	0.031 (3)	0.032 (3)	0.026 (3)	0.007 (2)	0.000 (2)	-0.004 (2)
C25	0.031 (3)	0.023 (3)	0.029 (3)	0.000 (2)	0.005 (2)	0.000 (2)
C26	0.042 (4)	0.031 (3)	0.024 (3)	-0.001 (3)	0.007 (2)	0.002 (2)
C27	0.049 (4)	0.023 (3)	0.033 (3)	-0.002 (3)	0.018 (3)	0.006 (2)
C28	0.036 (4)	0.036 (4)	0.045 (4)	-0.009 (3)	0.007 (3)	-0.013 (3)
C29	0.045 (4)	0.048 (4)	0.045 (4)	-0.005 (3)	0.006 (3)	-0.005 (3)
Р	0.0310 (8)	0.0219 (7)	0.0153 (6)	0.0034 (5)	0.0046 (5)	0.0005 (5)
F1	0.0371 (19)	0.0351 (18)	0.0312 (16)	0.0021 (15)	0.0162 (14)	-0.0018 (14)
F2	0.0366 (19)	0.0246 (17)	0.0267 (15)	-0.0045 (13)	0.0013 (13)	0.0017 (13)
F3	0.048 (2)	0.048 (2)	0.0354 (18)	0.0192 (18)	0.0200 (16)	0.0068 (16)
F4	0.075 (3)	0.0202 (17)	0.0249 (17)	0.0009 (16)	0.0113 (18)	-0.0003 (13)
F5	0.0396 (19)	0.0265 (16)	0.0184 (14)	-0.0059 (14)	-0.0035 (13)	0.0014 (12)
F6	0.045 (2)	0.040 (2)	0.0226 (16)	0.0098 (16)	-0.0042 (14)	0.0071 (14)

Geometric parameters (Å, °)

Re—C1	1.929 (5)	C13—H13	0.93
Re—C2	1.927 (6)	C14—C15	1.432 (7)
Re—C3	1.923 (6)	C16—C17	1.375 (8)
Re—N1	2.186 (4)	C16—H16	0.93
Re—N2	2.179 (4)	C17—C18	1.384 (7)
Re—N3	2.208 (4)	C17—H17	0.93
01—C1	1.131 (7)	C18—C19	1.399 (7)
O2—C2	1.158 (7)	C18—C21	1.504 (7)
O3—C3	1.156 (7)	C19—C20	1.387 (7)
N1-C4	1.334 (6)	C19—H19	0.93
N1-C14	1.363 (7)	C20—H20	0.93
N2-C13	1.330 (6)	C21—C22	1.526 (8)
N2-C15	1.372 (6)	C21—H21A	0.97
N3—C20	1.346 (6)	C21—H21B	0.97
N3—C16	1.353 (7)	C22—C23	1.513 (8)
N4—C25	1.348 (7)	C22—H22A	0.97
N4—C26	1.349 (8)	C22—H22B	0.97
N5—C28	1.148 (9)	C23—C27	1.390 (8)
C4—C5	1.400 (7)	C23—C24	1.391 (8)
C4—H4	0.93	C24—C25	1.388 (8)
C5—C6	1.376 (8)	C24—H24	0.93
С5—Н5	0.93	C25—H25	0.93
C6—C7	1.410 (8)	C26—C27	1.379 (9)
С6—Н6	0.93	C26—H26	0.93
C7—C14	1.405 (7)	C27—H27	0.93
С7—С8	1.425 (7)	C28—C29	1.466 (10)

C8—C9	1.363 (7)	С29—Н29А	0.96
C8—H8	0.93	C29—H29B	0.96
C9—C10	1.431 (7)	С29—Н29С	0.96
С9—Н9	0.93	P—F3	1.587 (4)
C10—C15	1.403 (7)	P—F6	1.601 (3)
C10—C11	1.420 (7)	P—F4	1.603 (3)
C11—C12	1.375 (8)	P—F2	1.608 (3)
C11—H11	0.93	P—F5	1.600(3) 1.611(3)
C12-C13	1 404 (8)	P—F1	1.612(3)
