Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Fluoro-4-oxo-4*H*-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 29 May 2014; accepted 5 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.109; data-to-parameter ratio = 14.3.

In the title compound, $C_{10}H_5FO_3$, the non-H atoms of the 8fluorochromone unit are essentially coplanar (r.m.s. deviation = 0.0259 Å), with a largest deviation from the mean plane of 0.0660 (12) Å for the chromone carbonyl O atom. The formyl group is twisted with respect to the attached ring [C-C-C-O torsion angles = -11.00 (19) and 170.81 (11)°]. In the crystal, molecules are linked *via* weak C-H···O hydrogen bonds along the *a* axis and [101], forming corrugated layers parallel to (010). In addition, π - π stacking interactions [centroid-centroid distance between the planes of the pyran and benzene rings = 3.519 (2) Å] are observed between these layers.

Related literature

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For the synthesis of the precursor of the title compound, see: Valoti *et al.* (2001). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013).

Experimental

Crystal data

 $C_{10}H_5FO_3$ $M_r = 192.15$ Monoclinic, $P2_1/n$ a = 6.6643 (12) Åb = 8.395 (5) Åc = 14.247 (4) Å $\beta = 97.865 \ (16)^{\circ}$ $V = 789.6 \ (6) \ \text{Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku AFC-7R diffractometer 2445 measured reflections 1810 independent reflections 1606 reflections with $F^2 > 2\sigma(F^2)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.109$ S = 1.071810 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1^{i} - H1^{i} \cdots O2$	0.95	2.48	3.285 (2)	142 (1)
$C6^{ii} - H4^{ii} \cdots O2$	0.95	2.41	3.221 (2)	143 (1)

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla, et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The University of Shizuoka is acknowledged for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5713).

References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Ishikawa, Y. (2014). Acta Cryst. E70, 0743.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Valoti, E., Pallavicini, M., Villa, L. & Pezzetta, D. (2001). J. Org. Chem. 66, 1018–1025.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

 $\mu = 0.14 \text{ mm}^{-1}$

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

3 standard reflections every 150

H-atom parameters constrained

intensity decay: -0.4%

T = 100 K

 $R_{\rm int} = 0.049$

reflections

127 parameters

 $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2014). E70, o774 [https://doi.org/10.1107/S1600536814013208]

8-Fluoro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Comment

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013). We have recently reported the crystal structures of a dichlorinated 3-formylchromone derivative 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig. 3 (top)) and a monochlorinated one 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014, Fig. 3 (bottom left)). It was found that halogen bonding is observed for 6,8-dichloro-4-oxochromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at 8-position, but is not observed for 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde between the formyl oxygen atom and the chlorine atom at 8-position. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monofluorinated 3-formylchromone derivative 8-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(*s*) can be formed in the crystal structure of this compound with the fluorine atom at 8-position.

The mean deviation of the least-square planes for the non-hydrogen atoms of the 8-fluorochromone unit is 0.0259 Å, and the largest deviations is 0.0660 (12) Å for O2 (Fig. 1). These mean that these atoms are essentially coplanar. The formyl group is twisted $[C1-C2-C10-O3 = -11.00 (19)^{\circ}$ and $C3-C2-C10-O3 = 170.81 (11)^{\circ}]$. In the crystal, the molecules are linked *via* C–H···O hydrogen bonds along the *a* axis and ($\overline{1}$,0,1) to form corrugated layers parallel to (010) and *via* π - π stacking interaction [*Cg*-*Cg* distance between the pyran and benzene rings = 3.519 (2) Å] of different layers (Fig. 2). The distance between the fluorine atom and the oxygen atom of the chromone carbonyl group [3.332 (3) Å] are far from halogen bonding (Fig.3 (bottom right)).

