## metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Dichlorido(5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N$ )antimony(V) hexachloridoantimonate(V)

#### Raoudha Soury,<sup>a</sup> Mohamed Salah Belkhiria,<sup>a</sup>\* Michel Giorgi<sup>b</sup> and Habib Nasri<sup>a</sup>

<sup>a</sup>Laboratoire de Physico-Chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and <sup>b</sup>Spectropole, Université d'Aix-Marseille, Faculté des Science, St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France Correspondence e-mail: salah\_belkiria@yahoo.com

Received 5 April 2014; accepted 30 May 2014

Key indicators: single-crystal X-ray study; T = 223 K; mean  $\sigma$ (C–C) = 0.010 Å; R factor = 0.065; wR factor = 0.173; data-to-parameter ratio = 17.9.

The asymmetric unit of the title compound, [Sb(C44H28-N<sub>4</sub>)Cl<sub>2</sub>][SbCl<sub>6</sub>], consists of one half of an antimony(V) tetraphenylporphyrin complex cation and one half of an hexachloridoantimonate(V) anion. In the complex cation, the Sb<sup>V</sup> atom lies on an inversion center and is octahedrally coordinated by four N atoms from a macrocyclic tetraphenylporphyrinate ligand and two chloride ions. The complex cation has approximately a planar core with a maximum deviation of 0.018 (5) Å from the porphyrin mean plane. The average Sb-N distance is 2.062 (11) Å, while the Sb-Cl distance is 2.355 (1) Å. The Sb<sup>V</sup> atom of the anion is also located on an inversion center. The [SbCl<sub>6</sub>]<sup>-</sup> octahedron exhibits rhombic distortion characterized by the Sb-Cl bond lengths [2.311 (3), 2.374 (2) and 2.393 (4) Å]. In the crystal, the cations and anions are linked  $C-H \cdots Cl$  hydrogen bonds, forming a layer parallel to (211).

#### **Related literature**

For general background and the synthesis, see: Liu et al. (1996). For related structures, see: Tsunami et al. (2008); Soury et al. (2012).



### **Experimental**

| Crystal data                                                                                                                                                                                           |                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Sb(C_{44}H_{28}N_4)Cl_2][SbCl_6]$<br>$M_r = 1139.80$<br>Triclinic, $P\overline{1}$<br>a = 10.2044 (4) Å<br>b = 11.1242 (4) Å<br>c = 11.3901 (4) Å<br>$\alpha = 70.685$ (2)°<br>$\beta = 83.398$ (2)° | $\gamma = 63.050 (3)^{\circ}$<br>$V = 1086.73 (7) \text{ Å}^3$<br>Z = 1<br>Mo K\alpha radiation<br>$\mu = 1.77 \text{ mm}^{-1}$<br>T = 223  K<br>$0.2 \times 0.16 \times 0.12 \text{ mm}$ |
|                                                                                                                                                                                                        |                                                                                                                                                                                           |

#### Data collection

Bruker-Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)  $T_{\min} = 0.723, T_{\max} = 0.773$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$  $wR(F^2) = 0.173$ S = 1.134749 reflections

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| C7-H7···Cl3 <sup>i</sup>    | 0.94 | 2.76                    | 3.490 (8)    | 135                       |
| C8−H8···Cl4                 | 0.94 | 2.74                    | 3.593 (8)    | 151                       |
| $C12 - H12 \cdots Cl3^{ii}$ | 0.94 | 2.69                    | 3.539 (8)    | 151                       |
|                             |      |                         |              |                           |

19871 measured reflections

 $R_{\rm int}=0.124$ 

266 parameters

 $\Delta \rho_{\rm max} = 2.55 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -1.45 \text{ e} \text{ Å}^{-3}$ 

4749 independent reflections

4433 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) x, y, z - 1.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5356).

#### References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Liu, I.-C., Chen, J.-H., Wang, S.-S. & Wang, J.-C. (1996). Polyhedron, 15, 3947–3954.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soury, R., Belkhiria, M. S., Nasri, H. & Parvez, M. (2012). Acta Cryst. E68, m717-m718.
- Tsunami, S.-I., Tanaka, K., Matsumoto, J., Shiragami, T. & Yasuda, M. (2008). Bull. Chem. Soc. Jpn, 81, 583–589.

