

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine

Tomáš Chlupatý and Zdeňka Padělková*

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic Correspondence e-mail: zdenka.padelkova@upce.cz

Received 15 April 2014; accepted 20 May 2014

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.060; wR factor = 0.137; data-to-parameter ratio = 21.1.

In the title asymmetric dicyclohexylphenylguanidine, $C_{25}H_{41}N_3$, the central guanidine C atom deviates by only 0.004 (2) Å from the central plane defined by the three N atoms. The benzene and the cyclohexyl rings are rotated out of the central plane of the N₃C unit by 85.63 (12)° (benzene) and 51.52 (9) and 49.37 (12)° (cyclohexyl). The crystal packing features only by van der Waals interactions.

Related literature

For similar structures of various related compounds, see: Shen *et al.* (2011); Ghosh *et al.* (2008); Yıldırım *et al.* (2007); Brazeau *et al.* (2012); Han & Huynh (2009); Tanatani *et al.* (1998); Zhang *et al.* (2009); Boere *et al.* (2000). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data C₂₅H₄₁N₃

 $M_r = 383.61$

Z = 8

Mo $K\alpha$ radiation

 $0.45 \times 0.18 \times 0.18 \; \mathrm{mm}$

40512 measured reflections

5336 independent reflections

3272 reflections with $I > 2\sigma(I)$

 $\mu = 0.06 \text{ mm}^-$

T = 150 K

 $R_{\rm int} = 0.098$

Monoclinic, C2/c a = 30.9001 (3) Å b = 9.9442 (5) Å c = 18.5260 (3) Å $\beta = 124.962$ (3)° V = 4665.3 (3) Å³

Data collection

Bruker–Nonius KappaCCD areadetector diffractometer Absorption correction: gaussian (Coppens, 1970) $T_{\min} = 0.982, T_{\max} = 0.991$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.060 & 253 \text{ parameters} \\ wR(F^2) = 0.137 & H\text{-atom parameters constrained} \\ S = 1.06 & \Delta\rho_{\max} = 0.41 \text{ e } \text{\AA}^{-3} \\ 5336 \text{ reflections} & \Delta\rho_{\min} = -0.37 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors would like to thank the Technology Agency of the Czech Republic (project No. TA02020466) for financial support of this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: KP2469).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Boere, R. E., Boere, R. T., Masuda, J. & Wolmershauser, G. (2000). Can. J. Chem. 78, 1613–1619.
- Brazeau, A. L., Hanninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414.
- Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
- Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp. 6189–6196.
- Han, Y. & Huynh, H. V. (2009). Dalton Trans. pp. 2201-2209.
- Hooft, R. W. (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, H., Wang, Y. & Xie, Z. (2011). Org. Lett. 13, 4562-4565.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.
- Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). *Acta Cryst.* E63, o2130–o2132.
- Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882-887.

supporting information

Acta Cryst. (2014). E70, o785 [https://doi.org/10.1107/S1600536814011611] 2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine

Tomáš Chlupatý and Zdeňka Padělková

S1. Comment

The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol amines (Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N"-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization of π electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C-N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C-N bonds from the centre of the structure can be attributed to regular C-N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3dimesitylguanidine, Han et al. (2009) for N,N',N"-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N"methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N"-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π -electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N₃C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N-C-N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2-C1-N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c unit cell of I.

S2. Refinement

All the hydrogens were discernible in the difference electron density map. However, all the hydrogens were situated into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = $1.2U_{eq}(C/N)$ for the NH group and U(H) = $1.5U_{eq}(C/N)$ for other H atoms, respectively.

Figure 1

View of the title compound with the displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radii.

