Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(tert-Butyl)(2-hydroxyethyl)ammonium chloride

Cintya Valerio-Cárdenas,* Simón Hernández-Ortega and David Morales-Morales

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
Correspondence e-mail: cintyavc@hotmail.com

Received 18 February 2014; accepted 2 June 2014
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.046 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=17.7$.

In the cation of the title molecular salt, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle is $176.5(2)^{\circ}$. In the crystal, the cations and chloride ions are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a two-dimensional network parallel to (100).

Related literature

For the chiral pool synthesis of naturally occurring molecules, see: Coppola \& Schuster (1987); Bergmeier \& Stanchina (1999). For pharmacologic synthesis, see: Gante (1994); Tok \& Rando (1998).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} . \mathrm{Cl}^{-}$
$M_{r}=153.65$
Monoclinic, $P 2_{1} / c$
$a=8.5204$ (3) A
$b=7.8742$ (3) \AA
$c=14.1844$ (5) \AA
$\beta=105.804$ (1) ${ }^{\circ}$
$V=915.68(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.40 \times 0.10 \times 0.03 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector
1668 independent reflections 1071 reflections with $I>2 \sigma(I)$
5487 measured reflections
$R_{\text {int }}=0.058$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.124 \quad$ independent and constrained
$S=1.00$
1668 reflections
94 parameters
3 restraints
refinement
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.86(1)$	$2.29(1)$	$3.140(2)$	$167(3)$
N3-H3A Cl^{H}	$0.90(1)$	$2.27(1)$	$3.144(2)$	$166(2)$
N3-H3B $\cdots \mathrm{Cl} 1^{\text {ii }}$	$0.89(1)$	$2.30(1)$	$3.190(2)$	$175(2)$

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

CVC would like to thank CONACYT for a postdoctoral scholarship (290805-UNAM). Support of this research by CONACYT (CB2010-154732) and PAPIIT (IN201711-3 and IN213214-3) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: GW2144).

References

Bergmeier, S. C. \& Stanchina, D. M. (1999). J. Org. Chem. 64, 2852-2859
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Coppola, G. M. \& Schuster, H. F. (1987). In Asymmetric Synthesis Construction of Chiral Molecules Using Amino Acids. New York: Wiley.
Gante, J. (1994). Angew. Chem. Int. Ed. Engl. 33, 1699-1720.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tok, J. B.-H. \& Rando, R. R. (1998). J. Am. Chem. Soc. 120, 8279-8280.

supporting information

Acta Cryst. (2014). E70, o783 [https://doi.org/10.1107/S1600536814012847]
(tert-Butyl) (2-hydroxyethyl)ammonium chloride

Cintya Valerio-Cárdenas, Simón Hernández-Ortega and David Morales-Morales

S1. Comment

Amino alcohols are some of the most versatile starting materials both at the laboratory and at the industrial scale and have been widely used for a large number of applications. Among which stands the chiral pool synthesis of naturally occurring molecules (Coppola et al. 1987; Bergmeier et al. 1999). These compounds have also displayed important biological activities and are of interest for the development of synthetic methods in the pharmaceutical industry (Gante, 1994; Tok et al. 1998). Based on the above, we report here the crystal structure of N-((2-hydroxyethyl)tertbutyl)ammonium chloride and discuss its geometry and intermolecular interactions.
The molecular structure of the title compound $\left[\left(\mathrm{HOC}_{2} \mathrm{H}_{4}\right)\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) \mathrm{NH}_{2}\right] \mathrm{Cl}^{-}$(Fig. 1), consists of an ionic species, exhibiting the nitrogen atom in a tetrahedral geometry. The dihedral angle between the tertbutyl and the 2-hydroxyethyl moieties is almost plane $\left(173.34(2)^{\circ}\right)$ as a result of the reduced steric effects. In the asymmetric unit the Cl atom is linked by a N3—H3A…Cl1 interaction (2.266 (11) \AA). In the crystal the Cl atom is acting as tri-acceptor H -bonding, such that, the anion and cation species are linked through $\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 1$ with distances of 2.294 (13) \AA, leading to stairs aligned along the ac plane (symmetry code $x,-y+3 / 2, z+1 / 2$). These stairs are expanded by a third intermolecular interaction $\mathrm{N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl} 1(2.304(10) \AA)$ along the b axis with symmetry code $-x+1, y-1 / 2,-z+3 / 2$ (see Table 1, Fig. 2).

