Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[trans-bis(1,3-benzothiazoleκN)manganese(II)]-di- μ-chlorido]

Hasna Bouchareb, ${ }^{\text {a }}$ Sabrina Benmebarek, ${ }^{\text {a }}$ Sofiane Bouacida, ${ }^{\text {a,b}}{ }^{\text {b }}$ Hocine Merazig ${ }^{\text {a }}$ and Mhamed Boudraa ${ }^{\text {a }}$
${ }^{\text {a }}$ Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and ${ }^{\mathbf{b}}$ Département Sciences de la Matiere, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 5 June 2014; accepted 17 June 2014

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.042 ; w R$ factor $=0.092$; data-to-parameter ratio $=14.3$.

In the title coordination polymer, $\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}\right)_{2}\right]_{n}$, the $\mathrm{Mn}^{\mathrm{II}}$ ion is located on the intersection of a twofold rotation axis and a mirror plane and adopts an octahedral coordination geometry defined by two mutually trans N atoms from benzothiazole ligands which occupy the axial positions, and four Cl atoms which form the equatorial sites. The $\mathrm{Mn}^{\mathrm{II}}$ ions are connected by two bridging Cl atoms, forming chains parallel to the c axis. The crystal packing can be descibed as alternating layers parallel to (001) featuring $\pi-\pi$ stacking interactions with a centroid-centroid distance of 3.6029 (15) Å.

Related literature

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Karisson et al. (2003); Khan et al. (2011). For related structures see: Bouchareb et al. (2013); Roh \& Jeong (2007); Popović et al. (2003); Maniukiewicz (2004).

Experimental

Crystal data
$\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}\right)_{2}\right]$
$M_{r}=396.22$

Tetragonal, $P 4_{2} / m b c$
$a=14.761$ (6) A
$c=7.170$ (3) \AA
$V=1562.3(14) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min }=0.674, T_{\max }=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.092$
$S=1.14$
918 reflections

Mo $K \alpha$ radiation
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.19 \times 0.14 \times 0.12 \mathrm{~mm}$

15714 measured reflections 918 independent reflections 685 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.117$

64 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.46 \mathrm{e}^{\AA^{-3}}$

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg \& Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie Algérie) for financial support via the PNR programme.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5716).

References

Bouchareb, H., Boudraa, M., Bouacida, S. \& Merazig, H. (2013). Acta Cryst. E69, o1078-o1079.
Brandenburg, K. \& Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Karisson, H. J., Lincoln, P. \& Westman, G. (2003). Bioorg. Med. Chem. 11, 1035-1040.
Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Ul-Haq, Z., Mesaik, M. A. \& Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 42864294.

Maniukiewicz, W. (2004). Acta Cryst. E60, m340-m341.
Petkova, I., Nikolov, P. \& Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21-25.
Popović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. \& Racané, L. (2003). Acta Cryst. C59, m4-m6.
Roh, S.-G. \& Jeong, J. H. (2007). Acta Cryst. E63, m2334.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, m275 [https://doi.org/10.1107/S1600536814014159]

catena-Poly[[trans-bis(1,3-benzothiazole- κN)manganese(II)]-di- μ-chlorido]

Hasna Bouchareb, Sabrina Benmebarek, Sofiane Bouacida, Hocine Merazig and Mhamed Boudraa

S1. Comment

In recent years, benzothiazole and its derivatives have attracted more attention because they exhibit interesting optical and biological activities (Petkova et al., 2000; Karisson et al., 2003; Khan et al. 2011). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Roh et al. 2007, Popović et al. 2003, Maniukiewicz 2004). As part of our ongoing studies of benzothiazole-based coordination networks (Bouchareb et al. 2013), we report herein the structure of a coordination polymer of manganese and a benzothiazole ligand (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1.
In the title compound, the $\mathrm{Mn}^{\text {II }}$ cation is located on the intersection of a twofold rotation axis and a mirror plane. The coordination sphere is defined by two mutually trans N atoms from two neutral monodentate benzothiazole ligands occupying the axial positions, and four Cl atoms lying in the equatorial plane. All $\mathrm{Mn}-\mathrm{Cl}$ bond lengths are identical [2.5232 (10)] \AA by symmetry and the $\mathrm{Mn}-\mathrm{N}$ bond lengths are 2.307 (4) \AA. In the coordination octahedron, all $\mathrm{N}-\mathrm{Mn}-$ Cl and $\mathrm{Cl}-\mathrm{Mn}-\mathrm{Cl}$ bond angles are in the range of $89.40(7)-90.60(7)^{\circ}$. The $\mathrm{Mn}^{\mathrm{II}}$ ions are connected by two bridging Cl atoms, resulting in a chain of octahedra parallel to the c axis (Fig. 2). The crystal packing can be descibed as alterning layers parallel to (001) (Fig. 3). The crystal structure features two $\pi-\pi$ stacking interactions: $C g 1-C g 1=3.6029$ (15) \AA and $C g 1-C g 2=4.048(2) \AA$, Where, $C g 1$ is the centroid of the imidazole ring $(\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{S} 1 / \mathrm{C} 6 / \mathrm{C} 1)$ and $C g 2$ is the centroid of the fused benzene ring ($\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6)$. No hydrogen bonds are observed in the structure.

