

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,6-Triamino-N-phenylthieno[2,3-b]pyridine-2-carboxamide

Shaaban K. Mohamed,^{a,b} Joel T. Mague,^c Mehmet Akkurt,^d Bahgat R. M. Hussein^e and Mustafa R. Albayati^{f*}

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq

Correspondence e-mail: shaabankamel@yahoo.com

Received 27 May 2014; accepted 14 June 2014

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 18.4.

In the title compound, $C_{14}H_{13}N_5OS$, the dihedral angle between the fused ring system (r.m.s. deviation = 0.028 Å) and the phenyl ring is $48.24 (4)^{\circ}$. The molecule features both an intramolecular $N-H\cdots O$ and an $N-H\cdots N$ hydrogen bond. In the crystal, molecules are linked by $N-H\cdots O$ and N-H···N hydrogen bonds, generating a three-dimensional network. A weak N-H··· π interaction is also observed.

Related literature

For background to thienopyridine-containing compounds, see: Boschelli et al. (2008); Bakhite et al. (2002); Schnute et al. (2007).

Experimental

Crystal data C14H13N5OS $M_r = 299.36$ Monoclinic, $P2_1/n$ a = 5.2732 (7) Å

b = 21.028 (3) Å
c = 11.9777 (16) Å
$\beta = 93.969 \ (2)^{\circ}$
V = 1325.0 (3) Å ³

Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min} = 0.85, T_{\max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 190 parameters $wR(F^2) = 0.101$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$ = -0.25 e Å⁻³ 3500 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9-C14 phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots N4^{i}$	0.91	2.52	3.2226 (17)	134
$N3-H3A\cdots N1^{ii}$	0.91	2.07	2.9398 (17)	161
$N3 - H3B \cdot \cdot \cdot N4$	0.91	2.38	2.9802 (17)	124
$N3 - H3B \cdot \cdot \cdot N2^{iii}$	0.91	2.41	3.2034 (16)	146
$N4 - H4B \cdots O1$	0.91	2.15	2.8387 (16)	132
$N4 - H4B \cdots O1^{iv}$	0.91	2.32	2.9991 (16)	132
$N2 - H2B \cdots Cg3^{v}$	0.91	2.56	3.4662 (14)	173
Summatry and as (i) x	1	1. (;;) x 1	1 + 1 = 1 (iii) $x + 1$	1

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -y +$ $\frac{1}{2};(m)$ + <u>7</u>,

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7235).

References

- Bakhite, E. A., Abdel-Rahman, A. E., Mohamed, O. S. & Thabet, E. A. (2002). Bull. Korean Chem. Soc. 23, 1709-1714.
- Boschelli, D. H., Wu, B., Barrios, S. A. C., Chen, J., Asselin, M., Cole, D. C., Lee, J., Yang, X. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 2850-2853
- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Schnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L. & Collier, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 3349-3353.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.21 \times 0.13 \times 0.09 \text{ mm}$

24103 measured reflections 3500 independent reflections

3017 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.046$

Acta Cryst. (2014). E70, o805 [https://doi.org/10.1107/S1600536814013981]

3,4,6-Triamino-N-phenylthieno[2,3-b]pyridine-2-carboxamide

Shaaban K. Mohamed, Joel T. Mague, Mehmet Akkurt, Bahgat R. M. Hussein and Mustafa R. Albayati

S1. Comment

Thienopyridines and their analogs are an interesting class of molecules due to their extensive spectrum of pharmacological properties, for example anti-inflammatory (Boschelli *et al.*, 2008), anti-microbial (Bakhite *et al.*, 2002) and anti-viral (Schnute *et al.*, 2007) activities. As part of our program in the development of new heterocyclic molecules with potential bioactivities, we report in this study the synthesis and crystal structure determination of the title compound.