C12—H12	0.93		1.012 (3)
012—1112	0.75		
C3—Re—C2	88.9 (2)	N3—C16—C17	122.9 (5)
C3—Re—C1	87.2 (2)	N3—C16—H16	118.6
C2—Re—C1	89.6 (2)	C17—C16—H16	118.6
C3—Re—N2	100.01 (19)	C16—C17—C18	120.4 (5)
C2—Re—N2	171.09 (18)	C16—C17—H17	119.8
C1—Re—N2	91.25 (19)	C18—C17—H17	119.8
C3—Re—N1	175.83 (19)	C17—C18—C19	116.9 (5)
C2—Re—N1	95.09 (19)	C17—C18—C21	122.2 (5)
C1—Re—N1	91.52 (19)	C19—C18—C21	120.9 (5)
N2—Re—N1	76.02 (16)	C_{20} C_{19} C_{18}	119.9 (5)
C3—Re—N3	93.08 (19)	C20—C19—H19	120
C2—Re—N3	95.64 (19)	C18—C19—H19	120
C1—Re—N3	174 74 (19)	N3-C20-C19	122.6(5)
N2—Re—N3	83 52 (16)	N3-C20-H20	1187
N1—Re—N3	87 78 (16)	C19 - C20 - H20	118.7
C4—N1—C14	118 4 (4)	C18 - C21 - C22	110.7 110.2(5)
C4—N1—Re	1267(4)	C18 - C21 - H21A	109.6
C14 N1 Re	1120.7(1) 114.8(3)	$C_{22} = C_{21} = H_{21A}$	109.6
C13 = N2 = C15	118.2 (4)	C18 - C21 - H21B	109.6
C13 = N2 = Be	1274(3)	C_{22} C_{21} H_{21B}	109.6
C15 - N2 - Re	127.4(3) 114 5 (3)	$H_{21} = C_{21} = H_{21} B$	109.0
$C_{10} = N_2 = R_0^2$	117.3(3)	C_{23} C_{22} C_{21} C	112.6(5)
$C_{20} N_{3} R_{e}$	122 5 (3)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	100 1
C_{16} N3 R_{e}	122.3(3) 120.2(3)	$C_{23} = C_{22} = H_{22} A$	109.1
$C_{10} = N_{0} = R_{0}$	120.2(5)	$C_{21} = C_{22} = H_{22R}$	109.1
C_{23} C_{1} C_{1} R_{e}	176.6 (5)	$C_{23} = C_{22} = H_{22B}$	109.1
$O_2 = C_2 = R_2$	176.0(5)	H_{22} H	107.8
$O_2 = C_2 = R_c$	170.9(3) 175.7(5)	1122A - C22 - 1122B	107.0 117.0(5)
N1 C4 C5	173.7(3) 122.1(5)	$C_2 = C_2 = C_2 + C_2 $	117.0(3) 122.1(6)
N1 = C4 = C3	122.1 (5)	$C_2 = C_2 $	122.1(0) 120.8(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119	$C_{24} = C_{23} = C_{22}$	120.8(0) 110.3(5)
C_{3}	119	$C_{23} = C_{24} = C_{23}$	119.5 (5)
C6 C5 U5	120.5 (5)	$C_{23} = C_{24} = H_{24}$	120.4
C_{0} C_{5} U_{5}	117.0	$C_{2J} = C_{24} = \Pi_{24}$	120.4
C_{4} C_{5} C_{6} C_{7}	117.0	104 - 0.23 - 0.24	124.0 (3) 119
$C_{5} = C_{6} = U_{6}$	110.0 (3)	$\Pi^{+} = \mathbb{C}^{2} $	110
$C_{2} = C_{0} = H_{0}$	120.7	$U_{24} = U_{23} = \Pi_{23}$	110
U/U0	120./	IN4-U20-U2/	123.3(3)