Acta Cryst. (2014). E70, m256–m257 [https://doi.org/10.1107/S1600536814012653] Dichlorido(5,10,15,20-tetraphenylporphyrinato-κ<sup>4</sup>N)antimony(V) hexachloridoantimonate(V)

### Raoudha Soury, Mohamed Salah Belkhiria, Michel Giorgi and Habib Nasri

### S1. Comment

As part of our continuing studies of antimony porphyrin complexes (Soury *et al.*, 2012), we report here the synthesis and crystal structure of the tiltle compound [Sb(tpp)Cl<sub>2</sub>][SbCl<sub>6</sub>] which appears to be the eleventh X-ray structure of an antimony porphyrin complex in the literature.

The molecular structures of the antimony(V) porphyrin cation  $[Sb(tpp)Cl_2]^+$  and the hexachloridoantimonate(V)  $[SbCl_6]^$ anion of the title compound are given in Figure 1. The Sb atom of the porphyrin complex lies on an inversion center and at the same time in the porphyrin mean plane (C<sub>24</sub>N<sub>4</sub>). The average Sb—N distance and the Sb—Cl distance values, respectively equal to 2.062 (4) Å and 2.355 (1) Å, agree very well with those reported in literature (Liu *et al.*, 1996; Tsunami *et al.*, 2008). The Sb atom of the counter-anion is located on an inversion center and has a rhombic distorted octahedral environment with three values of Sb—Cl bond lengths [2.311 (3), 2.374 (2) and 2.393 (4) Å]. Such bond distances are comparable to those observed for similar porphyrin complexes (Soury *et al.*, 2012). The cohesion of the structure is ensured by C—H··· Cl hydrogen bond interactions (Table 1). The crystal packing of compound [Sb(tpp)Cl<sub>2</sub>] [SbCl<sub>6</sub>] is presented in Figure 2.

### **S2. Experimental**

The title compound  $[Sb(tpp)Cl_2][SbCl_6]$  synthesis was performed under argon atmosphere.  $SbCl_5$  (3–4 cm<sup>3</sup>) was added to a solution of tetraphenylporphyrin (H<sub>2</sub>tpp) (500 mg, 0.814 mmol) in pyridine (25 cm<sup>3</sup>) and the resulting mixture was refluxed for 1 h. After removing pyridine and excess antimony pentachloride by rotary evaporation, the purple solid obtained was dissolved in dichloromethane and chromatographed on silica gel 60 (100 g, neutral, activity I). The reaction mixture was firstly eluted with CH<sub>2</sub>Cl<sub>2</sub> to eliminate any free H<sub>2</sub>tpp present and then the title compound was eluted as a purple band using CH<sub>2</sub>Cl<sub>2</sub>-methanol (2%). Single red crystals of the title complex, suitable for X-ray diffraction, have been obtained by diffusion of hexanes in dichloromethane solution.

### S3. Refinement

All H atoms were refined using a riding model with C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .



### Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms have been omitted for clarity.



Figure 2

A crystal packing diagram of the title compound viewed along the b axis.

Dichlorido (5, 10, 15, 20-tetraphenylporphyrinato- $\kappa^4 N$ ) antimony (V) hexachlorido antimonate (V)

| Crystal data                                                                         |                                                                                                         |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $[Sb(C_{44}H_{28}N_4)Cl_2][SbCl_6]$                                                  | c = 11.3901 (4)  Å                                                                                      |
| $M_r = 1139.80$                                                                      | $\alpha = 70.685 \ (2)^{\circ}$                                                                         |
| Triclinic, $P\overline{1}$                                                           | $\beta = 83.398 \ (2)^{\circ}$                                                                          |
| Hall symbol: -P 1                                                                    | $\gamma = 63.050 \ (3)^{\circ}$                                                                         |
| a = 10.2044 (4) Å                                                                    | V = 1086.73 (7) Å <sup>3</sup>                                                                          |
| b = 11.1242 (4) Å                                                                    | Z = 1                                                                                                   |
| Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 10.2044 (4) Å<br>b = 11.1242 (4) Å | $\beta = 83.398 (2)^{\circ}$<br>$\gamma = 63.050 (3)^{\circ}$<br>$V = 1086.73 (7) \text{ Å}^3$<br>Z = 1 |

F(000) = 558  $D_x = 1.742 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22201 reflections  $\theta = 1.9-30.1^{\circ}$ 

