

Received 24 February 2014 Accepted 29 April 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; alkynes; alkynehexacarbonyl-dicobalt complex

CCDC references: 1004257; 1004258

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of $(\mu_2 - \eta^2, \eta^2 - 4$ -hydroxybut-2-yn-1yl 2-bromo-2-methylpropanoate- $\kappa^4 C^2, C^3: C^2, C^3$)bis[tricarbonylcobalt(II)](*Co*—*Co*) and $[\mu_2 - \eta^2, \eta^2$ but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate)- $\kappa^4 C^2, C^3: C^2, C^3$]bis[tricarbonylcobalt(II)](*Co*—*Co*)

C. John McAdam, Stephen C. Moratti, Brian H. Robinson, Jim Simpson* and Roderick G. Stanley

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. *Correspondence e-mail: jsimpson@alkali.otago.ac.nz

The title compounds, $[Co_2(C_8H_{11}BrO_3)(CO)_6]$, (1), and $[Co_2(C_{12}H_{16}Br_2O_4)-(CO)_6]$, (2), result from the replacement of two carbonyl ligands from dicobalt octacarbonyl by the alkynes 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate and but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate), respectively. Both molecules have classic tetrahedral C_2Co_2 cluster cores with the Co^{II} atoms in a highly distorted octahedral coordination geometry. The alkyne ligands both adopt a *cis*-bent conformation on coordination. In the crystal structure of (1), classical $O-H \cdots O$ and non-classical $C-H \cdots O$ contacts form inversion dimers. These combine with weak $O \cdots O$ and $Br \cdots O$ contacts to stack the molecules into interconnected columns along the *b*-axis direction. $C-H \cdots O$ contact is also observed. Interconnected columns of molecules again form along the *b*-axis direction.

1. Chemical context

In 1954 alkynes were found to act as ligands and displace two carbonyl groups from dicobalt octacarbonyl to form alkynehexacarbonyl-dicobalt complexes (Sternberg et al., 1954). The novelty of these compounds, together with their close isolobal relationship to other members of the 'tetrahedrane series' (Hoffmann, 1982), spawned enormous interest in both the hexacarbonyls and their substituted derivatives. Applications include use in organic synthesis (Melikyan et al., 2012), as biological probes (Salmain & Jaouen, 1993) and in the stabilization of high-performance energetic materials (Windler et al., 2012). Their diverse redox properties (Robinson & Simpson, 1989) have also been exploited in the development of molecular wires (McAdam et al., 1996; Hore et al., 2000; Xie et al., 2012) where alkyne-hexacarbonyl-dicobalt cores are separated by electronically conducting spacers or connecting groups. Our recent interest in incorporating redox-active organometallic species into polymer materials (Dana et al., 2007; McAdam et al., 2008) prompted us to investigate the synthesis of alkyne-hexacarbonyl-dicobalt complexes with potential ATRP initiator functionality by the incorporation of one or more known initiator substrates, such as 2-halo-2methyl propanoyl esters (Wang & Matyjaszewski, 1995; Laurent & Grayson, 2006), into the alkyne system. The structures of two such molecules with 2-bromo-2-methylpropanoate substituents are reported here.

research communications

2. Structural commentary

The molecular structures of (1) and (2) are illustrated in Figs. 1 and 2. Both compounds are classic alkyne dicobalt cluster systems incorporating the triple bonds of 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate for (1) and but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate) for (2) into the tetrahedral

Figure 1 The structure of (1) with ellipsoids drawn at the 50% probability level.

The structure of (2) with ellipsoids drawn at the 50% probability level.

Table 1	
Selected bond lengths (Å) for (1).	

C2-C3	1.344 (5)	C2-Co2	1.972 (3)
Co1-Co2	2.4723 (7)	C3-Co1	1.956 (4)
C2-Co1	1.967 (3)	C3-Co2	1.960 (3)

Table 2Selected bond lengths (Å) for (2).C1 = C21.343 (3)C1 = C2

C1-C2	1.343 (3)	C1-Co2	1.949 (2)
Co1-Co2	2.4759 (10)	C2-Co1	1.9508 (19)
C1-Co1	1.960 (2)	C2-Co2	1.948 (2)

 C_2Co_2 core of the alkyne dicobalt cluster unit. The coordination geometry around each cobalt atom is distorted octahedral. Each cobalt atom carries one pseudo-axial and two pseudo-equatorial carbonyl substituents. The C2 and C3 atoms of the alkyne ligand for (1) and the corresponding C1 and C2 atoms for (2) are also pseudo-equatorial, with the bonds to the second Co atoms completing the highly distorted coordination spheres in pseudo-axial sites.

This combination of coordination spheres results in classical 'sawhorse' structures (Arewgoda et al., 1983) for each molecule. The CH₂OH and 2-bromo-2-ethylpropanoate substituents for (1) and the two 2-bromo-2-ethylpropanoate groups for (2), adopt a cis-bent configuration similar to the excited state of an alkyne system (Dickson & Fraser, 1974). Furthermore, the C11-Co1-Co2-C21 and C1-C2-C3-C4 planes for (1) and C15-Co1-Co2-C18 and C3-C2-C1-C8 planes for (2) are close to orthogonal with interplanar angles of 89.65 (7) and 85.91 (7) $^{\circ}$, respectively. The Co1–Co2 bond lengths are 2.4723 (7) Å for (1) and 2.4759 (10) Å for (2) with corresponding C2–C3 and C1–C2 distances of 1.344 (5) and 1.343 (3) Å (Tables 1 and 2). These are not unusual in comparison to those found for the 480 C₂Co₂ alkyne dicobalt clusters with 6 CO ligands found in the Cambridge Structural Database (Allen, 2002). For these, the mean Co-Co and C-C distances are found to be 2.47(1) and 1.337(15) Å, respectively. The eight $Co-C_{alkyne}$ distances average 1.958 (7) Å, again comparable to the mean value of 1.965 (5) Å found previously.

The C=O groups of the 2-bromo-2-methylpropanoate units point away from the cluster cores in both molecules. The two carbonyl groups in (2) each lie on the same side of the molecule, with the 2-bromo-2-methylpropanoate units arranged symmetrically with respect to the central C_2Co_2 unit. Bond lengths (Allen *et al.*, 1987) and angles in the -OC(O)- $C(CH_3)_2Br$ chains are not unusual and are similar in both molecules.