In the title compound, the fused ring system is nearly planar with an r.m.s. deviation of 0.028 Å and makes a dihedral angle of 48.24 (4)° with the terminal phenyl group. The conformation of the carboxamide group is partially determined by the intramolecular N4—H4B···O1 hydrogen bond (Fig. 1 and Table 1). In the solid, the molecules associate through pairwise intermolecular N4—H4B···O1 and single N3—H3a···N1 hydrogen bonds to form a three-dimensional network (Figs. 2 and 3 and Table 1). A weak N—H··· π interaction is observed between the NH₂ group (N2—H2B) and the centroid of the C9–C14 phenyl ring.

S2. Experimental

A mixture of 2.7 mmol (500 mg) of 4,6-diamino-2-mercaptonicotinonitrile, 2.7 mmol (150 mg) potassium hydroxide and 1.86 mmol (320 mg) in 30 ml e thanol was stirred and refluxed for 3 h. The excess solvent was evaporated under vacuum and the resulting solid product was filtered off, washed with cold ethanol and recrystallized from ethanol to furnish colourless crystals (730 mg; 87% yield). Mp. 531 - 533 K.

IR (v_{max} , cm⁻¹): 3462, 3402, 3352, (3NH₂), 3213 (NH), 1645 (C=O), 1614 (C=N); ¹HNMR (DMSO-d₆), δ , p.p.m.: 8.88 (s, 1H, NH exchanged by D₂O), 7.65–7.63 (d, J = 8 Hz, 2H, arom), 7.29–7.25 (t, J = 8 Hz, 2H, arom), 7.02–6.99 (m, 3H, arom+ NH₂ exchanged by D₂O), 6.11 (s, 2H, NH₂ exchanged by D₂O), 6.02 (s, 2H, NH₂ exchanged by D₂O), 5.59 (s, 1H, CH pyridyl).

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å following an initial round of refinement to check the validity of the peak assignments. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figure 1

The title compound with 50% probability ellipsoids and with intramolecular hydrogen bonds shown as dotted lines.

Figure 2

Packing viewed down the *a* axis showing a portion of the zigzag sheet with the intermolecular hydrogen bonds depicted by dotted lines.

Figure 3 Packing viewed parallel to (101).

3,4,6-Triamino-N-phenylthieno[2,3-b]pyridine-2-carboxamide

Crystal data

C₁₄H₁₃N₅OS $M_r = 299.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.2732 (7) Å b = 21.028 (3) Å c = 11.9777 (16) Å $\beta = 93.969$ (2)° V = 1325.0 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min} = 0.85, \ T_{\max} = 0.98$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.101$ S = 1.063500 reflections 190 parameters 0 restraints F(000) = 624 $D_x = 1.501 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9996 reflections $\theta = 2.6-29.1^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.21 \times 0.13 \times 0.09 \text{ mm}$