#### Data collection

Bruker–Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi \& \omega$  scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995)  $T_{\min} = 0.723, T_{\max} = 0.773$ 

#### Refinement

Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.065$ H-atom parameters constrained  $wR(F^2) = 0.173$  $w = 1/[\sigma^2(F_0^2) + (0.0507P)^2 + 7.0167P]$ where  $P = (F_o^2 + 2F_c^2)/3$ S = 1.134749 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$ 266 parameters  $\Delta \rho_{\rm max} = 2.55 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints  $\Delta \rho_{\rm min} = -1.45 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, 2008),  $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.042 (4) Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

 $\mu = 1.77 \text{ mm}^{-1}$ T = 223 K

 $0.2 \times 0.16 \times 0.12 \text{ mm}$ 

19871 measured reflections

 $\theta_{\rm max} = 27.1^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$ 

4749 independent reflections

4433 reflections with  $I > 2\sigma(I)$ 

Prism, red

 $R_{\rm int} = 0.124$ 

 $h = -13 \rightarrow 13$ 

 $k = -14 \longrightarrow 14$  $l = -14 \longrightarrow 14$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | r            | v            | 7            | Uiaa*/Uaa   |  |
|-----|--------------|--------------|--------------|-------------|--|
| Sh1 | 0.5000       | 0.0000       | 0 5000       | 0.0226 (2)  |  |
| N1  | 0.4725 (5)   | 0.1913 (5)   | 0.3693 (4)   | 0.0259 (9)  |  |
| N2  | 0.3841 (5)   | 0.1056 (5)   | 0.6238 (4)   | 0.0261 (9)  |  |
| C11 | 0.28107 (16) | 0.02557 (17) | 0.42325 (15) | 0.0368 (4)  |  |
| C1  | 0.5256 (6)   | 0.2093 (6)   | 0.2499 (5)   | 0.0278 (11) |  |
| C2  | 0.4834 (7)   | 0.3574 (7)   | 0.1912 (6)   | 0.0358 (13) |  |
| H2  | 0.5047       | 0.3994       | 0.1098       | 0.043*      |  |
| C3  | 0.4073 (7)   | 0.4267 (6)   | 0.2732 (5)   | 0.0317 (12) |  |
| Н3  | 0.3669       | 0.5251       | 0.2589       | 0.038*      |  |
| C4  | 0.3993 (6)   | 0.3234 (6)   | 0.3857 (5)   | 0.0270 (11) |  |
|     |              |              |              |             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C5  | 0.3287 (6)  | 0.3531 (5)   | 0.4932 (5) | 0.0265 (11) |
|-----|-------------|--------------|------------|-------------|
| C6  | 0.3224 (6)  | 0.2509 (6)   | 0.6023 (5) | 0.0273 (11) |
| C7  | 0.2497 (6)  | 0.2797 (6)   | 0.7118 (6) | 0.0312 (12) |
| H7  | 0.1987      | 0.3696       | 0.7229     | 0.037*      |
| C8  | 0.2678 (7)  | 0.1537 (7)   | 0.7969 (6) | 0.0341 (13) |
| H8  | 0.2310      | 0.1416       | 0.8774     | 0.041*      |
| C9  | 0.3518 (7)  | 0.0429 (6)   | 0.7440 (5) | 0.0292 (11) |
| C10 | 0.3941 (6)  | -0.1013 (6)  | 0.8037 (5) | 0.0286 (11) |
| C11 | 0.2526 (6)  | 0.5050 (6)   | 0.4938 (5) | 0.0287 (11) |