3. Supramolecular features

In the crystal structure of (1), classical O1-H1···O3 hydrogen bonds (Table 3) are augmented by two C-H···O contacts that link adjacent molecules into inversion dimers generating $R_2^2(10)$, $R_2^2(18)$ and $R_2^2(20)$ rings (Bernstein *et al.*, 1995). Two additional inversion dimers also result from weaker C1-H1A···O1 and C8-H8A···O12 hydrogen bonds

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (1).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots O3^i$	0.84	2.16	2.946 (4)	156
$C4-H4B\cdots O3^{i}$	0.99	2.60	3.360 (4)	134
$C7-H7A\cdotsO1^{i}$	0.98	2.71	3.637 (5)	157
$C1-H1A\cdots O1^{ii}$	0.99	2.55	3.307 (5)	133
$C8-H8A\cdots O12^{iii}$	0.98	2.71	3.485 (5)	136

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 1.

(Fig. 3). These contacts, together with weak O2···O21, [2.965 (4) Å; symmetry operation 1 + x, y, z) and Br1···O1 [3.307 (3) Å; symmetry operation -x, 1 - y, 2 - z] contacts stack the molecules into interconnected columns along the *b*-axis direction (Fig. 4).

Hydrogen bonding also figures prominently in the structure of (2), although in this molecule no classical hydrogen bonds are possible. Bifurcated C3-H3B···O2 and C8-H8A···O2 contacts (Table 4) produce $R_2^1(7)$ rings while inversion-related C8-H8B···O4 hydrogen bonds form $R_2^2(10)$ rings (Fig. 5). The other significant contacts involve C-H···Br hydrogen bonds. C12-H12C···Br1 contacts link molecules into $C_2^2(14)$

Figure 3

Inversion dimers in the crystal structure of (1). Hydrogen bonds are drawn as dashed lines and symmetry operations are those detailed in Table 2.

Figure 4

Overall packing for (1) viewed along the b axis. Hydrogen bonds and other interatomic contacts are drawn as dashed lines.

Table 4	
Hydrogen-bond geometry (Å, $^{\circ}$) for (2).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C12-H12C\cdots Br1^{i}$ $C6-H6A\cdots Br2^{ii}$ $C8-H8B\cdots O4^{iii}$ $C3-H3B\cdots O2^{iv}$ $C8-H8A\cdots O2^{iv}$	0.98 0.98 0.99 0.99 0.99	2.99 3.01 2.45 2.58 2.64	3.961 (3) 3.788 (2) 3.411 (3) 3.341 (3) 3.454 (3)	170 137 165 133 139

Symmetry codes: (i) x - 1, y - 1, z; (ii) x, y + 1, z; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

chains approximately parallel to [110] while C6–H6A···Br2 interactions, bolstered by short O1···Br2 contacts [3.296 (2) Å, symmetry operation x, -1 + y, z], form $C_2^2(12)$ chains parallel to [010] (Fig. 6). The net result of these contacts is a series of interconnected columns of molecules stacked along the *b*-axis direction (Fig. 7).

Figure 5

C-H···O hydrogen bonds in the crystal structure of (2). Hydrogen bonds are drawn as dashed lines and symmetry operations are those detailed in Table 4.

Figure 6

Chains of molecules of (2) formed by $C-H\cdots Br$ hydrogen bonds drawn as dashed lines. Symmetry operations are those detailed in Table 4.

Figure 7

Overall packing for (2) viewed along the b axis. Hydrogen bonds and other interatomic contacts are drawn as dashed lines.

research communications

Table 5Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$[Co_2(C_8H_{11}BrO_3)(CO)_6]$	$[Co_2(C_{12}H_{16}Br_2O_4)(CO)_6]$
M_r	521.00	669.99
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	91	91
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.3887 (8), 11.1147 (12), 11.7274 (13)	9.392 (5), 10.710 (5), 13.269 (5)
α, β, γ (°)	78.583 (6), 85.239 (6), 76.342 (6)	71.314 (5), 71.973 (5), 84.630 (5)
$V(\text{\AA}^3)$	916.67 (18)	1202.3 (10)
Ζ	2	2
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	4.03	4.75
Crystal size (mm)	$0.39 \times 0.16 \times 0.04$	$0.25 \times 0.11 \times 0.06$
Data collection		
Diffractometer	Bruker APEXII CCD area detector	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2011)	Multi-scan (SADABS; Bruker, 2011)
T_{\min}, T_{\max}	0.302, 0.855	0.611, 1.000
No. of measured, independent and observed	11686, 3713, 2966	21546, 8127, 6040
$[I > 2\sigma(I)]$ reflections		
R _{int}	0.055	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.628	0.751
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.097, 1.03	0.031, 0.069, 0.95
No. of reflections	3713	8127
No. of parameters	238	293
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e} \; {\rm \AA}^{-3})$	0.83, -0.73	1.43, -1.06

Computer programs: APEX2 and SAINT (Bruker, 2011), SHELXS97 and SHELXL2013 (Sheldrick, 2008), TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publcIF (Westrip, 2010).

4. Database survey

The first structure, of dicobalt hexacarbonyl diphenylacetylene, was reported using film data (Sly, 1959). The current database (Version 5.35, November 2013 with 1 update) details 480 hexacarbonyl structures. However, this number rises to 730 if the search is extended to cover dicobalt alkyne compounds in which one or more carbonyl group has been substituted, mainly by phosphine ligands. Interestingly there are no current examples of similar 4-hydroxybut-2-ynyl carboxylate derivatives and only one but-2-yne-1,4-diyl diacetate complex [(4-diacetoxybut-2-yne)-hexacarbonyldicobalt; Soleilhavoup *et al.*, 2002] among this plethora of structures, underlining the novelty of the compounds reported here.

5. Synthesis and crystallization

In typical preparations, 1:1 molar quantities of 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate for (1) or a 2:1 molar ratio of but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate) for (2) with $Co_2(CO)_8$ were allowed to react at room temperature for 1 h in CH_2Cl_2 under nitrogen. The reaction mixtures were filtered through silica gel to remove any insoluble impurities and the filtrates taken to dryness *in vacuo*. The complexes were then purified by recrystallization from hexane at 273 K. Yields were in the range 70–80%. Complexation was confirmed by the absence of a band at 1860 cm^{-1} in the infrared spectrum, attributable to the μ_2 (bridging) carbonyl groups of the dicobalt octacarbonyl starting material. In addition, a hypsochromic shift of approximately 30 cm⁻¹ of the remaining carbonyl stretching frequencies is seen, due to the decrease in electron density at the metal atoms upon coordination of these alkynes. Characteristic IR spectra were recorded for both products as follows: IR (ν , cm⁻¹): (1): 3300 (broad, OH), ν (C=O) 2099, 2062, 2032, ν (C=O) 1735; (2): ν (C=O) 2096, 2058, 2031, ν (C=O) 1734.