S2. Experimental

The title compound was isolated from the reaction of $\left[\mathrm{S}_{2} \mathrm{CN}\left({ }^{t} \mathrm{Bu}\right)(\mathrm{EtOH})\right]$ and $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in a 1:1 molar ratio in ethanol. Colourless crystals suitable for single-crystal X-ray diffraction analysis were obtained from a solvent system ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

S3. Refinement

The atoms H1, H3A and H3B were located from a difference Fourier map and N3-H3A, N3-H3B and O1-H1 distances are restrained to 0.90 and $0.85 \AA$ respectively. H atoms were included in calculated position $(\mathrm{C}-\mathrm{H}=0.97 \AA$ for methylene H , and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl H), and refined using a riding model with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms. 3 badly fitting reflections were omitted from the final refinement.

Figure 1
The molecular structure of the title compound showing the atom labelling and displacement ellipsoids at the 40% of probability.

Figure 2
A view in projection on the direction of the chain. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are shown as dashed lines.

(tert-Butyl)(2-hydroxyethyl)ammonium chloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=153.65$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.5204$ (3) \AA
$b=7.8742$ (3) \AA
$c=14.1844(5) \AA$
$\beta=105.804(1)^{\circ}$
$V=915.68(6) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Detector resolution: 0.83 pixels mm^{-1}
ω scans
5487 measured reflections
1668 independent reflections
$F(000)=336$
$D_{\mathrm{x}}=1.115 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2475 reflections
$\theta=2.5-25.3^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.10 \times 0.03 \mathrm{~mm}$

1071 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-5 \rightarrow 10$
$k=-8 \rightarrow 9$
$l=-17 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.124$
$S=1.00$
1668 reflections

94 parameters

3 restraints
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0584 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.44289(9)$	$0.82425(9)$	$0.62991(4)$	$0.0579(3)$
O1	$0.2643(2)$	$0.8483(3)$	$0.9299(15)$	$0.0690(6)$
H1	$0.303(4)$	$0.811(4)$	$0.9889(11)$	0.083^{*}
C1	$0.3512(3)$	$0.7606(4)$	$0.87548(19)$	$0.0531(7)$
H1A	0.3003	0.7781	0.8062	0.064^{*}
H1B	0.3488	0.6400	0.8889	0.064^{*}
C2	$0.5253(3)$	$0.8207(3)$	$0.90041(18)$	$0.0436(6)$
H2A	0.5280	0.9397	0.8832	0.052^{*}
H2B	0.5742	0.8098	0.9704	0.052^{*}
N3	$0.6212(2)$	$0.7191(3)$	$0.84643(15)$	$0.0383(5)$
H3A	$0.579(3)$	$0.734(3)$	$0.7818(8)$	0.046^{*}
H3B	$0.607(3)$	$0.6079(13)$	$0.8511(17)$	0.046^{*}
C4	$0.8038(3)$	$0.7496(3)$	$0.87151(19)$	$0.0454(7)$
C5	$0.8775(3)$	$0.7126(4)$	$0.9796(2)$	$0.0686(9)$
H5A	0.8423	0.6028	0.9950	0.082^{*}
H5B	0.8427	0.7976	1.0181	0.082^{*}
H5C	0.9944	0.7142	0.9941	0.082^{*}
C6	$0.8687(3)$	$0.6245(4)$	$0.8087(2)$	$0.0728(9)$
H6A	0.8452	0.5105	0.8247	0.087^{*}
H6B	0.9845	0.6386	0.8214	0.087^{*}
H6C	0.8172	0.6459	0.7407	0.087^{*}
C7	$0.8344(3)$	$0.9303(4)$	0.9489	$0.8456(2)$
H7A	0.9497	1.0071	$0.85848(9)$	
H7B	0.7906	0.9498	0.8844	0.081^{*}
H7C	0.7825		0.7774	0.081^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0865(6)$	$0.0441(4)$	$0.0413(4)$	$0.0031(3)$	$0.0142(4)$	$-0.0011(3)$
O1	$0.0533(13)$	$0.0912(16)$	$0.0646(13)$	$0.0179(11)$	$0.0194(11)$	$0.0001(13)$
C1	$0.0387(17)$	$0.0772(19)$	$0.0429(15)$	$0.0068(14)$	$0.0103(12)$	$-0.0066(15)$
C2	$0.0407(16)$	$0.0462(15)$	$0.0467(14)$	$0.0013(11)$	$0.0166(12)$	$-0.0050(13)$
N3	$0.0377(13)$	$0.0364(11)$	$0.0406(11)$	$0.0007(9)$	$0.0101(10)$	$-0.0003(11)$
C4	$0.0342(15)$	$0.0438(14)$	$0.0584(17)$	$0.0013(11)$	$0.0130(13)$	$-0.0028(14)$
C5	$0.0472(19)$	$0.084(2)$	$0.0657(19)$	$0.0039(15)$	$-0.0004(15)$	$0.0017(18)$