| C12 | 0.1165 (7)  | 0.5944 (6)   | 0.4362 (6) | 0.0322 (12) |
| H12 | 0.0745      | 0.5636       | 0.3899     | 0.039*      |
| C13 | 0.0393 (7)  | 0.7315 (7)   | 0.4458 (7) | 0.0396 (14) |
| H13 | -0.0549     | 0.7946       | 0.4082     | 0.047*      |
| C14 | 0.1080 (8)  | 0.7667 (9)   | 0.5117 (6) | 0.0467 (17) |
| H14 | 0.0566      | 0.8583       | 0.5192     | 0.056*      |
| C15 | 0.2426 (8)  | 0.6865 (7)   | 0.5688 (8) | 0.0437 (16) |
| H15 | 0.2841      | 0.7212       | 0.6114     | 0.052*      |
| C16 | 0.3165 (8)  | 0.5489 (7)   | 0.5611 (7) | 0.0427 (15) |
| H16 | 0.4093      | 0.4865       | 0.6015     | 0.051*      |
| C17 | 0.3501 (6)  | -0.1422 (6)  | 0.9394 (6) | 0.0314 (12) |
| C18 | 0.2256 (10) | -0.1633 (11) | 0.9654 (7) | 0.059 (2)   |
| H18 | 0.1746      | -0.1651      | 0.9028     | 0.070*      |
| C19 | 0.1769 (11) | -0.1821 (12) | 1.0868 (8) | 0.070 (3)   |
| H19 | 0.0911      | -0.1949      | 1.1067     | 0.084*      |
| C20 | 0.2564 (10) | -0.1816 (8)  | 1.1781 (7) | 0.054 (2)   |
| H20 | 0.2231      | -0.1922      | 1.2596     | 0.064*      |
| C21 | 0.3802 (12) | -0.1662 (12) | 1.1503 (7) | 0.068 (3)   |
| H21 | 0.4348      | -0.1698      | 1.2136     | 0.081*      |
| C22 | 0.4296 (10) | -0.1447 (11) | 1.0289 (7) | 0.054 (2)   |
| H22 | 0.5156      | -0.1323      | 1.0096     | 0.065*      |
| Sb2 | 0.0000      | 0.5000       | 1.0000     | 0.0698 (4)  |
| C12 | -0.2299 (3) | 0.5140 (4)   | 1.0805 (3) | 0.0961 (11) |
| C13 | 0.0724 (3)  | 0.4837 (5)   | 1.1918 (3) | 0.1218 (17) |
| Cl4 | 0.0999 (5)  | 0.2463 (5)   | 1.0692 (4) | 0.1156 (13) |
|     |             |              |            |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|------------|------------|------------|--------------|--------------|-----------------|
| Sb1 | 0.0246 (3) | 0.0192 (3) | 0.0262 (3) | -0.0102 (2)  | 0.00596 (18) | -0.01060 (19)   |
| N1  | 0.031 (2)  | 0.020 (2)  | 0.029 (2)  | -0.0120 (19) | 0.0057 (18)  | -0.0106 (17)    |
| N2  | 0.030 (2)  | 0.021 (2)  | 0.028 (2)  | -0.0111 (19) | 0.0079 (18)  | -0.0115 (17)    |
| Cl1 | 0.0294 (7) | 0.0389 (8) | 0.0467 (8) | -0.0157 (6)  | 0.0003 (6)   | -0.0178 (6)     |
| C1  | 0.030 (3)  | 0.026 (3)  | 0.027 (2)  | -0.012 (2)   | 0.007 (2)    | -0.009 (2)      |
| C2  | 0.044 (3)  | 0.031 (3)  | 0.032 (3)  | -0.020 (3)   | 0.007 (2)    | -0.007(2)       |
| C3  | 0.035 (3)  | 0.021 (3)  | 0.036 (3)  | -0.011 (2)   | 0.001 (2)    | -0.007(2)       |
| C4  | 0.027 (3)  | 0.023 (2)  | 0.031 (3)  | -0.010 (2)   | 0.005 (2)    | -0.010 (2)      |
| C5  | 0.027 (3)  | 0.018 (2)  | 0.036 (3)  | -0.008 (2)   | 0.003 (2)    | -0.013 (2)      |
| C6  | 0.029 (3)  | 0.023 (2)  | 0.033 (3)  | -0.011 (2)   | 0.004 (2)    | -0.013 (2)      |
|     |            |            |            |              |              |                 |