6. Refinement

All H atoms bound to carbon were refined using a riding model with d(C-H) = 0.99 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂, 0.98 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms. In the final refinement, two reflections from the data for (2) with $F_o \ll F_c$ were omitted from the refinement.

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.

- Arewgoda, C. M., Robinson, B. H. & Simpson, J. (1983). J. Am. Chem. Soc. 105, 1893–1903.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559.
- Dickson, R. S. & Fraser, P. J. (1974). Adv. Organomet. Chem. 12, 323–377.
- Hoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711-724.
- Hore, L.-A., McAdam, C. J., Kerr, J. L., Duffy, N. W., Robinson, B. H. & Simpson, J. (2000). Organometallics, 19, 5039–5048.
- Hunter, K. A. & Simpson, J. (1999). *TITAN2000*. University of Otago, New Zealand.
- Laurent, B. A. & Grayson, S. M. (2006). J. Am. Chem. Soc. 128, 4238–4239.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McAdam, C. J., Duffy, N. W., Robinson, B. H. & Simpson, J. (1996). Organometallics, 15, 3935–3943.

- McAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008). J. Organomet. Chem. 693, 2715–2722.
- Melikyan, G. G., Rivas, B., Harutyunyan, S., Carlson, L. & Sepanian, R. (2012). Organometallics, **31**, 1653–1663.
- Robinson, B. H. & Simpson, J. (1989). Paramagnetic Organometallic Species in Activation, Selectivity and Catalysis, edited by M. Chanon, M. Julliard & J. C. Poite, pp. 357–374. Dordrecht: Kluwer.
- Salmain, M. & Jaouen, G. (1993). J. Organomet. Chem. 445, 237–243. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sly, W. G. (1959). J. Am. Chem. Soc. 81, 18–20.
- Soleilhavoup, M., Saccavini, C., Lepetit, C., Lavigne, G., Maurette, L.,
- Donnadieu, B. & Chauvin, R. (2002). Organometallics, **21**, 871–883. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.
- Sternberg, H. W., Greenfield, H., Friedel, R. A., Wotiz, J., Markby, R. & Wender, I. (1954). J. Am. Chem. Soc. 76, 1457–1458.
- Wang, J.-S. & Matyjaszewski, K. (1995). *Macromolecules*, **28**, 7901–7910.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Windler, G. K., Zhang, M.-Z., Zitterbart, R., Pagoria, P. F. & Vollhardt, K. P. C. (2012). *Chem. Eur. J.* 18, 6588–6603.
- Xie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L., Suo, Q.-L. & Fu, P. (2012). *Polyhedron*, **38**, 7–14.

Acta Cryst. (2014). E70, 9-13 [https://doi.org/10.1107/S1600536814009659]

Crystal structures of $(\mu_2 - \eta^2, \eta^2 - 4 - hydroxybut - 2 - yn - 1 - yl 2 - bromo - 2 - methyl$ propanoate- $\kappa^4 C^2$, C^3 : C^2 , C^3) bis[tricarbonylcobalt(II)](Co—Co) and $[\mu_2 - \eta^2, \eta^2 - \eta^2, \eta^2]$ but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate)- $\kappa^4 C^2$, C^3 : C^2 , C^3] bis[tricarbonylcobalt(II)](Co-Co)

C. John McAdam, Stephen C. Moratti, Brian H. Robinson, Jim Simpson and Roderick G. Stanley

Computing details

For both compounds, data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(1) $[\mu_2 - \eta^2, \eta^2 - 4 - \text{Hydroxybut-} 2 - \text{yn-} 1 - \text{yl} 2 - \text{bromo-} 2 - \text{methylpropanoate} - \kappa^4 C^2, C^3 : C^2, C^3]$ bis[tricarbonylcobalt(II)](Co-Co)

Crvstal data

$[Co_2(C_8H_{11}BrO_3)(CO)_6]$	Z = 2
$M_r = 521.00$	F(000) = 512
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.888 {\rm Mg} {\rm m}^{-3}$
a = 7.3887 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.1147 (12) Å	Cell parameters from 3089 reflections
c = 11.7274 (13) Å	$\theta = 4.7 - 51.2^{\circ}$
$\alpha = 78.583 \ (6)^{\circ}$	$\mu = 4.03 \text{ mm}^{-1}$
$\beta = 85.239 \ (6)^{\circ}$	T = 91 K
$\gamma = 76.342 \ (6)^{\circ}$	Irregular fragment, orange-red
$V = 916.67 (18) \text{ Å}^3$	$0.39 \times 0.16 \times 0.04 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	11686 measured reflections
diffractometer	3713 independent reflections
Radiation source: fine-focus sealed tube	2966 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.055$
w scans	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(SADABS; Bruker, 2011)	$k = -13 \rightarrow 13$
$T_{\min} = 0.302, \ T_{\max} = 0.855$	$l = -14 \rightarrow 14$

 $2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$
<i>S</i> = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
3713 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
238 parameters	$\Delta ho_{ m max} = 0.83$ e Å ⁻³
0 restraints	$\Delta ho_{ m min} = -0.73 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0205 (4)	0.8525 (2)	1.0602 (2)	0.0210 (6)	
H1	-0.0387	0.7844	1.1000	0.032*	
C1	-0.1326 (5)	0.8873 (4)	0.9601 (3)	0.0159 (8)	
H1A	-0.1616	0.9800	0.9357	0.019*	
H1B	-0.2517	0.8605	0.9803	0.019*	
C2	-0.0346 (4)	0.8277 (3)	0.8618 (3)	0.0137 (7)	
C3	0.0896 (4)	0.7232 (3)	0.8429 (3)	0.0135 (7)	
C4	0.1996 (5)	0.6065 (3)	0.9107 (3)	0.0131 (7)	
H4A	0.2813	0.6282	0.9626	0.016*	
H4B	0.1144	0.5594	0.9600	0.016*	
O2	0.3132 (3)	0.5272 (2)	0.8345 (2)	0.0160 (5)	
C5	0.2596 (5)	0.4240 (3)	0.8234 (3)	0.0147 (8)	
O3	0.1198 (4)	0.3939 (2)	0.8680 (2)	0.0220 (6)	
C6	0.3981 (5)	0.3471 (3)	0.7453 (3)	0.0185 (8)	
C7	0.3045 (6)	0.2640 (4)	0.6933 (3)	0.0254 (9)	
H7A	0.2510	0.2089	0.7560	0.038*	
H7B	0.3967	0.2127	0.6472	0.038*	
H7C	0.2052	0.3169	0.6431	0.038*	
C8	0.5019 (6)	0.4259 (4)	0.6532 (3)	0.0274 (9)	
H8A	0.5921	0.3703	0.6097	0.041*	
H8B	0.5676	0.4733	0.6910	0.041*	
H8C	0.4126	0.4847	0.5995	0.041*	
Br1	0.58507 (6)	0.23943 (4)	0.85597 (4)	0.02956 (14)	
Col	0.14649 (6)	0.86999 (5)	0.73644 (4)	0.01350 (13)	
C11	0.3041 (5)	0.9142 (3)	0.8218 (3)	0.0153 (8)	
011	0.4032 (3)	0.9404 (3)	0.8748 (2)	0.0216 (6)	
C12	0.3119 (5)	0.7980 (4)	0.6321 (3)	0.0188 (8)	
O12	0.4169 (4)	0.7477 (3)	0.5703 (2)	0.0299 (7)	
C13	0.0360 (5)	1.0278 (4)	0.6608 (3)	0.0235 (9)	
O13	-0.0335 (4)	1.1244 (3)	0.6144 (3)	0.0358 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Co2	-0.11056 (6)	0.76340 (5)	0.73243 (4)	0.01475 (14)
C21	-0.2640 (5)	0.6741 (4)	0.8176 (3)	0.0216 (9)
O21	-0.3575 (4)	0.6190 (3)	0.8772 (3)	0.0327 (7)
C22	-0.0153 (5)	0.6651 (4)	0.6246 (3)	0.0216 (9)
O22	0.0493 (4)	0.6009 (3)	0.5607 (3)	0.0342 (7)
C23	-0.2750 (5)	0.8974 (4)	0.6540 (3)	0.0216 (8)
O23	-0.3745 (4)	0.9823 (3)	0.6055 (2)	0.0293 (7)