2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine

Crystal data

$C_{25}H_{41}N_3$	F(000) = 1696
$M_r = 383.61$	$D_{\rm x} = 1.092 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 40662 reflections
a = 30.9001 (3) Å	$\theta = 1-27.5^{\circ}$
b = 9.9442 (5) Å	$\mu = 0.06 \text{ mm}^{-1}$
c = 18.5260 (3) Å	T = 150 K
$\beta = 124.962(3)^{\circ}$	Needle, colourless
V = 4665.3 (3) Å ³	$0.45 \times 0.18 \times 0.18$ mm
Z = 8	
Data collection	
Bruker–Nonius KappaCCD area-detector	40512 measured reflections
diffractometer	5336 independent reflections
Radiation source: fine-focus sealed tube	3272 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.098$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
φ and ω scans to fill the Ewald sphere	$h = -40 \rightarrow 37$
Absorption correction: gaussian	$k = -12 \rightarrow 12$
(Coppens, 1970)	$l = -24 \rightarrow 24$
$T_{\min} = 0.982, \ T_{\max} = 0.991$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.06	H-atom parameters constrained
5336 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 6.0132P]$
253 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.41 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.37 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.85963 (6)	-0.00660 (16)	0.09390 (11)	0.0249 (4)
N2	0.91824 (6)	0.12199 (17)	0.22129 (11)	0.0272 (4)
H2	0.9424	0.1231	0.2117	0.033*
C1	0.87631 (7)	0.03532 (18)	0.17160 (13)	0.0230 (4)
N3	0.85204 (6)	-0.00799 (17)	0.21031 (11)	0.0281 (4)
Н3	0.8618	0.0247	0.2605	0.034*
C7	0.86512 (7)	0.1607 (2)	0.00225 (13)	0.0259 (4)
C2	0.88288 (7)	0.0413 (2)	0.05185 (13)	0.0242 (4)
C3	0.92155 (7)	-0.0387 (2)	0.05466 (13)	0.0268 (4)
C4	0.93881 (8)	-0.0019 (2)	0.00274 (14)	0.0335 (5)
H4	0.9635	-0.0554	0.0027	0.040*
C20	0.81023 (8)	-0.10825 (19)	0.16858 (13)	0.0246 (4)
H20	0.7872	-0.0884	0.1054	0.029*
C25	0.77745 (8)	-0.0977 (2)	0.20611 (14)	0.0292 (5)
H25A	0.8000	-0.1130	0.2692	0.035*
H25B	0.7628	-0.0079	0.1960	0.035*
C8	0.94246 (8)	-0.1630 (2)	0.11264 (14)	0.0305 (5)
H8	0.9429	-0.1434	0.1649	0.037*
C19	0.97612 (8)	0.2886 (2)	0.32971 (14)	0.0347 (5)
H19A	0.9757	0.3364	0.2837	0.042*
H19B	1.0052	0.2252	0.3564	0.042*
C15	0.87852 (8)	0.3080 (2)	0.25502 (14)	0.0309 (5)
H15A	0.8737	0.3595	0.2064	0.037*
H15B	0.8465	0.2567	0.2329	0.037*
C11	0.82506 (8)	0.2511 (2)	0.00116 (14)	0.0284 (5)

