metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{*N*-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato-κ³O,*N*,O'}iron(II)

Ning Jiang and Juan-Juan Hou*

School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China Correspondence e-mail: hjjtbq@163.com

Received 3 June 2014; accepted 14 June 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.046; *wR* factor = 0.099; data-to-parameter ratio = 13.0.

In the title compound, $[Fe(C_6H_{12}NO_5)_2]$, the Fe^{II} ion lies on an inversion center and is coordinated by two N atoms and four O atoms from two tridentate *N*-[2-hydroxy-1,1-bis(hydroxy-methyl)ethyl]glycine ligands, forming a slightly distorted octahedral coordination environment. In the crystal, O-H···O, O-H···N and weak C-H···O hydrogen bonds link molecules, forming a three-dimensional network.

Related literature

For background to the applications of tripodal alcohols as single-molecule magnets, see: Pilawa *et al.* (1998); Brechin (2005); Murugesu *et al.* (2005).

Experimental

Crystal data [Fe(C₆H₁₂NO₅)₂] $M_r = 412.18$

Monoclinic, $P2_1/c$ a = 8.8198 (7) Å b = 9.0245 (7) Åc = 12.3533 (7) Å $\beta = 127.224 (4)^{\circ}$ $V = 782.94 (10) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) T_{min} = 0.829, T_{max} = 0.923

Refinement

. .

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.099$ S = 1.041708 reflections 131 parameters 4 restraints

lable I			
Hydrogen-bond	geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{i}$	0.87 (2)	2.10 (2)	2.952 (4)	166 (3)
$O3-H3A\cdots O4^{ii}$	0.86(2)	1.72 (2)	2.562 (4)	167 (5)
$O1 - H1B \cdots O5^{iii}$	0.85 (2)	1.96 (2)	2.804 (4)	174 (6)
$O1 - H1B \cdot \cdot \cdot O4^{iii}$	0.85(2)	2.59 (5)	3.172 (4)	127 (4)
$O2-H2C\cdots O1^{ii}$	0.85 (2)	1.93 (2)	2.779 (4)	170 (5)
$C5-H5B\cdots O5^{iv}$	0.97	2.56	3.452 (4)	153
$C2-H2A\cdots O1$	0.97	2.56	3.184 (4)	122

Symmetry codes: (i) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$; (ii) $x, -y = \frac{3}{2}, z = \frac{1}{2}$; (iii) $x = 1, -y = \frac{3}{2}, z = \frac{1}{2}$; (iv) -x = 1, -y = 1, -z = 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the National Science Foundation (21201114).

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5715).

References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Brechin, E. K. (2005). Chem. Commun. pp. 5141-5153.
- Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Murugesu, M., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2005). Angew. Chem. Int. Ed. 44, 892–896.
- Pilawa, B., Kelemen, M. T., Wanka, S., Geisselmann, A. & Barra, A. L. (1998). Europhys. Lett. 43, 7–12.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.19 \times 0.16 \times 0.08 \ \text{mm}$

4000 measured reflections

1708 independent reflections

1230 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.02 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.056$

refinement

 $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2014). E70, m274 [https://doi.org/10.1107/S160053681401397X] Bis{*N*-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato-κ³O,*N*,O'}iron(II)

Ning Jiang and Juan-Juan Hou

S1. Comment

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu *et al.*, 2005; Pilawa *et al.*, 1998). During our synthesis to form a poly-nuclear cluster using the *N*-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the Fe^{II} ion is located on an inversion center (Fig. 1). The Fe^{II} ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two *N*-[tris(hydroxymethyl)-ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

S2. Experimental

The title compound was synthesized hydrothermally under autogenous pressure. A mixture of $FeSO_4$ (0.028 g, 0.1 mmol), *N*-[tris(hydroxymethyl)ethyl]glycine (0.056 g, 0.3 mmol), methanol (3 ml), N,*N*'-dimethyl formamide (1 ml) and H₂O (2 ml), was stirred for 30 min and then sealed in a 15 ml Teflon-lined stainless container and heated to 358K for 60 h. After cooling to room temperature and subjected to filltration, colorless plates were recovered.