S2. Experimental

2-Hydroxy-3-fluoroacetophenone was prepared according to the literature method (Valoti *et al.* 2001). To a solution of 2hydroxy-3-fluoroacetophenone (7.1 mmol) in *N*,*N*-dimethylformamide (15 ml) was added dropwise POCl₃ (17.7 mmol) at 273 K. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried *in vacuo* (yield: 57%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.58 (m, 1H), 7.88 (dd, 1H, *J* = 1.5 and 8.3 Hz), 7.95 (d, 1H, *J* = 8.3 Hz), 8.99 (s, 1H), 10.13 (s, 1H). DART-MS calcd for [C₁₀H₃F₁O₃ + H⁺]: 193.030, found 193.035. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 2-butanone solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, U_{iso} (H) = 1.2 U_{eq} (C)], and refined using a riding model.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A crystal packing view of the title compound. Intermolecular C-H···O hydrogen bonds are represented by dashed lines.

Figure 3

Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top), 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (bottom left), and the title compound (bottom right).

8-Fluoro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data
$C_{10}H_5FO_3$
$M_r = 192.15$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 6.6643 (12) Å
b = 8.395(5) Å
c = 14.247 (4) Å
$\beta = 97.865 (16)^{\circ}$
V = 789.6 (6) Å ³
Z=4

F(000) = 392.00 $D_x = 1.616 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.5 - 17.4^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.40 \times 0.40 \times 0.20 \text{ mm}$ Data collection

Bulla concertion	
Rigaku AFC-7R diffractometer ω -2 θ scans 2445 measured reflections 1810 independent reflections 1606 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.049$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -8 \rightarrow 8$ $k = -6 \rightarrow 10$ $l = -10 \rightarrow 18$ 3 standard reflections every 150 reflections intensity decay: -0.4%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.109$ S = 1.07 1810 reflections 127 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 0.3187P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28$ e Å ⁻³ $\Delta\rho_{min} = -0.36$ e Å ⁻³

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$

		<i>y</i>	Z	$U_{\rm iso}^*/U_{\rm eq}$
F1	0.63662 (11)	0.31393 (11)	-0.11055 (6)	0.0262 (3)
01	0.70736 (13)	0.13166 (11)	0.04296 (6)	0.0175 (3)
O2	1.28166 (13)	0.05710 (12)	0.17921 (6)	0.0211 (3)
03	0.80302 (16)	-0.13767 (12)	0.29126 (7)	0.0265 (3)
C1	0.74226 (18)	0.04263 (15)	0.12185 (8)	0.0174 (3)
C2	0.92737 (18)	0.01472 (14)	0.17064 (8)	0.0156 (3)
C3	1.10896 (18)	0.08367 (14)	0.14003 (8)	0.0148 (3)
C4	1.22460 (18)	0.26974 (15)	0.01980 (9)	0.0169 (3)
C5	1.18179 (19)	0.36449 (15)	-0.05972 (9)	0.0190 (3)
C6	0.9826 (2)	0.38000 (15)	-0.10529 (9)	0.0193 (3)
C7	0.83046 (19)	0.30073 (15)	-0.06889 (9)	0.0180 (3)
C8	1.06800 (17)	0.18914 (14)	0.05669 (8)	0.0146 (3)
C9	0.86964 (18)	0.20612 (14)	0.01198 (8)	0.0152 (3)
C10	0.9457 (2)	-0.09092 (15)	0.25433 (9)	0.0197 (3)
H1	0.6287	-0.0040	0.1450	0.0209*
H2	1.3604	0.2591	0.0496	0.0203*
H3	1.2884	0.4197	-0.0837	0.0228*
H4	0.9534	0.4442	-0.1604	0.0231*
Н5	1.0775	-0.1243	0.2809	0.0236*