| C7  | 0.032 (3)   | 0.027 (3)  | 0.036 (3)  | -0.010 (2)   | 0.011 (2)   | -0.020 (2)  |
|-----|-------------|------------|------------|--------------|-------------|-------------|
| C8  | 0.039 (3)   | 0.034 (3)  | 0.033 (3)  | -0.016 (3)   | 0.014 (2)   | -0.020 (2)  |
| C9  | 0.031 (3)   | 0.031 (3)  | 0.029 (3)  | -0.014 (2)   | 0.011 (2)   | -0.016 (2)  |
| C10 | 0.031 (3)   | 0.026 (3)  | 0.031 (3)  | -0.014 (2)   | 0.007 (2)   | -0.012 (2)  |
| C11 | 0.030 (3)   | 0.027 (3)  | 0.032 (3)  | -0.014 (2)   | 0.008 (2)   | -0.013 (2)  |
| C12 | 0.028 (3)   | 0.025 (3)  | 0.042 (3)  | -0.007 (2)   | 0.001 (2)   | -0.014 (2)  |
| C13 | 0.027 (3)   | 0.029 (3)  | 0.060 (4)  | -0.005 (2)   | 0.002 (3)   | -0.021 (3)  |
| C14 | 0.034 (3)   | 0.064 (5)  | 0.043 (3)  | -0.032 (3)   | 0.002 (3)   | -0.003 (3)  |
| C15 | 0.037 (3)   | 0.032 (3)  | 0.070 (5)  | -0.012 (3)   | -0.003 (3)  | -0.030 (3)  |
| C16 | 0.039 (3)   | 0.030 (3)  | 0.062 (4)  | -0.010 (3)   | -0.008 (3)  | -0.021 (3)  |
| C17 | 0.026 (3)   | 0.022 (2)  | 0.046 (3)  | -0.008 (2)   | 0.003 (2)   | -0.016 (2)  |
| C18 | 0.061 (5)   | 0.096 (7)  | 0.046 (4)  | -0.056 (5)   | 0.021 (4)   | -0.029 (4)  |
| C19 | 0.056 (5)   | 0.093 (7)  | 0.054 (5)  | -0.040 (5)   | 0.025 (4)   | -0.013 (5)  |
| C20 | 0.072 (5)   | 0.045 (4)  | 0.035 (3)  | -0.025 (4)   | 0.023 (3)   | -0.012 (3)  |
| C21 | 0.090 (7)   | 0.098 (8)  | 0.034 (4)  | -0.055 (6)   | 0.015 (4)   | -0.028 (4)  |
| C22 | 0.055 (5)   | 0.088 (6)  | 0.038 (3)  | -0.048 (5)   | 0.013 (3)   | -0.023 (4)  |
| Sb2 | 0.0346 (4)  | 0.1176 (8) | 0.0807 (6) | -0.0245 (4)  | 0.0141 (4)  | -0.0767 (6) |
| C12 | 0.0491 (13) | 0.171 (3)  | 0.110 (2)  | -0.0501 (17) | 0.0332 (13) | -0.103 (2)  |
| C13 | 0.0586 (15) | 0.222 (5)  | 0.119 (2)  | -0.039 (2)   | 0.0162 (15) | -0.133 (3)  |
| Cl4 | 0.116 (3)   | 0.121 (3)  | 0.112 (3)  | -0.034 (2)   | 0.039 (2)   | -0.075 (2)  |
|     |             |            |            |              |             |             |

## Geometric parameters (Å, °)

| Sb1—N2 <sup>i</sup>  | 2.054 (4)   | C11—C16               | 1.379 (9)  |
|----------------------|-------------|-----------------------|------------|
| Sb1—N2               | 2.054 (4)   | C12—C13               | 1.400 (8)  |
| Sb1—N1               | 2.070 (4)   | C12—H12               | 0.9400     |
| Sb1—N1 <sup>i</sup>  | 2.070 (4)   | C13—C14               | 1.332 (10) |
| Sb1—Cl1 <sup>i</sup> | 2.3547 (14) | C13—H13               | 0.9400     |
| Sb1—Cl1              | 2.3547 (14) | C14—C15               | 1.347 (10) |
| N1-C4                | 1.380 (7)   | C14—H14               | 0.9400     |
| N1—C1                | 1.390 (7)   | C15—C16               | 1.396 (9)  |
| N2-C6                | 1.386 (7)   | C15—H15               | 0.9400     |
| N2-C9                | 1.394 (7)   | C16—H16               | 0.9400     |
| C1-C10 <sup>i</sup>  | 1.402 (8)   | C17—C22               | 1.359 (10) |
| C1—C2                | 1.429 (8)   | C17—C18               | 1.377 (10) |
| С2—С3                | 1.356 (9)   | C18—C19               | 1.395 (11) |
| С2—Н2                | 0.9400      | C18—H18               | 0.9400     |
| C3—C4                | 1.434 (8)   | C19—C20               | 1.394 (14) |
| С3—Н3                | 0.9400      | C19—H19               | 0.9400     |
| C4—C5                | 1.406 (8)   | C20—C21               | 1.339 (13) |
| C5—C6                | 1.398 (8)   | C20—H20               | 0.9400     |
| C5—C11               | 1.508 (7)   | C21—C22               | 1.398 (10) |
| С6—С7                | 1.430 (8)   | C21—H21               | 0.9400     |
| С7—С8                | 1.359 (9)   | C22—H22               | 0.9400     |
| С7—Н7                | 0.9400      | Sb2—Cl3               | 2.311 (3)  |
| С8—С9                | 1.426 (8)   | Sb2—Cl3 <sup>ii</sup> | 2.311 (3)  |
| С8—Н8                | 0.9400      | Sb2—Cl2 <sup>ii</sup> | 2.374 (2)  |
| C9—C10               | 1.393 (8)   | Sb2—Cl2               | 2.374 (2)  |
|                      |             |                       |            |