S3. Refinement

Hydrogen atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C —H = 0.95-0.99 Å.

Figure 1

The molecular structure of the title compound showing 50% displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1).

Bis{N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato- $\kappa^3 O, N, O'$ }iron(II)

Crystal data

[Fe(C₆H₁₂NO₅)₂] $M_r = 412.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8198 (7) Å b = 9.0245 (7) Å c = 12.3533 (7) Å $\beta = 127.224$ (4)° V = 782.94 (10) Å³ Z = 2

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator multi–scan Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.829, T_{max} = 0.923$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.099$ S = 1.04 F(000) = 432 $D_x = 1.748 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 621 reflections $\theta = 2.9-21.9^{\circ}$ $\mu = 1.02 \text{ mm}^{-1}$ T = 298 KSheet, colorless $0.19 \times 0.16 \times 0.08 \text{ mm}$

4000 measured reflections 1708 independent reflections 1230 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

1708 reflections131 parameters4 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.5000	0.5000	0.5000	0.01527 (19)
01	-0.0265 (4)	0.7341 (3)	0.0516 (3)	0.0347 (7)
O2	0.0173 (4)	0.8369 (3)	0.3530 (3)	0.0355 (7)
O3	0.4719 (4)	0.7180 (3)	0.5354 (3)	0.0323 (7)
O4	0.6437 (4)	0.6393 (3)	0.2600 (3)	0.0356 (7)
05	0.6619 (3)	0.5743 (3)	0.4408 (2)	0.0283 (6)
N1	0.2766 (4)	0.5686 (3)	0.2962 (3)	0.0209 (6)
C1	0.2121 (5)	0.7215 (4)	0.2983 (3)	0.0190 (8)
C2	0.3608 (5)	0.5508 (4)	0.2233 (3)	0.0237 (8)
H2A	0.2927	0.6132	0.1430	0.028*
H2B	0.3466	0.4488	0.1940	0.028*
C3	0.5700 (5)	0.5920 (4)	0.3128 (4)	0.0243 (8)
C4	0.1289 (5)	0.8101 (4)	0.1682 (4)	0.0276 (9)
H4A	0.0855	0.9056	0.1758	0.033*
H4B	0.2274	0.8276	0.1572	0.033*
C5	0.0626 (5)	0.6982 (4)	0.3222 (4)	0.0269 (8)
H5A	-0.0516	0.6556	0.2416	0.032*
H5B	0.1112	0.6298	0.3971	0.032*
C6	0.3822 (5)	0.8077 (4)	0.4165 (4)	0.0269 (8)
H6A	0.4712	0.8302	0.3973	0.032*
H6B	0.3396	0.9003	0.4299	0.032*
H1A	0.182 (4)	0.506 (3)	0.259 (3)	0.027 (10)*
H3A	0.514 (6)	0.773 (5)	0.605 (3)	0.078 (18)*
H1B	-0.126 (5)	0.787 (5)	0.014 (5)	0.10 (2)*
H2C	0.019 (7)	0.815 (5)	0.421 (4)	0.080 (19)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Fe1	0.0159 (4)	0.0181 (3)	0.0101 (4)	0.0003 (3)	0.0069 (3)	0.0009 (3)