supporting information

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0193 (4)	0.0333 (5)	0.0246 (5)	0.0075 (4)	-0.0019 (3)	0.0064 (4)
01	0.0142 (4)	0.0207 (5)	0.0178 (5)	0.0016 (4)	0.0028 (4)	0.0012 (4)
O2	0.0171 (5)	0.0282 (5)	0.0173 (5)	0.0014 (4)	-0.0006(4)	0.0027 (4)
O3	0.0355 (6)	0.0226 (5)	0.0239 (5)	-0.0023 (4)	0.0130 (4)	0.0020 (4)
C1	0.0197 (6)	0.0163 (6)	0.0175 (6)	0.0008 (5)	0.0071 (5)	-0.0010 (5)
C2	0.0198 (6)	0.0138 (6)	0.0140 (6)	0.0014 (5)	0.0048 (5)	-0.0016 (5)
C3	0.0179 (6)	0.0146 (6)	0.0121 (5)	0.0018 (5)	0.0025 (4)	-0.0028 (4)
C4	0.0164 (6)	0.0171 (6)	0.0175 (6)	0.0005 (5)	0.0033 (5)	-0.0017 (5)
C5	0.0224 (6)	0.0169 (6)	0.0192 (6)	-0.0001 (5)	0.0077 (5)	0.0000 (5)
C6	0.0277 (7)	0.0164 (6)	0.0144 (6)	0.0051 (5)	0.0048 (5)	0.0006 (5)
C7	0.0187 (6)	0.0189 (6)	0.0158 (6)	0.0062 (5)	-0.0003(5)	-0.0016 (5)
C8	0.0176 (6)	0.0133 (6)	0.0130 (5)	0.0017 (5)	0.0029 (5)	-0.0020 (5)
C9	0.0167 (6)	0.0140 (6)	0.0157 (6)	0.0020 (5)	0.0045 (5)	-0.0020 (5)
C10	0.0275 (7)	0.0166 (6)	0.0156 (6)	0.0006 (5)	0.0050 (5)	-0.0014 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

F1—C7	1.3504 (15)	C4—C8	1.4048 (18)
O1—C1	1.3433 (15)	C5—C6	1.4017 (18)
O1—C9	1.3733 (16)	C6—C7	1.372 (2)
O2—C3	1.2289 (15)	С7—С9	1.3943 (18)
O3—C10	1.2133 (18)	C8—C9	1.3940 (16)
C1—C2	1.3510 (17)	C1—H1	0.950
C2—C3	1.4609 (18)	C4—H2	0.950
C2-C10	1.4776 (18)	С5—Н3	0.950
C3—C8	1.4764 (17)	C6—H4	0.950
C4—C5	1.3817 (18)	C10—H5	0.950
F1…O1	2.6580 (14)	С8…Н3	3.2724
O1…C3	2.8679 (15)	C9…H1	3.1799
O2…C1	3.5778 (16)	С9…Н2	3.2714
O2…C4	2.8728 (18)	С9…Н4	3.2729
O2…C10	2.8910 (18)	C10…H1	2.5538
O3…C1	2.8307 (17)	H1…H5	3.4830
C1…C7	3.586 (2)	H2…H3	2.3255
C1…C8	2.7638 (18)	H3…H4	2.3559
C2…C9	2.7571 (18)	F1…H1 ^{xiii}	3.1465
C4…C7	2.7668 (18)	F1···H2 ⁱⁱⁱ	3.1555
С5…С9	2.7785 (19)	F1···H3 ⁱⁱⁱ	2.5618
C6…C8	2.8031 (19)	F1···H3 ^x	3.5405
$F1 \cdots O2^i$	3.332 (3)	F1···H5 ⁱⁱ	3.0285
F1…O2 ⁱⁱ	3.4454 (15)	O1…H1 ^{xiii}	3.4194
F1···C2 ⁱⁱ	3.5415 (16)	O1…H2 ⁱⁱⁱ	2.5611
F1···C4 ⁱⁱⁱ	3.5386 (17)	O1…H2 ⁱ	3.5413
F1…C5 ⁱⁱⁱ	3.2393 (17)	O2…H1 ^{vi}	2.4819