C14—C7—C6	117.9 (5)	N4—C26—H26	118.3
C14—C7—C8	119.2 (5)	С27—С26—Н26	118.3
C6—C7—C8	122.9 (5)	C26—C27—C23	120.2 (5)
C9—C8—C7	120.8 (5)	С26—С27—Н27	119.9
С9—С8—Н8	119.6	С23—С27—Н27	119.9
С7—С8—Н8	119.6	N5—C28—C29	178.5 (8)
C8—C9—C10	121.0 (5)	С28—С29—Н29А	109.5
С8—С9—Н9	119.5	C28—C29—H29B	109.5
C10—C9—H9	119.5	H29A—C29—H29B	109.5
$C_{15} - C_{10} - C_{11}$	117.7 (5)	C_{28} C_{29} $H_{29}C$	109.5
$C_{15} - C_{10} - C_{9}$	119.2 (5)	$H_{29A} - C_{29} - H_{29C}$	109.5
$C_{11} - C_{10} - C_{9}$	123.0(5)	$H_{29B} - C_{29} - H_{29C}$	109.5
C_{12} C_{11} C_{10}	123.0(5) 118.5(5)	F3 P F6	102.5 01.2(2)
$C_{12} = C_{11} = C_{10}$	110.5 (5)	$F_{3} = F_{4}$	91.2(2)
$C_{12} = C_{11} = H_{11}$	120.7	$F_{0} = F_{1}$	90.0(2)
$C_{10} - C_{11} - H_{11}$	120.7	$\Gamma 0 - \Gamma - \Gamma 4$ $\Gamma 2 - D - \Gamma 2$	89.0(2)
$C_{11} = C_{12} = C_{13}$	120.4 (5)	$\Gamma J = \Gamma - \Gamma Z$	90.3(2)
C12—C12—H12	119.8	FO - F - FZ	90.64 (18)
C13—C12—H12	119.8	F4—P—F2	1/9.1 (2)
N2-C13-C12	122.3 (5)	F3—P—F5	89.95 (19)
N2—C13—H13	118.8	F6—P—F5	178.8 (2)
С12—С13—Н13	118.8	F4—P—F5	90.05 (19)
N1—C14—C7	122.7 (5)	F2—P—F5	89.73 (17)
N1—C14—C15	117.1 (4)	F3—P—F1	179.6 (2)
C7—C14—C15	120.1 (5)	F6—P—F1	89.17 (19)
N2—C15—C10	122.9 (4)	F4—P—F1	89.5 (2)
N2—C15—C14	117.5 (4)	F2—P—F1	89.67 (18)
C10—C15—C14	119.5 (4)	F5—P—F1	89.68 (19)
C2—Re—N1—C4	-2.6 (5)	Re—N1—C14—C7	176.1 (4)
C1—Re—N1—C4	87.1 (5)	C4—N1—C14—C15	-179.1 (5)
N2—Re—N1—C4	178.0 (5)	Re—N1—C14—C15	-2.9 (6)
N3—Re—N1—C4	-98.1 (5)	C6—C7—C14—N1	-0.3 (8)
C2—Re—N1—C14	-178.5 (4)	C8—C7—C14—N1	179.5 (5)
C1—Re—N1—C14	-88.8 (4)	C6-C7-C14-C15	178.6 (5)
N2—Re—N1—C14	2.1 (3)	C8—C7—C14—C15	-1.6 (7)
N3—Re—N1—C14	86.0 (4)	C13—N2—C15—C10	0.7 (7)
C3—Re—N2—C13	-2.3 (5)	Re-N2-C15-C10	-179.1 (4)
C1—Re—N2—C13	-89.7 (5)	C13—N2—C15—C14	179.9 (4)
N1—Re—N2—C13	179.1 (5)	Re—N2—C15—C14	0.0 (6)
N3—Re—N2—C13	89.7 (4)	C11—C10—C15—N2	-1.3(7)
C3—Re—N2—C15	177 6 (4)	C9-C10-C15-N2	178.2(5)
C1—Re—N2—C15	90 1 (4)	$C_{11} - C_{10} - C_{15} - C_{14}$	179.6(5)
N1—Re— $N2$ — $C15$	-11(3)	C9-C10-C15-C14	-10(7)
N3ReN2C15	-904(3)	N1-C14-C15-N2	19(7)