24103 measured reflections 3500 independent reflections 3017 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -6 \rightarrow 7$ $k = -28 \rightarrow 28$ $l = -16 \rightarrow 16$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.5972P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -*R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х Zv **S**1 0.0168 (1) 0.40493 (6) 0.35471(2)0.83539(3)**O**1 0.61593 (8) 0.0249(3)0.6615(2)0.47538(5)N1 0.0339(2)0.26672 (5) 0.82888(9)0.0169(3)N2 -0.2636(2)0.18599 (6) 0.82055 (10) 0.0230(3)N3 -0.1968(2)0.31627 (6) 0.49527 (10) 0.0220(3)N4 0.2168(2)0.41258 (6) 0.52579 (9) 0.0209(3)N5 0.7313(2)0.47187 (6) 0.80636(10) 0.0196 (3) C1 -0.1541(3)0.23617(6) 0.76882 (11) 0.0168(3)C2 -0.2385(3)0.25273 (6) 0.65898 (11) 0.0170(3)C3 -0.1212(3)0.30131 (6) 0.60362 (11) 0.0161 (3) C4 0.0807(2)0.0150 (3) 0.33451 (6) 0.66470 (10) C5 0.1430(2)0.31391 (6) 0.77427 (10) 0.0149(3)C6 0.2455 (3) 0.38441 (6) 0.63091 (11) 0.0157 (3) C7 0.4308 (3) 0.40001 (6) 0.71359 (10) 0.0163 (3) C8 0.6148(3)0.45111 (6) 0.70611 (11) 0.0172(3)C9 0.9058(3)0.52266 (6) 0.82104 (11) 0.0178(3)C10 1.0866 (3) 0.53587(7) 0.74444 (12) 0.0199 (4) C11 1.2629 (3) 0.58416(7)0.76735 (14) 0.0245(4)C12 1.2616 (3) 0.61978(7) 0.86512 (14) 0.0261(4)C13 1.0791 (3) 0.60708(7)0.94063 (13) 0.0236(4)C14 0.91876 (12) 0.0207(4)0.9013(3)0.55895(7)H2 -0.377100.23050 0.62220 0.0200* H2A -0.177400.16940 0.88230 0.0280* H2B -0.360300.77790 0.0280* 0.15820 H3A -0.290500.28560 0.45810 0.0260* H3B -0.072700.33330 0.45530 0.0260* H4A 0.05280 0.42370 0.50670 0.0250* H4B 0.33410 0.44320 0.51430 0.0250* H5A 0.66340 0.45840 0.87010 0.0230* H10 1.08930 0.51200 0.67710 0.0240* 0.0290* H11 1.38620 0.59300 0.71530 H12 0.0310* 1.38390 0.65240 0.88020 H13 1.00740 0.0280* 1.07580 0.63140 H14 0.97040 0.0250*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.77650

0.55070

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0174 (2)	0.0186 (2)	0.0138 (2)	-0.0032(1)	-0.0034 (1)	0.0018(1)
01	0.0273 (6)	0.0270 (5)	0.0196 (5)	-0.0099 (4)	-0.0033 (4)	0.0059 (4)