F1····C10 ⁱⁱ	3.1720 (19)	O2…H4 ^v	2.4119
01…02 ⁱ	3.5495 (16)	O2····H5 ^{vii}	2.8654
O1…O3 ^{iv}	3.0624 (16)	O3…H1 ^{viii}	3.2215
O1…C3 ⁱ	3.5265 (18)	O3····H2 ^{xii}	3.0871
O1···C4 ⁱⁱⁱ	3.3931 (16)	O3····H3 ^{ix}	2.5650
O1····C4 ⁱ	3.532 (3)	O3…H4 ^{ix}	2.9967
01…C8 ⁱ	3.477 (2)	C1····H2 ⁱⁱⁱ	3.1811
O2…F1 ⁱ	3.332 (3)	C1···H2 ⁱ	3.5205
O2···F1 ^v	3.4454 (15)	C3····H1 ^{vi}	3.5325
02…01 ⁱ	3.5495 (16)	C3…H4 ^v	3.4094
O2····C1 ^{vi}	3.2850 (17)	C3····H5 ^{vii}	3.3166
O2···C6 ^v	3.2207 (17)	C4···H1 ⁱ	3.4743
O2····C7 ⁱ	3.425 (3)	C4···H4 ^x	3.4405
02C9 ⁱ	3.5451 (18)	C4···H5 ^{vii}	3.0932
O2···C10 ^{vii}	3 530 (3)	C5…H1 ⁱ	3 5564
03···01 ^{viii}	3,0624 (16)	C6···H5 ⁱ	3 2790
03···C1 ^{viii}	2.988(3)	C6···H5 ⁱⁱ	3 5954
03···C2 ^{viii}	3376(3)	C7···H3 ^x	3 3670
03···C5 ^{ix}	3.300(2)	$C7 \cdots H5^{i}$	3 4926
O3···C6 ^{ix}	3.500(2) 3.503(2)	$C8\cdots H4^{x}$	3 4258
03····C9 ^{viii}	3,303(2) 3,4329(18)		3 4483
C1O2 ⁱⁱⁱ	3.1329(10) 3.2850(17)	C9H2 ⁱⁱⁱ	3 5355
$C1 \cdots O3^{iv}$	2.988(3)	C9H3 ^x	3 5098
$C1 \cdots C4^{i}$	2.900(3)	$C10\cdots H2^{xii}$	3 1732
$C1 \cdots C5^{i}$	3.535(3)	$C10 \cdot H2^{ix}$	3.0252
$C1 \cdots C8^{i}$	3 569 (2)	$C10 \cdots H4^{i}$	3 3 5 9 5
$C^2 \cdots E^{1}$	3.505(2)		3 1465
$C^2 \cdots O^{3^{iv}}$	3.376(3)		3 4 1 9 4
$C^2 \cdots C^{5^i}$	3.570(3)	H1O2 ⁱⁱⁱ	2 4819
$C^2 \cdots C^{i}$	3 516 (3)	H1···O2 ^{iv}	3 2215
$C^2 \cdots C^{7^i}$	3.516(3)	H1C3 ⁱⁱⁱ	3 5325
$C_2 \cdots C_1^i$	3.5265(18)	$H1 \cdots C4^{i}$	3 4743
$C3\cdots C7^{i}$	3.5205(10) 3.423(3)	$H1 \cdots C5^{i}$	3 5564
$C_3 \cdots C_9^i$	3.123(3) 3.273(2)	H1H2 ⁱⁱⁱ	3 0424
C4···F1 ^{vi}	3 5386 (17)	$H1 \cdots H2^{i}$	3 5115
$C4\cdots O1^{vi}$	3 3931 (16)	$H1 \cdots H2^{ix}$	3 1928
$C4\cdots O1^{i}$	3.5931(10) 3.532(3)	H2F1 ^{vi}	3 1555
$C4\cdots C1^{i}$	3.332(3)	$H2\cdots O1^{vi}$	2 5611
$C4\cdots C6^{x}$	3,535 (3)	H2···O1	3 5413
C5····E1 ^{vi}	3,2393(17)		3 0871
$C5 \cdots O3^{xi}$	3.2373(17)	$H2 \cdots C1^{v_i}$	3 1811
$C_{2} = C_{2}$	3.500(2)	$H2 \cdots C1^{i}$	3 5205
$C5 \cdots C2^{i}$	3.584(3)	$H2 \cdots C0^{v_i}$	3.5205
C5 ···C6 ^x	3 469 (2)	$H2 = C \mathcal{I}$	3 1737
C5C7 ^x	3 362 (2)	$H_{2} = 0.0$	3.1/32
	3.302(3) 3.2207(17)	112 111 H2H1 ⁱ	3.0424
C6 = 02	3.2207(17) 3.503(2)	112 111 112112xiv	3.5115
	3.303(2)		3.300/
0002.	3.310(3)	п2…нэ…	2.3839