S2. Experimental

Benzothiazole (1 ml) and ethanol (1 ml) were added to a solution of $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(39.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ in water (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, single crystals suitable for X-ray diffraction were obtained.

S3. Refinement

All non-H atoms were refined with anisotropic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed in idealized positions and refined in a riding-model approximation. The applied constraints were as follow: $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. Only the contents of the asymmetric unit are numbered. H atoms are represented as small spheres of arbitrary radii.

Figure 2
The coordination around the $\mathrm{Mn}^{\mathrm{II}}$ ion in a chain of octahedra parallel to the c axis

Figure 3
Packing diagram of (I) viewed along the a axis showing alterning layers parallel to (001).

catena-Poly[[trans-bis(1,3-benzothiazole- κN)manganese(II)]-di- μ-chlorido]

Crystal data

$\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}\right)_{2}\right]$
$M_{r}=396.22$
Tetragonal, $P 4_{2} / m b c$
Hall symbol: -P 4c 2ab
$a=14.761$ (6) \AA
$c=7.170(3) \AA$
$V=1562.3(14) \AA^{3}$
$Z=4$
$F(000)=796$

Data collection

Bruker APEXII
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.674, T_{\text {max }}=0.746$
$D_{\mathrm{x}}=1.685 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1270 reflections
$\theta=3.1-25.2^{\circ}$
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colorless
$0.19 \times 0.14 \times 0.12 \mathrm{~mm}$

15714 measured reflections
918 independent reflections
685 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.117$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-18 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.092$
$S=1.14$
918 reflections
64 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0376 P)^{2}+1.2805 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\max }=0.55$ e \AA^{-3}
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.8908(3)$	$0.2962(3)$	1	$0.0160(9)$
C2	$0.9693(3)$	$0.2427(3)$	1	$0.0242(11)$
H2	1.0264	0.2692	1	0.029^{*}
C3	$0.9597(3)$	$0.1501(3)$	1	$0.0337(13)$
H3	1.0112	0.1137	1	0.04^{*}
C4	$0.8742(3)$	$0.1096(3)$	1	$0.0423(16)$
H4	0.8697	0.0468	1	0.051^{*}
C5	$0.7963(3)$	$0.1612(3)$	1	$0.0398(15)$
H5	0.7395	0.134	1	0.048^{*}
C6	$0.8050(3)$	$0.2547(3)$	1	$0.0226(10)$
C7	$0.8052(3)$	$0.4183(3)$	1	$0.0225(11)$
H7	0.7909	0.4796	1	0.027^{*}
N1	$0.8879(2)$	$0.3912(2)$	1	$0.0167(7)$
S1	$0.72177(8)$	$0.33651(9)$	1	$0.0284(3)$
C11	$0.91494(5)$	$0.58506(5)$	0.75	$0.0163(2)$
Mn1	1	0.5	1	$0.0135(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.018(2)$	$0.012(2)$	$0.018(2)$	$-0.0047(18)$	0	0
C2	$0.014(2)$	$0.018(2)$	$0.041(3)$	$-0.0029(18)$	0	0
C3	$0.018(2)$	$0.016(2)$	$0.067(4)$	$0.002(2)$	0	0
C4	$0.026(3)$	$0.016(3)$	$0.084(5)$	$-0.004(2)$	0	0
C5	$0.020(3)$	$0.023(3)$	$0.077(4)$	$-0.012(2)$	0	0

C6	$0.018(2)$	$0.020(2)$	$0.030(3)$	$-0.0039(19)$	0	0
C7	$0.019(2)$	$0.023(3)$	$0.026(3)$	$-0.004(2)$	0	0
N1	$0.015(2)$	$0.016(2)$	$0.0192(18)$	$-0.0017(14)$	0	0
S1	$0.0122(6)$	$0.0245(7)$	$0.0484(8)$	$-0.0023(5)$	0	0
C11	$0.0161(3)$	$0.0161(3)$	$0.0167(5)$	$0.0030(4)$	$0.0004(4)$	$0.0004(4)$
Mn1	$0.0128(5)$	$0.0128(5)$	$0.0150(4)$	$-0.0003(3)$	0	0