| C10-C1 <sup>i</sup>                   | 1.402 (8)                | Sb2—Cl4                                              | 2.393 (4)                |
|---------------------------------------|--------------------------|------------------------------------------------------|--------------------------|
| C10-C17                               | 1.536 (8)                | Sb2—Cl4 <sup>ii</sup>                                | 2.393 (4)                |
| C11—C12                               | 1.369 (8)                |                                                      |                          |
|                                       |                          |                                                      |                          |
| N2 <sup>i</sup> —Sb1—N2               | 180.00 (16)              | C12—C11—C16                                          | 120.6 (6)                |
| N2 <sup>i</sup> —Sb1—N1               | 90.19 (18)               | C12—C11—C5                                           | 120.1 (5)                |
| N2—Sb1—N1                             | 89.81 (18)               | C16—C11—C5                                           | 119.1 (5)                |
| N2 <sup>i</sup> —Sb1—N1 <sup>i</sup>  | 89.81 (18)               | C11—C12—C13                                          | 120.5 (6)                |
| N2—Sb1—N1 <sup>i</sup>                | 90.19 (18)               | C11—C12—H12                                          | 119.8                    |
| N1—Sb1—N1 <sup>i</sup>                | 180.0 (2)                | C13—C12—H12                                          | 119.8                    |
| N2 <sup>i</sup> —Sb1—Cl1 <sup>i</sup> | 90.57 (14)               | C14—C13—C12                                          | 115.6 (7)                |
| N2—Sb1—Cl1 <sup>i</sup>               | 89.43 (14)               | C14—C13—H13                                          | 122.2                    |
| N1—Sb1—Cl1 <sup>i</sup>               | 89.98 (14)               | C12—C13—H13                                          | 122.2                    |
| $N1^{i}$ —Sb1—Cl1 <sup>i</sup>        | 90.02 (14)               | C13 - C14 - C15                                      | 122.2<br>127.7(8)        |
| $N2^{i}$ _Sh1_C11                     | 89.43 (14)               | C13 - C14 - H14                                      | 116.2                    |
| N2 Sb1 Cl1                            | 90 57 (14)               | C15 - C14 - H14                                      | 116.2                    |
| N1 Sb1 C11                            | 90.02(14)                | C13 $C14$ $C15$ $C16$                                | 116.2                    |
| N1-S01-C11                            | 90.02 (14)<br>80.08 (14) | C14 - C15 - C10                                      | 110.0 (7)                |
| NI = 50I = CII                        | 180.0                    | C14 - C15 - H15                                      | 122.0                    |
| CII = SUI = CII                       | 180.0                    |                                                      | 122.0                    |
| C4-NI-CI                              | 108.0(4)                 |                                                      | 119.0 (0)                |
| C4—NI—Sbi                             | 126.0 (4)                |                                                      | 120.2                    |
| CI—NI—Sbi                             | 126.0 (4)                | C15—C16—H16                                          | 120.2                    |
| C6—N2—C9                              | 108.0 (4)                | C22—C17—C18                                          | 122.1 (6)                |
| C6—N2—Sb1                             | 126.3 (4)                | C22—C17—C10                                          | 118.2 (6)                |
| C9—N2—Sb1                             | 125.6 (4)                | C18—C17—C10                                          | 119.5 (6)                |
| $N1-C1-C10^{i}$                       | 126.1 (5)                | C17—C18—C19                                          | 118.5 (8)                |
| N1-C1-C2                              | 107.9 (5)                | C17—C18—H18                                          | 120.7                    |
| $C10^{i}$ — $C1$ — $C2$               | 126.0 (5)                | C19—C18—H18                                          | 120.7                    |
| C3—C2—C1                              | 108.1 (5)                | C20—C19—C18                                          | 119.4 (8)                |
| С3—С2—Н2                              | 125.9                    | C20—C19—H19                                          | 120.3                    |
| C1—C2—H2                              | 125.9                    | C18—C19—H19                                          | 120.3                    |
| C2—C3—C4                              | 107.9 (5)                | C21—C20—C19                                          | 120.4 (7)                |
| С2—С3—Н3                              | 126.0                    | C21—C20—H20                                          | 119.8                    |
| С4—С3—Н3                              | 126.0                    | C19—C20—H20                                          | 119.8                    |
| N1-C4-C5                              | 126.6 (5)                | C20—C21—C22                                          | 121.1 (8)                |
| N1-C4-C3                              | 108.1 (5)                | C20—C21—H21                                          | 119.4                    |
| C5—C4—C3                              | 125.4 (5)                | C22—C21—H21                                          | 119.4                    |
| C6—C5—C4                              | 124.6 (5)                | C17—C22—C21                                          | 118.4 (7)                |
| C6-C5-C11                             | 116.2 (5)                | C17—C22—H22                                          | 120.8                    |
| C4—C5—C11                             | 119.2 (5)                | C21—C22—H22                                          | 120.8                    |
| N2-C6-C5                              | 126.6 (5)                | $C_{13}$ $S_{2}$ $C_{13}$                            | 180,000 (1)              |
| $N_2 = C_6 = C_7$                     | 108.1(5)                 | $C_{13}$ $S_{2}$ $C_{12}$                            | 90.36 (11)               |
| $C_{5} - C_{6} - C_{7}$               | 125.3(5)                 | $C13^{ii}$ Sb2 $C12^{ii}$                            | 89 64 (11)               |
| C8 - C7 - C6                          | 123.3(3)<br>107 7 (5)    | C13 = Sb2 = C12                                      | 89 64 (11)               |
| Со С, –Со<br>С8С7 H7                  | 107.7 (3)                | $C13^{ii} Sh2 C12$                                   | 00.26(11)                |
| $C_{0} = C_{1} = \Pi_{1}$             | 120.2                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10.30 (11)               |
| $C_{0} - C_{1} - 11/$                 | 120.2                    | $C_{12} = -502C_{12}$                                | 100.0                    |
| $C_{1} = C_{0} = U_{0}$               | 108.7 (3)                | C13 - S02 - C14                                      | 0/.99 (10)<br>02 01 (10) |
| $C/-C\delta-H\delta$                  | 125./                    | CI3"—S02—CI4                                         | 92.01 (16)               |