H11	0.8238	0.2248	0.0509	0.034*
C14	0.92473 (7)	0.2116 (2)	0.28959 (13)	0.0266 (4)
H14	0.9274	0.1562	0.3357	0.032*
C21	0.83129 (9)	-0.2505 (2)	0.17984 (16)	0.0347 (5)
H21A	0.8517	-0.2565	0.1551	0.042*
H21B	0.8545	-0.2718	0.2421	0.042*
C10	0.99868 (9)	-0.2004 (2)	0.14496 (16)	0.0408 (6)
H10A	0.9990	-0.2301	0.0960	0.049*
H10B	1.0112	-0.2714	0.1876	0.049*
H10C	1.0212	-0.1233	0.1716	0.049*
C6	0.88416 (8)	0.1932 (2)	-0.04814 (14)	0.0337 (5)
H6	0.8726	0.2715	-0.0817	0.040*
C5	0.91994 (8)	0.1121 (2)	-0.04892 (14)	0.0368 (5)
Н5	0.9314	0.1341	-0.0842	0.044*
C16	0.88758 (9)	0.4038 (2)	0.32643 (15)	0.0374 (5)
H16A	0.8582	0.4660	0.3017	0.045*
H16B	0.8893	0.3532	0.3728	0.045*
C24	0.73288 (8)	-0.2005 (2)	0.16355 (16)	0.0394 (6)
H24A	0.7143	-0.1963	0.1915	0.047*
H24B	0.7080	-0.1777	0.1019	0.047*
C12	0.77015 (9)	0.2305 (3)	-0.08243 (16)	0.0453 (6)
H12A	0.7456	0.2881	-0.0812	0.054*
H12B	0.7597	0.1384	-0.0861	0.054*
H12C	0.7703	0.2521	-0.1328	0.054*
C23	0.75267 (10)	-0.3431(2)	0.17037 (17)	0.0425 (6)
H23A	0.7228	-0.4035	0.1373	0.051*
H23B	0.7734	-0.3713	0.2315	0.051*
C9	0.90576 (10)	-0.2825 (2)	0.06648 (16)	0.0441 (6)
H9A	0.9059	-0.3079	0.0166	0.053*
H9B	0.8706	-0.2579	0.0470	0.053*
H9C	0.9175	-0.3569	0.1066	0.053*
C13	0.84053 (10)	0.3987 (2)	0.01292 (19)	0.0496 (7)
H13A	0.8382	0.4305	-0.0381	0.059*
H13B	0.8761	0.4088	0.0640	0.059*
H13C	0.8171	0.4499	0.0206	0.059*
C17	0.93828 (9)	0.4821 (2)	0.36433 (16)	0.0429 (6)
H17A	0.9351	0.5393	0.3191	0.052*
H17B	0.9442	0.5394	0.4116	0.052*
C18	0.98491 (9)	0.3882 (3)	0.39960 (15)	0.0427 (6)
H18A	0.9908	0.3394	0.4499	0.051*
H18B	1.0163	0.4410	0.4196	0.051*
C22	0.78632 (10)	-0.3517 (2)	0.13444 (18)	0.0435 (6)
H22A	0.8005	-0.4419	0.1432	0.052*
H22B	0.7645	-0.3338	0.0717	0.052*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0297 (9)	0.0247 (9)	0.0258 (9)	-0.0024 (7)	0.0191 (8)	-0.0014 (7)
N2	0.0262 (9)	0.0324 (9)	0.0287 (9)	-0.0067 (8)	0.0190 (8)	-0.0076 (8)
C1	0.0243 (10)	0.0210 (10)	0.0273 (11)	0.0013 (8)	0.0169 (9)	0.0007 (8)
N3	0.0362 (9)	0.0287 (9)	0.0271 (9)	-0.0093 (8)	0.0225 (8)	-0.0058 (8)
C7	0.0235 (10)	0.0299 (11)	0.0242 (10)	-0.0055 (9)	0.0136 (9)	-0.0031 (9)
C2	0.0236 (10)	0.0288 (10)	0.0224 (10)	-0.0069 (8)	0.0145 (8)	-0.0039 (8)
C3	0.0268 (10)	0.0314 (11)	0.0235 (11)	-0.0056 (9)	0.0152 (9)	-0.0063 (9)
C4	0.0311 (11)	0.0449 (13)	0.0316 (12)	-0.0006 (10)	0.0222 (10)	-0.0034 (10)
C20	0.0301 (10)	0.0234 (10)	0.0252 (10)	-0.0020 (9)	0.0188 (9)	0.0010 (8)
C25	0.0328 (11)	0.0293 (11)	0.0335 (12)	0.0028 (9)	0.0238 (10)	0.0015 (9)
C8	0.0369 (12)	0.0305 (11)	0.0309 (12)	0.0002 (9)	0.0234 (10)	-0.0032 (9)
C19	0.0282 (11)	0.0446 (13)	0.0317 (12)	-0.0083 (10)	0.0175 (10)	-0.0073 (10)
C15	0.0283 (11)	0.0333 (12)	0.0286 (12)	-0.0046 (9)	0.0148 (9)	-0.0051 (9)
C11	0.0334 (11)	0.0262 (10)	0.0280 (11)	-0.0024 (9)	0.0190 (10)	0.0007 (9)
C14	0.0281 (11)	0.0310(11)	0.0225 (10)	-0.0043 (9)	0.0155 (9)	-0.0029 (9)
C21	0.0452 (13)	0.0269 (11)	0.0485 (14)	-0.0009 (10)	0.0366 (12)	-0.0002 (10)
C10	0.0408 (13)	0.0436 (14)	0.0407 (14)	0.0086 (11)	0.0248 (11)	0.0031 (11)
C6	0.0318 (11)	0.0399 (12)	0.0285 (12)	-0.0044 (10)	0.0168 (10)	0.0046 (10)
C5	0.0343 (12)	0.0545 (14)	0.0312 (12)	-0.0054 (11)	0.0244 (10)	0.0010 (11)
C16	0.0398 (12)	0.0374 (12)	0.0375 (13)	-0.0019 (10)	0.0237 (11)	-0.0060 (10)
C24	0.0296 (11)	0.0474 (14)	0.0449 (14)	-0.0018 (11)	0.0236 (11)	0.0057 (11)
C12	0.0345 (13)	0.0515 (15)	0.0456 (15)	0.0038 (11)	0.0205 (12)	-0.0053 (12)
C23	0.0496 (14)	0.0355 (12)	0.0530 (15)	-0.0130 (11)	0.0357 (13)	-0.0007 (11)
С9	0.0550 (15)	0.0369 (13)	0.0448 (15)	-0.0077 (12)	0.0313 (13)	-0.0082 (11)
C13	0.0585 (16)	0.0332 (13)	0.0658 (18)	-0.0030 (12)	0.0408 (15)	-0.0041 (12)
C17	0.0500 (14)	0.0388 (13)	0.0402 (14)	-0.0123 (12)	0.0260 (12)	-0.0155 (11)
C18	0.0353 (12)	0.0523 (15)	0.0336 (13)	-0.0167 (11)	0.0156 (11)	-0.0158 (11)
C22	0.0659(16)	0.0254(11)	0.0565 (16)	-0.0099(11)	0.0451(14)	-0.0074(11)