supporting information

C6…C4 ^x	3.535 (3)	H3…F1 ^{vi}	2.5618
C6…C5 ^x	3.469 (2)	H3····F1 ^x	3.5405
C6…C6 ^x	3.595 (2)	H3····O3 ^{xi}	2.5650
C6…C10 ⁱ	3.302 (3)	H3····C7 ^x	3.3670
C7…O2 ⁱ	3.425 (3)	H3…C9 ^x	3.5098
C7···C2 ⁱ	3 516 (3)	H3····C10 ^{xi}	3 0252
$C7\cdots C3^{i}$	3423(3)	H3····H2 ^{xiv}	3 5607
$C7 \cdots C5^{x}$	3 362 (3)	H3H5 ^{xi}	3 3769
$C8\cdots O1^{i}$	3.302(3) 3.477(2)	H4…O2 ⁱⁱ	2 4119
$C8\cdots C1^{i}$	3.177(2) 3.569(2)	$H4O3^{xi}$	2.0067
	3.509(2)	H4C3 ⁱⁱ	3 4004
C_{0}	3.500(5)		3.4094
	3.3431(10) 3.4220(19)		2 4258
C9C2i	3.4329(10)		3.4238
	3.273(2)		3.3393
	3.500 (3)		3.1928
	3.1/20(19)		3.1/8/
	3.530 (3)	H4···H5"	2.9478
	3.302 (3)	H5····F1v	3.0285
F1···H4	2.5628	H5····O2 ^{xn}	2.8654
O2…H2	2.6123	H5…C3 ^{xii}	3.3166
O2…H5	2.6094	H5····C4 ^{xii}	3.0932
O3…H1	2.5079	H5····C6 ⁱ	3.2790
С1…Н5	3.2720	H5····C6 ^v	3.5954
С3…Н1	3.2941	H5····C7 ⁱ	3.4926
С3…Н2	2.6881	H5····C8 ^{xii}	3.4483
С3…Н5	2.6900	H5····H2 ^{xii}	2.5859
C4···H4	3.2758	H5…H3 ^{ix}	3.3769
С6…Н2	3.2742	H5…H4 ⁱ	3.1787
С7…Н3	3.2451	H5…H4 ^v	2.9478
C1—O1—C9	117.93 (10)	C4—C8—C9	119.10 (11)
O1—C1—C2	124.64 (12)	O1—C9—C7	117.27 (11)
C1—C2—C3	120.87 (11)	O1—C9—C8	123.09 (11)
C1—C2—C10	119.22 (12)	C7—C9—C8	119.64 (12)
C3—C2—C10	119.88 (11)	O3—C10—C2	124.11 (12)
Q2—C3—C2	123.72 (11)	O1—C1—H1	117.679
02 - C3 - C8	122.19 (12)	C2-C1-H1	117.685
$C^2 - C^3 - C^8$	114 09 (10)	C5-C4-H2	119 881
$C_{5} - C_{4} - C_{8}$	120 23 (11)	C8—C4—H2	119.800
C4-C5-C6	120.23(11) 120.63(12)	C4 - C5 - H3	119.695
C_{1} C_{2} C_{3} C_{4} C_{7}	120.05(12) 118.80(12)	C6 $C5$ $H3$	119.005
$E_{1} = C_{1} = C_{1}$	120.30(12)	C5-C6-H4	12.007
$F_1 = C_7 = C_0$	120.37(12) 118.01(12)	C_{3} C_{6} H_{4}	120.003
$\Gamma_1 - U / - U y$	110.01(12) 121.60(12)	$C/-C_0-H_4$	120.398
$C_{0} = C_{1} = C_{2}$	121.00(12)	$C_2 = C_1 O = H_2$	117.944
$C_2 = C_2 = C_2$	121.05 (11)	C2C10H3	117.943
しう―しも―しり	119.23 (11)		
C1—O1—C9—C7	-178.72 (10)	C8—C4—C5—C6	-0.79 (19)