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	1.402 (6)	C6-S1	1.723 (5)
C1-N1	1.402 (5)	C7-N1	1.284 (6)
C1-C6	1.406 (6)	C7-S1	1.724 (5)
C2-C3	1.374 (6)	C7-H7	0.93
C2-H2	0.93	N1-Mn1	2.307 (4)
C3-C4	1.397 (7)	$\mathrm{Cl1}-\mathrm{Mn} 1^{\mathrm{i}}$	2.5232 (10)
C3-H3	0.93	$\mathrm{Cl1}-\mathrm{Mn} 1$	2.5232 (10)
C4-C5	1.379 (7)	$\mathrm{Mn} 1-\mathrm{N} 1^{\text {ii }}$	2.307 (4)
C4-H4	0.93	$\mathrm{Mn} 1-\mathrm{Cl} 1^{\text {iii }}$	2.5232 (10)
C5-C6	1.386 (7)	$\mathrm{Mn} 1-\mathrm{Cl1}^{\text {ii }}$	2.5232 (10)
C5-H5	0.93	$\mathrm{Mn} 1-\mathrm{Cl1}^{\text {iv }}$	2.5232 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	126.1 (4)	C7-N1-C1	109.9 (4)
C2-C1-C6	119.9 (4)	C7-N1-Mn1	117.7 (3)
N1-C1-C6	114.1 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	132.4 (3)
C3-C2-C1	118.4 (4)	C6-S1-C7	88.9 (2)
C3-C2-H2	120.8	$\mathrm{Mn1}{ }^{\text {i }} \mathrm{Cl} 1-\mathrm{Mn} 1$	90.54 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.8	$\mathrm{N} 1{ }^{\text {ii- }} \mathrm{Mn} 1-\mathrm{N} 1$	180
C2-C3-C4	121.2 (5)	$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{Cl}^{\text {iii }}$	89.40 (7)
C2-C3-H3	119.4	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1}^{\text {iii }}$	90.60 (7)
C4-C3-H3	119.4	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Mnl}-\mathrm{Cl}^{\text {ii }}$	89.40 (7)
C5-C4-C3	121.1 (5)	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1}^{\text {ii }}$	90.60 (7)
C5-C4-H4	119.4	$\mathrm{Cl1} 1{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{Cl1}^{\text {ii }}$	90.54 (4)
C3-C4-H4	119.4	$\mathrm{N}^{\text {iii }}$ - $\mathrm{Mn} 1-\mathrm{Cl1}$	90.60 (7)
C4-C5-C6	118.2 (5)	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl} 1$	89.40 (7)
C4-C5-H5	120.9	$\mathrm{Cl1}^{\text {iii- }} \mathrm{Mn} 1-\mathrm{Cl1}$	89.46 (4)
C6-C5-H5	120.9	Cl1 ${ }^{\text {ii- }} \mathrm{Mn} 1-\mathrm{Cl1}$	180
C5-C6-C1	121.1 (4)	$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{Cl}^{\text {iv }}$	90.60 (7)
C5-C6-S1	129.2 (4)	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1}^{\text {iv }}$	89.40 (7)
C1-C6-S1	109.7 (3)	$\mathrm{Cl1} 1 \mathrm{iii}-\mathrm{Mn} 1-\mathrm{Cl} 1^{\text {iv }}$	180
N1-C7-S1	117.4 (4)	$\mathrm{Cl1} 1{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{Cl}^{\text {iv }}$	89.46 (4)
N1-C7-H7	121.3	$\mathrm{Cl1}-\mathrm{Mn} 1-\mathrm{Cl1}^{\text {iv }}$	90.54 (4)
S1-C7-H7	121.3		
N1-C1-C2-C3	180	C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	180
C6-C1-C2-C3	0	C5-C6-S1-C7	180
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0	C1-C6-S1-C7	0
C2-C3-C4-C5	0	N1-C7-S1-C6	0
C3-C4-C5-C6	0	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1} 1^{\text {iii }}$	-134.72 (2)

supporting information

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	180
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	180
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 1$	180
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 1$	0
$\mathrm{~S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	0
$\mathrm{~S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{Mn} 1$	180
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	180
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	0

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1} 1^{\text {iii }}$	45.28 (2)
C7-N1-Mn1-Cl1 ${ }^{\text {ii }}$	134.72 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1}{ }^{\text {ii }}$	-45.28 (2)
C7-N1-Mn1-Cl1	-45.28 (2)
C1-N1-Mn1-Cl1	134.72 (2)
C7-N1-Mn1-Cl1 ${ }^{\text {iv }}$	45.28 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl1} 1^{\text {iv }}$	-134.72 (2)
$\mathrm{Mn} 1{ }^{\text {i }}$ - $\mathrm{Cl1}-\mathrm{Mn} 1-\mathrm{N} 1^{\text {ii }}$	89.39 (7)
$\mathrm{Mn} 1{ }^{\text {i }}$ - $\mathrm{Cl} 1-\mathrm{Mn} 1-\mathrm{N} 1$	-90.61 (7)
$\mathrm{Mn1}{ }^{\text {i }} \mathrm{Cl1}-\mathrm{Mn} 1-\mathrm{Cl}^{\text {iv }}$	180

Symmetry codes: (i) $y+1 / 2, x-1 / 2,-z+3 / 2$; (ii) $-x+2,-y+1,-z+2$; (iii) $-x+2,-y+1, z$; (iv) $x, y,-z+2$.