N1	0.0165 (6)	0.0174 (5)	0.0167 (5)	-0.0011 (4)	0.0000 (4)	0.0018 (4)
N2	0.0234 (6)	0.0229 (6)	0.0223 (6)	-0.0066 (5)	-0.0008(5)	0.0051 (5)
N3	0.0243 (6)	0.0263 (6)	0.0147 (5)	-0.0084(5)	-0.0037 (4)	0.0006 (5)
N4	0.0256 (6)	0.0215 (6)	0.0151 (5)	-0.0059 (5)	-0.0027 (5)	0.0044 (4)
N5	0.0211 (6)	0.0193 (6)	0.0180 (5)	-0.0064 (4)	-0.0012 (4)	0.0003 (4)
C1	0.0152 (6)	0.0166 (6)	0.0187 (6)	0.0005 (5)	0.0028 (5)	-0.0001 (5)
C2	0.0155 (6)	0.0177 (6)	0.0175 (6)	-0.0021 (5)	-0.0001 (5)	-0.0016 (5)
C3	0.0162 (6)	0.0173 (6)	0.0145 (6)	0.0001 (5)	-0.0003 (5)	-0.0015 (5)
C4	0.0168 (6)	0.0149 (6)	0.0131 (6)	-0.0007(5)	-0.0006 (5)	-0.0002 (4)
C5	0.0141 (6)	0.0156 (6)	0.0145 (6)	-0.0001 (4)	-0.0016 (5)	-0.0011 (4)
C6	0.0178 (6)	0.0151 (6)	0.0140 (5)	-0.0009(5)	0.0003 (5)	-0.0005 (4)
C7	0.0181 (6)	0.0163 (6)	0.0142 (6)	-0.0020(5)	-0.0004 (5)	0.0019 (5)
C8	0.0160 (6)	0.0165 (6)	0.0188 (6)	-0.0012 (5)	-0.0018 (5)	0.0004 (5)
C9	0.0162 (6)	0.0147 (6)	0.0218 (6)	-0.0004(5)	-0.0044 (5)	0.0019 (5)
C10	0.0169 (6)	0.0184 (6)	0.0242 (7)	0.0010 (5)	-0.0008(5)	0.0001 (5)
C11	0.0158 (7)	0.0237 (7)	0.0338 (8)	-0.0020(5)	-0.0003 (6)	0.0045 (6)
C12	0.0206 (7)	0.0187 (7)	0.0375 (8)	-0.0043 (5)	-0.0079 (6)	0.0019 (6)
C13	0.0246 (7)	0.0184 (7)	0.0264 (7)	-0.0003 (5)	-0.0081 (6)	-0.0020 (5)
C14	0.0201 (7)	0.0200 (6)	0.0214 (6)	-0.0009 (5)	-0.0030 (5)	0.0000 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C5	1.7435 (12)	C2—C3	1.3866 (19)
S1—C7	1.7555 (13)	C3—C4	1.4312 (19)
O1—C8	1.2348 (17)	C4—C6	1.4383 (18)
N1-C1	1.3470 (18)	C4—C5	1.3994 (17)
N1—C5	1.3400 (16)	C6—C7	1.382 (2)
N2-C1	1.3712 (18)	С7—С8	1.455 (2)
N3—C3	1.3677 (18)	C9—C10	1.396 (2)
N4—C6	1.3902 (17)	C9—C14	1.399 (2)
N5—C8	1.3812 (18)	C10—C11	1.391 (2)
N5—C9	1.4128 (18)	C11—C12	1.391 (2)
N2—H2B	0.9100	C12—C13	1.391 (2)
N2—H2A	0.9100	C13—C14	1.392 (2)
N3—H3B	0.9100	C2—H2	0.9500
N3—H3A	0.9100	C10—H10	0.9500
N4—H4A	0.9100	C11—H11	0.9500
N4—H4B	0.9100	C12—H12	0.9500
N5—H5A	0.9100	C13—H13	0.9500
C1—C2	1.4033 (19)	C14—H14	0.9500
C5-S1-C7	91 32 (6)	N4—C6—C7	125 12 (13)
C1 - N1 - C5	114.68(11)	C4 - C6 - C7	112 50 (11)
	11 1.00 (11)		112.30 (11)