Atomic displacement parameters $(Å^2)$

01	0.0248 (14)			U	U	U
01	0.0240 (14)	0.0207 (15)	0.0180 (14)	-0.0051 (12)	-0.0019 (11)	-0.0039 (11)
C1	0.0151 (17)	0.0157 (19)	0.0168 (19)	-0.0025 (15)	0.0022 (14)	-0.0049 (15)
C2	0.0112 (17)	0.0148 (19)	0.0147 (18)	-0.0052 (14)	0.0024 (13)	-0.0003 (15)
C3	0.0114 (16)	0.0169 (19)	0.0132 (18)	-0.0063 (14)	0.0017 (13)	-0.0020 (15)
C4	0.0151 (17)	0.0108 (18)	0.0135 (18)	-0.0024 (14)	0.0019 (14)	-0.0040 (14)
O2	0.0163 (12)	0.0133 (13)	0.0174 (13)	-0.0020 (10)	0.0043 (10)	-0.0041 (11)
C5	0.0173 (18)	0.0119 (18)	0.0126 (18)	-0.0001 (14)	-0.0014 (14)	-0.0002 (14)
03	0.0244 (14)	0.0199 (15)	0.0229 (15)	-0.0087 (12)	0.0082 (11)	-0.0059 (12)
C6	0.0210 (19)	0.0128 (19)	0.0185 (19)	0.0021 (15)	-0.0010 (15)	-0.0025 (16)
C7	0.030 (2)	0.025 (2)	0.023 (2)	-0.0080 (18)	0.0048 (17)	-0.0107 (18)
C8	0.036 (2)	0.023 (2)	0.020 (2)	-0.0042 (18)	0.0098 (18)	-0.0042 (18)
Br1	0.0302 (2)	0.0259 (2)	0.0255 (2)	0.00937 (17)	-0.00436 (17)	-0.00550 (18)
Col	0.0140 (2)	0.0128 (3)	0.0133 (3)	-0.00413 (19)	0.00139 (18)	-0.0009 (2)
C11	0.0146 (17)	0.0111 (18)	0.0171 (19)	0.0004 (14)	0.0047 (15)	-0.0014 (15)
011	0.0190 (13)	0.0231 (15)	0.0241 (15)	-0.0054 (11)	-0.0014 (11)	-0.0065 (12)
C12	0.023 (2)	0.019 (2)	0.0168 (19)	-0.0116 (16)	0.0023 (16)	-0.0030 (16)
012	0.0360 (17)	0.0303 (17)	0.0251 (16)	-0.0105 (14)	0.0129 (13)	-0.0111 (14)
C13	0.024 (2)	0.027 (2)	0.024 (2)	-0.0126 (18)	-0.0019 (17)	-0.0033 (18)
013	0.0362 (17)	0.0196 (17)	0.046 (2)	-0.0045 (14)	-0.0146 (15)	0.0100 (15)
Co2	0.0140 (2)	0.0139 (3)	0.0161 (3)	-0.00375 (19)	-0.00161 (19)	-0.0012 (2)
C21	0.0197 (19)	0.023 (2)	0.021 (2)	-0.0035 (17)	-0.0066 (16)	-0.0010 (17)
O21	0.0254 (15)	0.0375 (19)	0.0351 (18)	-0.0164 (14)	-0.0022 (13)	0.0050 (15)
C22	0.0204 (19)	0.020 (2)	0.025 (2)	-0.0062 (16)	-0.0066 (16)	-0.0017 (18)
O22	0.0389 (18)	0.0333 (18)	0.0346 (18)	-0.0058 (14)	-0.0004 (14)	-0.0193 (15)
C23	0.0174 (19)	0.025 (2)	0.025 (2)	-0.0101 (17)	0.0015 (16)	-0.0041 (18)
O23	0.0240 (15)	0.0204 (16)	0.0382 (18)	-0.0019 (13)	-0.0105 (13)	0.0068 (13)

Geometric parameters (Å, °)

01—C1	1.430 (4)	C7—H7A	0.9800
01—H1	0.8400	С7—Н7В	0.9800
C1—C2	1.493 (5)	С7—Н7С	0.9800
C1—H1A	0.9900	C8—H8A	0.9800
C1—H1B	0.9900	C8—H8B	0.9800
С2—С3	1.344 (5)	C8—H8C	0.9800
Col—Co2	2.4723 (7)	Co1—C11	1.805 (4)
C2—Co1	1.967 (3)	Col—Cl2	1.819 (4)