supporting information

01	0.0265 (16)	0.0462 (18)	0.0188 (15)	0.0048 (14)	0.0070 (14)	0.0003 (13)
O2	0.0443 (18)	0.0349 (16)	0.0402 (19)	0.0148 (13)	0.0323 (16)	0.0086 (14)
O3	0.0379 (17)	0.0292 (15)	0.0160 (15)	0.0004 (13)	0.0091 (14)	-0.0017 (12)
O4	0.0293 (15)	0.0513 (18)	0.0283 (16)	0.0014 (13)	0.0185 (14)	0.0135 (13)
O5	0.0234 (14)	0.0396 (15)	0.0174 (14)	0.0003 (12)	0.0100 (12)	0.0048 (12)
N1	0.0203 (16)	0.0195 (16)	0.0220 (17)	-0.0026 (13)	0.0123 (15)	-0.0040 (13)
C1	0.0192 (18)	0.0201 (18)	0.0148 (19)	0.0020 (14)	0.0087 (16)	0.0019 (14)
C2	0.0213 (19)	0.0286 (19)	0.018 (2)	0.0028 (15)	0.0103 (17)	-0.0004 (15)
C3	0.026 (2)	0.0218 (19)	0.024 (2)	0.0015 (16)	0.0141 (18)	0.0035 (16)
C4	0.027 (2)	0.029 (2)	0.022 (2)	0.0025 (17)	0.0123 (19)	0.0029 (17)
C5	0.027 (2)	0.031 (2)	0.025 (2)	0.0050 (17)	0.0166 (19)	0.0038 (17)
C6	0.025 (2)	0.027 (2)	0.023 (2)	-0.0003 (16)	0.0121 (18)	-0.0005 (17)

Geometric parameters (Å, °)

Fe1—O3 ⁱ	2.062 (3)	N1—C1	1.498 (4)
Fe1—O3	2.062 (3)	N1—H1A	0.871 (18)
Fe1—O5 ⁱ	2.071 (2)	C1—C4	1.527 (4)
Fe1—O5	2.071 (2)	C1—C6	1.529 (5)
Fe1—N1	2.145 (3)	C1—C5	1.531 (4)
Fe1—N1 ⁱ	2.145 (3)	C2—C3	1.515 (5)
O1—C4	1.427 (4)	C2—H2A	0.9700
O1—H1B	0.850 (19)	C2—H2B	0.9700
O2—C5	1.433 (4)	C4—H4A	0.9700
O2—H2C	0.854 (19)	C4—H4B	0.9700
O3—C6	1.426 (4)	С5—Н5А	0.9700
O3—H3A	0.855 (19)	С5—Н5В	0.9700
O4—C3	1.242 (4)	С6—Н6А	0.9700
O5—C3	1.277 (4)	C6—H6B	0.9700
N1—C2	1.482 (4)		
O3 ⁱ —Fe1—O3	180.000(1)	N1—C1—C5	104.9 (3)
O3 ⁱ —Fe1—O5 ⁱ	87.88 (10)	C4—C1—C5	110.7 (3)
O3—Fe1—O5 ⁱ	92.12 (10)	C6—C1—C5	110.3 (3)
O3 ⁱ —Fe1—O5	92.12 (10)	N1—C2—C3	111.5 (3)
O3—Fe1—O5	87.88 (10)	N1—C2—H2A	109.3
O5 ⁱ —Fe1—O5	180.0	C3—C2—H2A	109.3
O3 ⁱ —Fe1—N1	99.75 (10)	N1—C2—H2B	109.3
O3—Fe1—N1	80.25 (10)	C3—C2—H2B	109.3
O5 ⁱ —Fe1—N1	99.68 (10)	H2A—C2—H2B	108.0
O5—Fe1—N1	80.32 (10)	O4—C3—O5	123.4 (3)
O3 ⁱ —Fe1—N1 ⁱ	80.25 (10)	O4—C3—C2	119.6 (3)
O3—Fe1—N1 ⁱ	99.75 (10)	O5—C3—C2	117.0 (3)
O5 ⁱ —Fe1—N1 ⁱ	80.32 (10)	O1—C4—C1	111.5 (3)
O5—Fe1—N1 ⁱ	99.68 (10)	O1—C4—H4A	109.3
N1—Fe1—N1 ⁱ	180.000 (1)	C1—C4—H4A	109.3
C4—O1—H1B	109 (4)	O1—C4—H4B	109.3
C5—O2—H2C	102 (3)	C1—C4—H4B	109.3