C6	$0.0513(19)$	$0.079(2)$	$0.095(2)$	$0.0051(16)$	$0.0311(17)$	$-0.020(2)$
C7	$0.0463(18)$	$0.0607(19)$	$0.099(2)$	$-0.0077(14)$	$0.0232(17)$	$0.0038(19)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C1	1.390 (3)	C4-C5	1.519 (4)
$\mathrm{O} 1-\mathrm{H} 1$	0.862 (10)	C4-C6	1.529 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.504 (4)	C5-H5A	0.9600
C1-H1A	0.9700	C5-H5B	0.9600
C1-H1B	0.9700	C5-H5C	0.9600
C2-N3	1.495 (3)	C6-H6A	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C6-H6B	0.9600
C2-H2B	0.9700	C6-H6C	0.9600
N3-C4	1.518 (3)	C7-H7A	0.9600
N3-H3A	0.896 (9)	C7-H7B	0.9600
N3-H3B	0.888 (10)	C7-H7C	0.9600
C4-C7	1.510 (4)		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	104 (2)	C7-C4-C6	110.5 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	110.7 (2)	N3-C4-C6	105.8 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C5-C4-C6	110.4 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C4-C5-H5A	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C4-C5-H5B	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	H5A-C5-H5B	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.1	C4-C5-H5C	109.5
N3-C2-C1	110.6 (2)	H5A-C5-H5C	109.5
N3-C2-H2A	109.5	H5B-C5-H5C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C4-C6-H6A	109.5
N3-C2-H2B	109.5	C4-C6-H6B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H6A-C6-H6B	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1	C4-C6- H 6 C	109.5
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	117.61 (19)	H6A-C6-H6C	109.5
C2-N3-H3A	109.4 (16)	H6B-C6-H6C	109.5
C4-N3-H3A	108.7 (16)	C4-C7-H7A	109.5
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	112.9 (15)	C4-C7-H7B	109.5
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	106.6 (15)	H7A-C7-H7B	109.5
H3A-N3-H3B	100 (2)	C4-C7- 77 C	109.5
C7-C4-N3	109.1 (2)	H7A-C7-H7C	109.5
C7-C4-C5	112.0 (2)	H7B-C7-H7C	109.5
N3-C4-C5	108.8 (2)		

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	$0.86(1)$	$2.29(1)$	$3.140(2)$	$167(3)$

supporting information

$\mathrm{N} 3 — \mathrm{H} 3 A \cdots \mathrm{Cl1}$	$0.90(1)$	$2.27(1)$	$3.144(2)$	$166(2)$
$\mathrm{N} 3 — \mathrm{H} 3 B \cdots \mathrm{Cl1}^{\mathrm{ii}}$	$0.89(1)$	$2.30(1)$	$3.190(2)$	$175(2)$

Symmetry codes: (i) $x,-y+3 / 2, z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+3 / 2$.