C2—Co2	1.972 (3)	Co1—C13	1.833 (4)
C3—C4	1.476 (5)	C11—O11	1.121 (4)
C3—Co1	1.956 (4)	C12—O12	1.141 (5)
C3—Co2	1.960 (3)	C13—O13	1.125 (5)
C4—O2	1.455 (4)	Co2—C21	1.794 (4)
C4—H4A	0.9900	Co2—C22	1.824 (4)
C4—H4B	0.9900	$C_{02} = C_{23}$	1.825 (4)
0^2 —C5	1 331 (4)	$C_{21} = 0_{21}$	1.025(1) 1.136(5)
C5-03	1.331(4) 1 207 (4)	$C^{22} = 0^{22}$	1.135(5)
C5C6	1.207 (4)	$\begin{array}{c} C22 \\ C23 \\$	1.133(3)
C5—C0	1.555(5)	C25	1.132(4)
$C_0 - C_1$	1.510(5)		3.307(3)
	1.320(3)	02—021"	2.965 (4)
Co-Brl	1.981 (3)		
C1	109.5	С6—С8—Н8А	109.5
01—C1—C2	111.1 (3)	C6—C8—H8B	109.5
01—C1—H1A	109.4	H8A—C8—H8B	109.5
C2—C1—H1A	109.4	С6—С8—Н8С	109.5
01—C1—H1B	109.4	H8A—C8—H8C	109.5
C_2 — C_1 — H_1B	109.4	H8B-C8-H8C	109.5
HIA_C1_HIB	108.0	C6—Br1—O1 ⁱⁱⁱ	68 68 (12)
$C_3 - C_2 - C_1$	140.2(3)	$C_1 = C_1 = C_1^2$	99.92 (16)
$C_3 = C_2 = C_1$	(40.2(3))	$C_{11} = C_{01} = C_{12}$	99.92 (10) 08.37 (16)
$C_{3} = C_{2} = C_{01}$	125.5(2)	$C_{11}^{} C_{12}^{} C_{13}^{} C_{1$	30.37(10)
C1 = C2 = C01	135.5 (5)		106.52 (17)
$C_3 = C_2 = C_{02}$	69.5 (2)	CII = CoI = C3	100.69 (15)
C1—C2—C62	135.7 (2)	C12—Co1—C3	102.34 (16)
Co1—C2—Co2	77.75 (13)	C13—Co1—C3	141.85 (16)
C2—C3—C4	138.8 (3)	C11—Co1—C2	98.44 (15)
C2—C3—Co1	70.4 (2)	C12—Co1—C2	140.87 (16)
C4—C3—Co1	135.6 (2)	C13—Co1—C2	104.58 (16)
C2—C3—Co2	70.5 (2)	C3—Co1—C2	40.06 (14)
C4—C3—Co2	135.3 (3)	C11—Co1—Co2	148.11 (11)
Co1—C3—Co2	78.29 (13)	C12—Co1—Co2	100.47 (12)
O2—C4—C3	111.1 (3)	C13—Co1—Co2	99.02 (12)
O2—C4—H4A	109.4	C3—Co1—Co2	50.92 (10)
C3—C4—H4A	109.4	C2—Co1—Co2	51.21 (10)
O2—C4—H4B	109.4	O11—C11—Co1	179.3 (3)
C3—C4—H4B	109.4	012—C12—Co1	176.8 (3)
H4A—C4—H4B	108.0	013—C13—Co1	179.3 (3)
$C_{5}-C_{2}-C_{4}$	117.6 (3)	$C_{21} - C_{02} - C_{22}$	101.27(18)
$C_{5} = 0^{2} = 0^{21}$	147.6(3)	$C_{21} = C_{02} = C_{23}$	101.27(10) 101.86(17)
$C_{4} = 0^{2} = 0^{21}$	89.70 (19)	$C^{22} = C^{22} = C^{23}$	101.00(17) 104.94(17)
0^{3} 0^{5} 0^{2}	124.0(3)	$C_{22} = C_{02} = C_{23}$	104.94(17)
03 - 02 - 02	124.9(3) 123.7(3)	$C_{21} = C_{02} = C_{3}$	90.31(13)
02 C5 C6	123.7(3) 111 A (2)	$C_{22} = C_{02} = C_{3}$	103.13(13) 141.17(17)
02 - 03 - 00	111.4(3) 112.2(2)	$C_{23} = C_{02} = C_{3}$	141.1/(1/)
$C_{1} = C_{0} = C_{0}$	112.2 (3)	$C_{21} = C_{02} = C_{2}$	90.39 (10)
	110.8 (3)	C_{22} — C_{02} — C_{2}	141.3/(15)
C8—C6—C5	114.1 (3)	C23—Co2—C2	104.47 (16)

C7—C6—Br1	109.1 (3)	C3—Co2—C2	39.97 (14)
C8—C6—Br1	107.0 (3)	C21—Co2—Co1	145.74 (12)
C5—C6—Br1	103.0 (2)	C22—Co2—Co1	100.40 (12)
С6—С7—Н7А	109.5	C23—Co2—Co1	97.76 (12)
С6—С7—Н7В	109.5	C3—Co2—Co1	50.79 (10)
H7A—C7—H7B	109.5	C2—Co2—Co1	51.04 (10)
С6—С7—Н7С	109.5	O21—C21—Co2	176.0 (3)
H7A—C7—H7C	109.5	O22—C22—Co2	177.1 (3)
H7B—C7—H7C	109.5	O23—C23—Co2	178.5 (3)
O1—C1—C2—C3	30.5 (6)	C3—C4—O2—C5	-106.2 (3)
O1-C1-C2-Co1	-85.6 (4)	C3—C4—O2—O21 ⁱⁱ	100.4 (3)
O1—C1—C2—Co2	147.0 (3)	C4—O2—C5—O3	3.2 (5)
C1—C2—C3—C4	0.4 (8)	O21 ⁱⁱ —O2—C5—O3	135.5 (3)
Co1—C2—C3—C4	138.1 (5)	C4—O2—C5—C6	-177.1 (3)
Co2—C2—C3—C4	-137.7 (5)	O21 ⁱⁱ —O2—C5—C6	-44.8 (5)
C1-C2-C3-Co1	-137.7 (5)	O3—C5—C6—C7	22.8 (5)
Co2—C2—C3—Co1	84.12 (10)	O2—C5—C6—C7	-156.8 (3)
C1-C2-C3-Co2	138.1 (5)	O3—C5—C6—C8	150.7 (4)
Co1—C2—C3—Co2	-84.12 (10)	O2—C5—C6—C8	-29.0 (4)
C2—C3—C4—O2	179.8 (4)	O3—C5—C6—Br1	-93.7 (4)
Co1—C3—C4—O2	-64.1 (4)	O2—C5—C6—Br1	86.6 (3)
Co2—C3—C4—O2	64.1 (4)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*+1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
01—H1…O3 ⁱⁱⁱ	0.84	2.16	2.946 (4)	156	
C4—H4 <i>B</i> ···O3 ⁱⁱⁱ	0.99	2.60	3.360 (4)	134	
C7—H7A···O1 ⁱⁱⁱ	0.98	2.71	3.637 (5)	157	
C1—H1A···O1 ^{iv}	0.99	2.55	3.307 (5)	133	
C8—H8A····O12 ^v	0.98	2.71	3.485 (5)	136	

Symmetry codes: (iii) -*x*, -*y*+1, -*z*+2; (iv) -*x*, -*y*+2, -*z*+2; (v) -*x*+1, -*y*+1, -*z*+1.