$C_3 R_{e} N_3 C_{20}$	-1395(4)	C7 - C14 - C15 - N2	-177.1(5)
$C_2 = R_2 = N_3 = C_2 O_1$	-50.3(4)	$N_{1} - C_{14} - C_{15} - C_{10}$	-1780(5)
$N_2 = N_2 = N_2 = C_2 O$	120.7(4)	C7 C14 C15 C10	21(7)
$\frac{1}{1} \frac{1}{2} - \frac{1}{1} \frac{1}{3} - \frac{1}{2} \frac{1}{2} \frac{1}{3} - \frac{1}{2} \frac{1}{3} \frac{1}{3$	120.7(4)	$C_{14} = C_{13} = C_{10}$	2.1(7) -2.7(9)
INI-RC-INJ-C20	++.U (+ <i>)</i>	U2U-INJ-UI0-UI/	-2.1 (0)

C3—Re—N3—C16	41.9 (4)	Re—N3—C16—C17	176.0 (4)
C2—Re—N3—C16	131.1 (4)	N3—C16—C17—C18	1.2 (8)
N2—Re—N3—C16	-57.9 (4)	C16—C17—C18—C19	1.5 (8)
N1—Re—N3—C16	-134.0 (4)	C16—C17—C18—C21	-176.4 (5)
C14—N1—C4—C5	1.1 (8)	C17—C18—C19—C20	-2.5 (8)
Re—N1—C4—C5	-174.7 (4)	C21—C18—C19—C20	175.4 (5)
N1C4C5C6	-1.6 (9)	C16—N3—C20—C19	1.6 (8)
C4C5C6C7	1.1 (9)	Re—N3—C20—C19	-177.0 (4)
C5C6C7C14	-0.2 (8)	C18—C19—C20—N3	1.0 (8)
C5—C6—C7—C8	-180.0 (5)	C17—C18—C21—C22	76.3 (7)
C14—C7—C8—C9	-0.1 (8)	C19—C18—C21—C22	-101.5 (6)
C6—C7—C8—C9	179.6 (5)	C18—C21—C22—C23	175.2 (5)
C7—C8—C9—C10	1.3 (8)	C21—C22—C23—C27	-75.2 (8)
C8—C9—C10—C15	-0.7 (8)	C21—C22—C23—C24	102.5 (7)
C8—C9—C10—C11	178.7 (5)	C27—C23—C24—C25	-2.5 (9)
C15—C10—C11—C12	1.4 (8)	C22—C23—C24—C25	179.7 (6)
C9—C10—C11—C12	-178.0 (5)	C26—N4—C25—C24	1.1 (9)
C10—C11—C12—C13	-1.0 (8)	C23—C24—C25—N4	0.8 (10)
C15—N2—C13—C12	-0.2 (8)	C25—N4—C26—C27	-1.4 (9)
Re—N2—C13—C12	179.6 (4)	N4—C26—C27—C23	-0.3 (10)
C11—C12—C13—N2	0.4 (8)	C24—C23—C27—C26	2.2 (9)
C4—N1—C14—C7	-0.1 (7)	C22—C23—C27—C26	-180.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C13—H13…F4	0.93	2.47	3.377 (6)	166
C16—H16…F6	0.93	2.38	3.180 (6)	145
C11—H11…F5 ⁱ	0.93	2.55	3.327 (6)	142
C12—H12…F1 ⁱ	0.93	2.55	3.355 (6)	145
C5—H5…F1 ⁱⁱ	0.93	2.52	3.382 (6)	154
C19—H19…F4 ⁱⁱⁱ	0.93	2.49	3.150 (6)	128
C20—H20…F5 ⁱⁱⁱ	0.93	2.45	3.317 (6)	154
C21—H21A····F5 ^{iv}	0.97	2.53	3.486 (6)	168
C22—H22 B ····O1 ^v	0.97	2.53	3.211 (8)	127

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y-1/2, -z+3/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+2, -y+1, -z+1; (v) -x+3/2, y+1/2, -z+3/2.