Geometric parameters (Å, °)

N1—C1	1.289 (2)	C14—H14	0.9798
N1-C2	1.411 (2)	C21—C22	1.521 (3)
N2-C1	1.379 (2)	C21—H21A	0.9702
N2-C14	1.465 (2)	C21—H21B	0.9699
N2—H2	0.8602	C10—H10A	0.9599
C1—N3	1.370 (2)	C10—H10B	0.9600
N3—C20	1.455 (2)	C10—H10C	0.9601
N3—H3	0.8599	C6—C5	1.375 (3)
С7—С6	1.397 (3)	С6—Н6	0.9299
С7—С2	1.406 (3)	С5—Н5	0.9301
C7—C11	1.521 (3)	C16—C17	1.515 (3)
C2—C3	1.412 (3)	C16—H16A	0.9700
C3—C4	1.390 (3)	C16—H16B	0.9701
С3—С8	1.518 (3)	C24—C23	1.520 (3)

C4-C5	1 380 (3)	С24—Н24 Δ	0 9698
C4—E5	0.9299	C24—H24R	0.9699
C_{20} C_{21}	1 521 (3)	C12—H12A	0.9598
C_{20} C_{21}	1.521(5) 1.526(3)	C12 H12R	0.9598
C20 H20	0 0700	C12 - H12C	0.9601
$C_{20} = 1120$	0.5755 1 522 (2)	C_{12} C_{22} C_{22}	1.525(2)
$C_{23} = C_{24}$	1.525(5)	C23 H23 A	1.323(3)
C25—H25A	0.9700	C22 H22P	0.9701
C_{23} — H_{23B}	0.5701	C0 H0A	0.9700
C_{0}	1.522(3) 1.524(3)		0.9597
C_{0} U_{0}	1.524 (5)		0.9002
	0.9798	C_{12} U_{12}	0.9601
C19—C14	1.519 (3)		0.9600
C19—C18	1.526 (3)	C12—H13B	0.9601
CI9—HI9A	0.9700		0.9600
CI9—HI9B	0.9699		1.515(3)
C15—C16	1.521 (3)		0.9699
C15—C14	1.523 (3)		0.9701
C15—H15A	0.9700	C18—H18A	0.9700
C15—H15B	0.9700	C18—H18B	0.9702
C11—C12	1.519 (3)	C22—H22A	0.9700
C11—C13	1.520 (3)	C22—H22B	0.9700
C11—H11	0.9801		
C1—N1—C2	120.19 (16)	C20—C21—H21B	109.4
C1—N2—C14	124.63 (16)	H21A—C21—H21B	108.1
C1—N2—H2	117.7	C8—C10—H10A	109.3
C14—N2—H2	117.7	C8—C10—H10B	109.5
N1—C1—N3	119.62 (17)	H10A-C10-H10B	109.5
N1—C1—N2	124.68 (17)	C8—C10—H10C	109.6
N3—C1—N2	115.69 (17)	H10A-C10-H10C	109.5
C1—N3—C20	121.52 (16)	H10B-C10-H10C	109.5
C1—N3—H3	119.3	C5—C6—C7	121.4 (2)
C20—N3—H3	119.2	С5—С6—Н6	119.2
C6—C7—C2	118.41 (18)	С7—С6—Н6	119.4
C6—C7—C11	120.38 (19)	C6—C5—C4	119.83 (19)
C2—C7—C11	121.19 (17)	С6—С5—Н5	120.1
C7—C2—N1	120.96 (17)	C4—C5—H5	120.0
C7—C2—C3	120.35 (17)	C17—C16—C15	110.58 (18)
N1—C2—C3	118.49 (17)	C17—C16—H16A	109.3
C4—C3—C2	118.59 (19)	C15—C16—H16A	109.4
C4—C3—C8	121.83 (18)	C17—C16—H16B	109.8
C2—C3—C8	119.57 (17)	C15—C16—H16B	109.6
C5—C4—C3	121.3 (2)	H16A—C16—H16B	108.1
C5—C4—H4	119.3	C23—C24—C25	112.42 (18)
C3—C4—H4	119.4	C23—C24—H24A	109.2
N3—C20—C21	112.63 (16)	C25—C24—H24A	109.3
N3—C20—C25	109.28 (16)	C23—C24—H24B	109.0
$C_{21} - C_{20} - C_{25}$	110.17 (16)	C_{25} — C_{24} — H_{24B}	108.9
			- 00.7