(2) $[\mu_2 - \eta^2, \eta^2 - But - 2 - yne - 1, 4 - diyl bis(2 - bromo - 2 - methylpropanoate) - \kappa^4 C^2, C^3 : C^2, C^3] bis[tricarbonylcobalt(II)](Co-Co)$

Crystal data

$[Co_2(C_{12}H_{16}Br_2O_4)(CO)_6]$	Z = 2
$M_r = 669.99$	F(000) = 656
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.851 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.392 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
b = 10.710 (5) Å	Cell parameters from 5837 reflections
c = 13.269 (5) Å	$\theta = 2.3 - 30.9^{\circ}$
$\alpha = 71.314 (5)^{\circ}$	$\mu = 4.75 \text{ mm}^{-1}$
$\beta = 71.973 \ (5)^{\circ}$	T = 91 K
$\gamma = 84.630 \ (5)^{\circ}$	Rod, dark red
$V = 1202.3 (10) \text{ Å}^3$	$0.25 \times 0.11 \times 0.06 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{min} = 0.611, T_{max} = 1.000$ 21546 measured reflections	8127 independent reflections 6040 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 32.3^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -14 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.069$ S = 0.95 8127 reflections 293 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0311P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.008$ $\Delta\rho_{max} = 1.43$ e Å ⁻³ $\Delta\rho_{min} = -1.06$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or	equivalent isotrop	oic displacement	parameters	$(Å^2)$)
----------------------------------	----------------	--------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.75011 (2)	0.49577 (2)	0.81786 (2)	0.02064 (5)
C7	0.6143 (2)	0.74032 (18)	0.72699 (17)	0.0192 (4)
H7A	0.5332	0.7891	0.6996	0.029*
H7B	0.7079	0.7554	0.6657	0.029*
H7C	0.6260	0.7708	0.7862	0.029*
C6	0.4399 (2)	0.56200 (19)	0.87435 (16)	0.0167 (4)
H6A	0.3511	0.6010	0.8526	0.025*
H6B	0.4533	0.5981	0.9300	0.025*
H6C	0.4270	0.4662	0.9061	0.025*
C5	0.5769 (2)	0.59405 (18)	0.77269 (16)	0.0140 (4)
C4	0.5703 (2)	0.54055 (17)	0.68077 (16)	0.0134 (4)
O2	0.63231 (16)	0.58983 (13)	0.58281 (11)	0.0182 (3)
01	0.48633 (15)	0.43066 (12)	0.72283 (11)	0.0140 (3)
C3	0.4766 (2)	0.36816 (18)	0.64290 (15)	0.0143 (4)
H3A	0.5769	0.3390	0.6063	0.017*
H3B	0.4373	0.4311	0.5848	0.017*
C2	0.3747 (2)	0.25397 (17)	0.70430 (15)	0.0126 (4)
C1	0.3246 (2)	0.15033 (18)	0.68869 (15)	0.0123 (4)
C8	0.3382 (2)	0.09321 (18)	0.59884 (16)	0.0147 (4)
H8A	0.3121	0.1598	0.5358	0.018*
H8B	0.4424	0.0644	0.5715	0.018*
03	0.23609 (15)	-0.01940 (12)	0.64364 (11)	0.0149 (3)

С9	0.2214 (2)	-0.07240 (18)	0.56873 (16)	0.0142 (4)
O4	0.28657 (18)	-0.03238 (14)	0.47087 (12)	0.0232 (3)
C10	0.1107 (2)	-0.18786 (18)	0.62156 (17)	0.0151 (4)
C11	0.0394 (3)	-0.2029 (2)	0.53826 (19)	0.0235 (5)
H11A	-0.0159	-0.2866	0.5690	0.035*
H11B	0.1175	-0.2021	0.4690	0.035*
H11C	-0.0297	-0.1298	0.5228	0.035*
C12	-0.0002 (3)	-0.1871 (2)	0.7318 (2)	0.0316 (6)
H12A	-0.0649	-0.1099	0.7201	0.047*
H12B	0.0541	-0.1835	0.7832	0.047*
H12C	-0.0615	-0.2675	0.7636	0.047*
Br2	0.24396 (3)	-0.34166 (2)	0.65043 (2)	0.03253 (7)
Col	0.37507 (3)	0.09639 (2)	0.82922 (2)	0.01282 (6)
C13	0.2937 (2)	-0.0691 (2)	0.89243 (17)	0.0205 (4)
O13	0.2402 (2)	-0.17088 (14)	0.92908 (14)	0.0318 (4)
C14	0.3706 (2)	0.15581 (19)	0.94411 (17)	0.0204 (4)
O14	0.3689 (2)	0.19624 (15)	1.01387 (13)	0.0319 (4)
C15	0.5735 (3)	0.06630 (19)	0.78595 (17)	0.0192 (4)
015	0.69906 (18)	0.05518 (17)	0.75817 (14)	0.0304 (4)
Co2	0.16116 (3)	0.22826 (2)	0.78080 (2)	0.01303 (6)
C16	0.0196 (2)	0.0985 (2)	0.84785 (17)	0.0179 (4)
O16	-0.06494 (18)	0.01443 (15)	0.88945 (13)	0.0269 (4)
C17	0.1197 (2)	0.3291 (2)	0.87509 (19)	0.0214 (4)
O17	0.0949 (2)	0.39023 (17)	0.93381 (15)	0.0367 (4)
C18	0.0866 (2)	0.3323 (2)	0.67223 (18)	0.0203 (4)
O18	0.0423 (2)	0.39556 (16)	0.60153 (14)	0.0316 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01709 (11)	0.02490 (11)	0.02151 (11)	-0.00005 (8)	-0.00881 (8)	-0.00622 (8)
C7	0.0267 (12)	0.0152 (9)	0.0180 (10)	-0.0055 (8)	-0.0077 (8)	-0.0054 (8)
C6	0.0178 (10)	0.0187 (9)	0.0128 (9)	-0.0030 (8)	-0.0027 (7)	-0.0047 (7)
C5	0.0169 (10)	0.0136 (8)	0.0136 (9)	-0.0020 (7)	-0.0076 (7)	-0.0034 (7)
C4	0.0150 (10)	0.0116 (8)	0.0143 (9)	-0.0023 (7)	-0.0058 (7)	-0.0031 (7)
O2	0.0226 (8)	0.0179 (7)	0.0127 (7)	-0.0087 (6)	-0.0023 (6)	-0.0031 (5)
O1	0.0181 (7)	0.0130 (6)	0.0118 (6)	-0.0078 (5)	-0.0031 (5)	-0.0041 (5)
C3	0.0191 (10)	0.0138 (8)	0.0114 (9)	-0.0060 (7)	-0.0036 (7)	-0.0051 (7)
C2	0.0122 (9)	0.0124 (8)	0.0128 (9)	-0.0011 (7)	-0.0033 (7)	-0.0035 (7)
C1	0.0105 (9)	0.0135 (8)	0.0124 (9)	-0.0008 (7)	-0.0026 (7)	-0.0038 (7)
C8	0.0146 (10)	0.0147 (8)	0.0136 (9)	-0.0066 (7)	-0.0006 (7)	-0.0043 (7)
O3	0.0168 (7)	0.0145 (6)	0.0134 (7)	-0.0068 (5)	-0.0011 (5)	-0.0056 (5)
C9	0.0129 (9)	0.0141 (8)	0.0190 (10)	0.0017 (7)	-0.0070 (7)	-0.0077 (7)
O4	0.0279 (9)	0.0270 (8)	0.0163 (7)	-0.0110 (7)	-0.0035 (6)	-0.0086 (6)
C10	0.0140 (10)	0.0123 (8)	0.0207 (10)	0.0002 (7)	-0.0067 (8)	-0.0059 (7)
C11	0.0216 (12)	0.0227 (10)	0.0312 (12)	-0.0052 (9)	-0.0156 (9)	-0.0059 (9)
C12	0.0267 (13)	0.0314 (12)	0.0347 (13)	-0.0165 (10)	0.0075 (10)	-0.0190 (11)
Br2	0.03671 (15)	0.01571 (10)	0.05628 (17)	0.00796 (9)	-0.03120 (13)	-0.01135 (10)