C8 N5 C9	126 43 (12)	C6 C7 C8	124 95 (12)
C1 - N2 - H2B	119.00	$S_{1} = C_{7} = C_{6}$	1124.93(12) 11203(10)
$H_2 \Delta N_2 H_2 B$	116.00	S1 S1	112.05(10) 122.86(10)
C1 N2 H2A	117.00	O1 C8 N5	122.00(10) 121.75(13)
$C_1 = N_2 = M_2 A$ $C_3 = N_3 = H_3 B$	117.00	01 - 08 - 07	121.75(13) 122.24(12)
	113.00	N5 C8 C7	122.24(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.00	10 - 0 - 07	110.00(11) 110.56(13)
C6 NA HAP	114.00	10 - 0 - 010	119.30(13) 122.40(12)
C_0 N_4 H_4D	114.00	$N_{5} = C_{9} = C_{10}$	122.49(12) 117.00(12)
$\Pi 4A - \Pi 4D$	112.00	$N_{3} = C_{9} = C_{14}$	117.90(13)
Co-N4-H4A	112.00		119.54 (15)
C9—N5—H5A	115.00	C10-C12	121.14(15)
C8—N5—H5A	117.00	CII = CI2 = CI3	119.21 (14)
N1 - C1 - C2	123.80 (12)	C12 - C13 - C14	120.29 (14)
N2-C1-C2	119.90 (13)	C9—C14—C13	120.26 (14)
NI-CI-N2	116.30 (12)	C1—C2—H2	120.00
C1—C2—C3	120.54 (13)	C3—C2—H2	120.00
N3—C3—C4	122.04 (12)	С9—С10—Н10	120.00
N3—C3—C2	120.86 (13)	C11—C10—H10	120.00
C2—C3—C4	117.10 (12)	C10—C11—H11	119.00
C5—C4—C6	112.49 (11)	C12—C11—H11	119.00
C3—C4—C6	130.89 (12)	C11—C12—H12	120.00
C3—C4—C5	116.52 (11)	C13—C12—H12	120.00
S1—C5—C4	111.67 (9)	C12—C13—H13	120.00
N1—C5—C4	127.31 (11)	C14—C13—H13	120.00
S1—C5—N1	120.92 (9)	C9—C14—H14	120.00
N4—C6—C4	122.39 (12)	C13—C14—H14	120.00
C7—S1—C5—N1	176.86 (11)	C6-C4-C5-S1	-0.75 (14)
C7—S1—C5—C4	0.24 (10)	C6-C4-C5-N1	-177.10(12)
C5—S1—C7—C6	0.35 (11)	C3—C4—C6—N4	4.6 (2)
C5—S1—C7—C8	175.81 (12)	C3—C4—C6—C7	-175.08(13)
C5—N1—C1—N2	177.57 (11)	C5-C4-C6-N4	-179.26 (12)
C5—N1—C1—C2	-1.99 (19)	C5—C4—C6—C7	1.02 (16)
C1—N1—C5—S1	-175.21 (10)	N4—C6—C7—S1	179.46 (11)
C1-N1-C5-C4	0.84 (18)	N4—C6—C7—C8	4.1 (2)
C9-N5-C8-O1	22(2)	C4-C6-C7-S1	-0.83(15)
C9-N5-C8-C7	-176.62(13)	C4-C6-C7-C8	-17618(13)
C_{8} N5 C_{9} C_{10}	-366(2)	S1 - C7 - C8 - O1	167 43 (11)
C_{8} N5 C_{9} C_{14}	146.03(14)	S1 - C7 - C8 - N5	-13.78(18)
N1 C1 C2 C3	28(2)	C6 C7 C8 O1	-177(2)
$N_{1} = C_{1} = C_{2} = C_{3}$	-176.78(13)	$C_{0} - C_{7} - C_{8} - O_{1}$	17.7(2)
$N_2 = C_1 = C_2 = C_3$	170.76(13)	$C_0 - C_1 - C_0 - C_{11}$	-176.08(14)
C1 = C2 = C3 = C4	1/7.70(15)	$N_{3} = C_{9} = C_{10} = C_{11}$	-170.08(14)
1 - 02 - 03 - 04	-2.1(2)	$\bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} \bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} $	1.2(2)
$N_{2} = C_{2} = C_{4} = C_{5}$	-1/8.88(12)	$1N_{3} - C_{9} - C_{14} - C_{13}$	1/0.12(13)
$N_3 - C_3 - C_4 - C_6$	-2.9(2)	C10 - C9 - C14 - C13	-1.3(2)
$U_2 - U_3 - U_4 - U_5$	1.00 (18)	C9—C10—C11—C12	-0.3(2)
C2—C3—C4—C6	1/6.98 (14)	C10—C11—C12—C13	-0.6 (2)
C3—C4—C5—S1	175.96 (9)	C11—C12—C13—C14	0.5 (2)

C3—C4—C5—N1	-0.39 (19)	C12—C13—C14	—C9 0	0.5 (2)
Hydrogen-bond geometry (Å,	<i>°</i>)			
Cg3 is the centroid of the C9–C14 ph	nenyl ring.			
D—H···A	D—H	H···A	D····A	D—H···A
N2—H2A····N4 ⁱ	0.91	2.52	3.2226 (17)	134
N3—H3A····N1 ⁱⁱ	0.91	2.07	2.9398 (17)	161
N3—H3 <i>B</i> …N4	0.91	2.38	2.9802 (17)	124
N3—H3 <i>B</i> ····N2 ⁱⁱⁱ	0.91	2.41	3.2034 (16)	146
N4—H4 <i>B</i> …O1	0.91	2.15	2.8387 (16)	132
N4—H4 <i>B</i> …O1 ^{iv}	0.91	2.32	2.9991 (16)	132
N2—H2 B ··· $Cg3^{v}$	0.91	2.56	3.4662 (14)	173

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z-1/2; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) -x+1/2, y-1/2, -z+3/2.