N3—C20—H20	108.2	H24A—C24—H24B	107.9
C21—C20—H20	108.2	C11—C12—H12A	109.3
С25—С20—Н20	108.2	C11—C12—H12B	109.5
C24—C25—C20	110.97 (17)	H12A—C12—H12B	109.5
С24—С25—Н25А	109.3	C11—C12—H12C	109.6
С20—С25—Н25А	109.4	H12A—C12—H12C	109.5
С24—С25—Н25В	109.5	H12B—C12—H12C	109.5
С20—С25—Н25В	109.5	C24—C23—C22	111.05 (18)
H25A—C25—H25B	108.1	С24—С23—Н23А	109.5
C3—C8—C9	111.11 (18)	С22—С23—Н23А	109.2
C3—C8—C10	113.82 (17)	С24—С23—Н23В	109.4
C9—C8—C10	110.19 (18)	С22—С23—Н23В	109.6
С3—С8—Н8	107.2	H23A—C23—H23B	108.1
С9—С8—Н8	107.1	С8—С9—Н9А	109.5
С10—С8—Н8	107.1	С8—С9—Н9В	109.3
C14—C19—C18	111.73 (17)	H9A—C9—H9B	109.5
C14—C19—H19A	109.5	С8—С9—Н9С	109.6
C18—C19—H19A	109.5	Н9А—С9—Н9С	109.5
C14—C19—H19B	109.0	H9B—C9—H9C	109.4
C18—C19—H19B	109.1	С11—С13—Н13А	109.7
H19A—C19—H19B	107.9	C11—C13—H13B	109.3
C16—C15—C14	111.56 (17)	H13A—C13—H13B	109.5
C16—C15—H15A	109.3	C11—C13—H13C	109.4
C14—C15—H15A	109.3	H13A—C13—H13C	109.5
C16—C15—H15B	109.4	H13B—C13—H13C	109.5
C14—C15—H15B	109.3	C16—C17—C18	111.0 (2)
H15A—C15—H15B	107.9	С16—С17—Н17А	109.6
C12—C11—C13	110.6 (2)	C18—C17—H17A	109.5
C12—C11—C7	111.03 (17)	C16—C17—H17B	109.3
C13—C11—C7	112.47 (17)	C18—C17—H17B	109.4
C12—C11—H11	107.5	H17A—C17—H17B	108.0
C13—C11—H11	107.6	C17—C18—C19	111.79 (19)
C7—C11—H11	107.4	C17—C18—H18A	109.4
N2—C14—C19	108.47 (16)	C19—C18—H18A	109.5
N2—C14—C15	112.84 (16)	C17—C18—H18B	109.0
C19—C14—C15	110.73 (17)	C19—C18—H18B	109.1
N2—C14—H14	108.2	H18A—C18—H18B	107.9
C19—C14—H14	108.3	C21—C22—C23	110.91 (19)
C15—C14—H14	108.1	C21—C22—H22A	109.7
C22—C21—C20	110.87 (18)	C23—C22—H22A	109.6
C22—C21—H21A	109.4	C21—C22—H22B	109.2
C20—C21—H21A	109.6	C23—C22—H22B	109.4
C22—C21—H21B	109.4	H22A—C22—H22B	108.0