Col	0.01475 (14)	0.01102 (12)	0.01208 (12)	-0.00128 (10)	-0.00391 (10)	-0.00241 (9)
C13	0.0217 (11)	0.0184 (10)	0.0198 (10)	0.0038 (8)	-0.0049 (8)	-0.0061 (8)
O13	0.0383 (10)	0.0140 (7)	0.0350 (9)	-0.0047 (7)	-0.0020 (8)	-0.0037 (7)
C14	0.0262 (12)	0.0153 (9)	0.0186 (10)	-0.0013 (8)	-0.0096 (9)	-0.0005 (8)
O14	0.0538 (12)	0.0281 (8)	0.0198 (8)	0.0015 (8)	-0.0169 (8)	-0.0103 (7)
C15	0.0238 (12)	0.0183 (9)	0.0152 (9)	0.0005 (8)	-0.0089 (8)	-0.0019 (8)
O15	0.0179 (9)	0.0433 (10)	0.0290 (9)	0.0048 (7)	-0.0082 (7)	-0.0100 (7)
Co2	0.01267 (13)	0.01312 (12)	0.01367 (13)	-0.00069 (10)	-0.00305 (10)	-0.00523 (10)
C16	0.0151 (10)	0.0245 (10)	0.0152 (9)	0.0001 (8)	-0.0015 (8)	-0.0102 (8)
O16	0.0219 (9)	0.0329 (9)	0.0241 (8)	-0.0118 (7)	0.0022 (7)	-0.0117 (7)
C17	0.0194 (11)	0.0220 (10)	0.0252 (11)	0.0015 (8)	-0.0068 (9)	-0.0108 (9)
O17	0.0380 (11)	0.0400 (10)	0.0421 (11)	0.0063 (8)	-0.0098 (8)	-0.0299 (9)
C18	0.0180 (11)	0.0202 (10)	0.0251 (11)	0.0012 (8)	-0.0053 (9)	-0.0114 (8)
O18	0.0359 (10)	0.0342 (9)	0.0285 (9)	0.0105 (7)	-0.0173 (8)	-0.0102 (7)

Geometric parameters (Å, °)

Br1—C5	1.998 (2)	O3—C9	1.338 (2)
С7—С5	1.519 (3)	С9—О4	1.202 (2)
C7—H7A	0.9800	C9—C10	1.528 (3)
С7—Н7В	0.9800	C10—C11	1.513 (3)
С7—Н7С	0.9800	C10—C12	1.513 (3)
C6—C5	1.518 (3)	C10—Br2	1.983 (2)
С6—Н6А	0.9800	C11—H11A	0.9800
C6—H6B	0.9800	C11—H11B	0.9800
С6—Н6С	0.9800	C11—H11C	0.9800
C5—C4	1.524 (3)	C12—H12A	0.9800
C4—O2	1.207 (2)	C12—H12B	0.9800
C4—O1	1.341 (2)	C12—H12C	0.9800
O1—C3	1.452 (2)	Co1—C15	1.803 (2)
C3—C2	1.474 (3)	Co1—C14	1.819 (2)
С3—НЗА	0.9900	Co1—C13	1.826 (2)
С3—Н3В	0.9900	C13—O13	1.135 (2)
C1—C2	1.343 (3)	C14—O14	1.136 (3)
Co1—Co2	2.4759 (10)	C15—O15	1.128 (3)
Cl—Col	1.960 (2)	Co2—C18	1.805 (2)
C1—Co2	1.949 (2)	Co2—C16	1.820 (2)
C2—Co1	1.9508 (19)	Co2—C17	1.835 (2)
С2—Со2	1.948 (2)	C16—O16	1.136 (2)
C1—C8	1.473 (3)	C17—O17	1.130 (3)
C8—O3	1.460 (2)	C18—O18	1.137 (3)
C8—H8A	0.9900	O1—Br2 ⁱ	3.2960 (18)
C8—H8B	0.9900		
С5—С7—Н7А	109.5	C11—C10—C9	110.93 (16)
С5—С7—Н7В	109.5	C12—C10—C9	114.10 (17)
H7A—C7—H7B	109.5	C11—C10—Br2	106.58 (14)
С5—С7—Н7С	109.5	C12—C10—Br2	107.91 (15)