G1 01 G0 G0	2 10 (10)		150.0
C1	2.18 (16)	С8—С4—С5—Н3	1/9.2
C9—O1—C1—C2	-3.31 (17)	H2—C4—C5—C6	179.2
C9—O1—C1—H1	176.7	H2—C4—C5—H3	-0.8
O1—C1—C2—C3	0.63 (19)	H2—C4—C8—C3	-1.6
O1-C1-C2-C10	-177.55 (10)	H2—C4—C8—C9	-180.0
H1—C1—C2—C3	-179.4	C4—C5—C6—C7	0.70 (19)
H1-C1-C2-C10	2.5	C4—C5—C6—H4	-179.3
C1—C2—C3—O2	-176.84 (11)	H3—C5—C6—C7	-179.3
C1—C2—C3—C8	2.95 (16)	Н3—С5—С6—Н4	0.7
C1-C2-C10-O3	-11.00 (19)	C5—C6—C7—F1	179.50 (11)
C1—C2—C10—H5	169.0	C5—C6—C7—C9	0.15 (19)
C3—C2—C10—O3	170.81 (11)	H4—C6—C7—F1	-0.5
С3—С2—С10—Н5	-9.2	H4—C6—C7—C9	-179.9
C10—C2—C3—O2	1.32 (18)	F1—C7—C9—O1	0.61 (17)
C10—C2—C3—C8	-178.89 (10)	F1-C7-C9-C8	179.74 (10)
O2—C3—C8—C4	-2.43 (18)	C6-C7-C9-O1	179.97 (11)
O2—C3—C8—C9	175.92 (10)	C6—C7—C9—C8	-0.90 (18)
C2—C3—C8—C4	177.77 (10)	C3—C8—C9—O1	1.48 (17)
C2—C3—C8—C9	-3.87 (15)	C3—C8—C9—C7	-177.60 (10)
C5-C4-C8-C3	178.39 (11)	C4—C8—C9—O1	179.88 (10)
C5—C4—C8—C9	0.03 (18)	C4—C8—C9—C7	0.80 (17)

Symmetry codes: (i) -x+2, -y, -z; (ii) x-1/2, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) -x+3/2, y+1/2, -z+1/2; (v) x+1/2, -y+1/2, z+1/2; (vi) x+1, y, z; (vii) -x+5/2, y+1/2, -z+1/2; (viii) -x+3/2, y-1/2, -z+1/2; (ix) x-1/2, -y+1/2, z+1/2; (x) -x+2, -y+1, -z; (xi) x+1/2, -y+1/2, z-1/2; (xii) -x+5/2, y-1/2, -z+1/2; (xiii) -x+1, -y, -z; (xiv) -x+3, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1 ^{vi} —H1 ^{vi} ····O2	0.95	2.48	3.285 (2)	142 (1)
C6 ^v —H4 ^v ····O2	0.95	2.41	3.221 (2)	143 (1)

Symmetry codes: (v) x+1/2, -y+1/2, z+1/2; (vi) x+1, y, z.