| С9—С8—Н8                 | 125.7     | Cl2 <sup>ii</sup> —Sb2—Cl4               | 90.45 (14)  |
|--------------------------|-----------|------------------------------------------|-------------|
| C10—C9—N2                | 127.0 (5) | Cl2—Sb2—Cl4                              | 89.55 (14)  |
| С10—С9—С8                | 125.5 (5) | Cl3—Sb2—Cl4 <sup>ii</sup>                | 92.01 (16)  |
| N2—C9—C8                 | 107.5 (5) | Cl3 <sup>ii</sup> —Sb2—Cl4 <sup>ii</sup> | 87.99 (16)  |
| C9—C10—C1 <sup>i</sup>   | 125.1 (5) | Cl2 <sup>ii</sup> —Sb2—Cl4 <sup>ii</sup> | 89.55 (14)  |
| C9—C10—C17               | 116.2 (5) | Cl2—Sb2—Cl4 <sup>ii</sup>                | 90.45 (14)  |
| C1 <sup>i</sup> —C10—C17 | 118.7 (5) | Cl4—Sb2—Cl4 <sup>ii</sup>                | 180.000 (1) |

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------|------|-------|-----------|-------------------------|
| С7—Н7…С13 <sup>іі</sup>    | 0.94 | 2.76  | 3.490 (8) | 135                     |
| C8—H8…Cl4                  | 0.94 | 2.74  | 3.593 (8) | 151                     |
| C12—H12…Cl3 <sup>iii</sup> | 0.94 | 2.69  | 3.539 (8) | 151                     |

Symmetry codes: (ii) -x, -y+1, -z+2; (iii) x, y, z-1.