H7A—C7—H7C	109.5	C9—C10—Br2	102.33 (13)
H7B—C7—H7C	109.5	C10-C11-H11A	109.5
С5—С6—Н6А	109.5	C10-C11-H11B	109.5
С5—С6—Н6В	109.5	H11A—C11—H11B	109.5
H6A—C6—H6B	109.5	C10—C11—H11C	109.5
С5—С6—Н6С	109.5	H11A—C11—H11C	109.5
H6A—C6—H6C	109.5	H11B—C11—H11C	109.5
H6B—C6—H6C	109.5	C10—C12—H12A	109.5
C6—C5—C7	112.32 (17)	C10—C12—H12B	109.5
C6—C5—C4	114.29 (16)	H12A—C12—H12B	109.5
C7—C5—C4	111.00 (15)	C10—C12—H12C	109.5
C6-C5-Br1	107.83 (13)	H12A—C12—H12C	109.5
C7-C5-Br1	108 67 (14)	H12B— $C12$ — $H12C$	109.5
C4-C5-Br1	102.04(13)	C_{15} C_{01} C_{14}	97.61 (10)
$0^{2}-C^{4}-0^{1}$	124 07 (18)	$C_{15} = C_{01} = C_{13}$	103 39 (10)
02 - C4 - C5	124.81 (17)	C_{14} C_{01} C_{13}	106.12 (9)
01 - C4 - C5	111 12 (15)	$C_{15} = C_{01} = C_{2}$	96 50 (8)
C4-01-C3	115 91 (14)	C_{14} C_{01} C_{2}	105 58 (9)
$C_{4} = 01 = Br^{2^{i}}$	78 24 (11)	C_{13} C_{01} C_{2}	139.62(9)
$C_{3} = 01 = Br^{2^{i}}$	91 57 (10)	$C_{15} = C_{01} = C_{1}$	102.02(9)
$01 - C_{3} - C_{2}$	107 52 (15)	$C_{14} = C_{01} = C_{14}$	102.92(9) 141.32(9)
$01 - C_3 - H_3 \Delta$	110.2	C_{13} C_{01} C_{1}	141.52(9)
$C_2 - C_3 - H_3 A$	110.2	$C_2 - C_0 - C_1$	40.16(8)
O1 - C3 - H3B	110.2	$C_1 = C_0 = C_0^2$	146 69 (6)
$C_2 C_3 H_3 B$	110.2	$C_{13}^{-14} = C_{01}^{-14} = C_{02}^{-24}$	140.07(0)
$H_{3A} = C_{3} = H_{3B}$	108.5	$C_{14} = C_{01} = C_{02}$	90.39(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140.40 (18)	$C_{13}^{2} = C_{01}^{2} = C_{02}^{2}$	101.48 (8) 50.52 (6)
$C_1 = C_2 = C_3$	140.49(18)	$C_2 = C_0 = C_0 C_2$	50.52 (0) 50.50 (6)
$C_1 = C_2 = C_{02}$	125.07(11)	C1 = C01 = C02	50.50(0)
$C_{3} = C_{2} = C_{02}$	155.07(14) 70.20(11)	013 - 014 014 014 014	177.3(2)
$C_1 = C_2 = C_0 I$	10.29(11) 122.50(14)	015 - 015 - 011	176.14(10)
$C_{3} = C_{2} = C_{01}$	155.59 (14)	C18 - C13 - C01	1/3.83(19)
$C_0 = C_1 = C_0$	/8.85 (/)	C18 - C02 - C16	100.32(10)
$C_2 - C_1 - C_8$	139.74(17)	C18 - C02 - C17	100.21(10)
$C_2 = C_1 = C_{02}$	69.80(12)	C10 - C02 - C17	104.28 (10)
$C_8 = C_1 = C_{02}$	134.45 (14)	C18 - C02 - C2	99.95 (9)
$C_2 = C_1 = C_0 I$	69.55 (11)	C16 - C02 - C2	140.82 (9)
	136.33 (14)	C17 - C02 - C2	104.64 (9)
$C_02 = C_1 = C_01$	/8.60 (8)	C18 - C62 - C1	98.17 (9)
03-08-01	108.09 (15)	C16-C02-C1	103.58 (9)
O3—C8—H8A	110.1	C17—Co2—C1	143.05 (9)
C1—C8—H8A	110.1	C2—Co2—C1	40.31 (8)
O3—C8—H8B	110.1	C18—Co2—Co1	147.24 (7)
C1—C8—H8B	110.1	C16—Co2—Co1	97.95 (8)
H8A—C8—H8B	108.4	C17—Co2—Co1	101.33 (7)
C9—O3—C8	115.40 (14)	C2—Co2—Co1	50.63 (6)
04	123.67 (18)	C1—Co2—Co1	50.90 (6)
O4—C9—C10	124.03 (18)	O16—C16—Co2	177.62 (19)
O3—C9—C10	112.30 (16)	O17—C17—Co2	179.3 (2)

C11—C10—C12	113.98 (19)	O18—C18—Co2	177.7 (2)
C6—C5—C4—O2	151.45 (19)	Co1—C2—C1—C8	-139.0 (3)
C7—C5—C4—O2	23.2 (3)	C3—C2—C1—Co2	-139.2 (3)
Br1-C5-C4-O2	-92.5 (2)	Co1—C2—C1—Co2	84.98 (6)
C6-C5-C4-O1	-28.7 (2)	C3-C2-C1-Co1	135.8 (3)
C7—C5—C4—O1	-156.98 (16)	Co2—C2—C1—Co1	-84.98 (6)
Br1-C5-C4-O1	87.39 (16)	C2-C1-C8-O3	-174.7 (2)
O2—C4—O1—C3	2.0 (3)	Co2—C1—C8—O3	-60.5 (2)
C5—C4—O1—C3	-177.82 (15)	Co1—C1—C8—O3	68.3 (2)
$O2$ — $C4$ — $O1$ — $Br2^{i}$	-83.95 (19)	C1—C8—O3—C9	172.04 (16)
$C5-C4-O1-Br2^{i}$	96.19 (14)	C8—O3—C9—O4	0.2 (3)
C4—O1—C3—C2	-177.40 (15)	C8—O3—C9—C10	-178.94 (15)
$Br2^{i}$ —O1—C3—C2	-99.72 (14)	O4—C9—C10—C11	-26.6 (3)
O1—C3—C2—C1	-173.2 (2)	O3—C9—C10—C11	152.47 (17)
O1—C3—C2—Co2	68.6 (2)	O4—C9—C10—C12	-157.0 (2)
O1-C3-C2-Co1	-58.2 (2)	O3—C9—C10—C12	22.1 (2)
C3—C2—C1—C8	-3.2 (5)	O4—C9—C10—Br2	86.7 (2)
Co2—C2—C1—C8	136.1 (3)	O3—C9—C10—Br2	-94.18 (16)

Symmetry code: (i) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C12—H12C···Br1 ⁱⁱ	0.98	2.99	3.961 (3)	170
C6—H6A···Br2 ⁱ	0.98	3.01	3.788 (2)	137
C8—H8 <i>B</i> ···O4 ⁱⁱⁱ	0.99	2.45	3.411 (3)	165
C3—H3 B ···O2 ^{iv}	0.99	2.58	3.341 (3)	133
C8—H8A···O2 ^{iv}	0.99	2.64	3.454 (3)	139

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1, *y*-1, *z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1.