C6—O3—Fe1	112.7 (2)	H4A—C4—H4B	108.0
С6—О3—НЗА	109 (3)	O2—C5—C1	110.0 (3)
Fe1—O3—H3A	137 (3)	O2—C5—H5A	109.7
C3—O5—Fe1	114.9 (2)	C1—C5—H5A	109.7
C2—N1—C1	116.4 (3)	O2—C5—H5B	109.7
C2—N1—Fe1	103.9 (2)	C1—C5—H5B	109.7
C1—N1—Fe1	109.5 (2)	H5A—C5—H5B	108.2
C2—N1—H1A	106 (2)	O3—C6—C1	107.9 (3)
C1—N1—H1A	111 (2)	O3—C6—H6A	110.1
Fe1—N1—H1A	110 (2)	С1—С6—Н6А	110.1
N1—C1—C4	114.2 (3)	O3—C6—H6B	110.1
N1—C1—C6	108.8 (3)	C1—C6—H6B	110.1
C4—C1—C6	107.9 (3)	H6A—C6—H6B	108.4
O5 ⁱ —Fe1—O3—C6	-120.1 (2)	Fe1—N1—C1—C6	32.2 (3)
O5—Fe1—O3—C6	59.9 (2)	C2—N1—C1—C5	156.7 (3)
N1—Fe1—O3—C6	-20.6 (2)	Fe1—N1—C1—C5	-85.9 (3)
N1 ⁱ —Fe1—O3—C6	159.4 (2)	C1—N1—C2—C3	83.5 (4)
O3 ⁱ —Fe1—O5—C3	84.2 (2)	Fe1—N1—C2—C3	-37.0 (3)
O3—Fe1—O5—C3	-95.8 (2)	Fe1	178.2 (3)
N1—Fe1—O5—C3	-15.3 (2)	Fe1—O5—C3—C2	-2.4 (4)
N1 ⁱ —Fe1—O5—C3	164.7 (2)	N1-C2-C3-O4	-152.0 (3)
O3 ⁱ —Fe1—N1—C2	-62.5 (2)	N1-C2-C3-O5	28.6 (4)
O3—Fe1—N1—C2	117.5 (2)	N1-C1-C4-01	56.5 (4)
O5 ⁱ —Fe1—N1—C2	-152.0 (2)	C6-C1-C4-O1	177.6 (3)
O5—Fe1—N1—C2	28.0 (2)	C5-C1-C4-O1	-61.6 (4)
O3 ⁱ —Fe1—N1—C1	172.4 (2)	N1-C1-C5-O2	168.6 (3)
O3—Fe1—N1—C1	-7.6 (2)	C4—C1—C5—O2	-67.7 (4)
O5 ⁱ —Fe1—N1—C1	82.9 (2)	C6-C1-C5-O2	51.6 (4)
O5—Fe1—N1—C1	-97.1 (2)	Fe1-O3-C6-C1	43.9 (3)
C2—N1—C1—C4	35.4 (4)	N1—C1—C6—O3	-49.6 (3)
Fe1—N1—C1—C4	152.8 (2)	C4—C1—C6—O3	-174.0 (3)
C2—N1—C1—C6	-85.3 (3)	C5—C1—C6—O3	65.0 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A····O2 ⁱⁱ	0.87 (2)	2.10 (2)	2.952 (4)	166 (3)
O3—H3A···O4 ⁱⁱⁱ	0.86 (2)	1.72 (2)	2.562 (4)	167 (5)
$O1$ — $H1B$ ···· $O5^{iv}$	0.85 (2)	1.96 (2)	2.804 (4)	174 (6)
O1—H1 <i>B</i> ···O4 ^{iv}	0.85 (2)	2.59 (5)	3.172 (4)	127 (4)
O2—H2C···O1 ⁱⁱⁱ	0.85 (2)	1.93 (2)	2.779 (4)	170 (5)
C5—H5 <i>B</i> ···O5 ⁱ	0.97	2.56	3.452 (4)	153
C2—H2A…O1	0.97	2.56	3.184 (4)	122

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, y-1/2, -z+1/2; (iii) x, -y+3/2, z+1/2; (iv) x-1, -y+3/2, z-1/2.