organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate

Dawei Zhang,^a Peng Yang,^a Wei Liu^a and Jing Li^{b*}

^aCollege of Agricultural Sciences, Jilin University, Changchun, Jilin Province 130062, People's Republic of China, and ^bCollege of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang Province 163319, People's Republic of China

Correspondence e-mail: lijingroea@gmail.com

Received 8 May 2014; accepted 13 June 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 14.2.

In the title compound, $C_{22}H_{19}Cl_2NO_3$, the central sixmembered ring is in a twist-boat conformation. The two aryl groups are in equatorial positions, *trans* to each other and with a dihedral angle of 77.50 (2)° between them. One of the least hindered $-CH_2$ - groups and one of the aryl-substituted C atoms, with its axial H atom, are in the flagpole positions. The ethoxycarbonyl group is in an equatorial position and is *cis* to the second aryl group. In the crystal, molecules are linked *via* weak C-H···O hydrogen bonds, forming chains along [010].

Related literature

For the synthesis, see: Zhang *et al.* (2010); Tan *et al.* (2009). For related structures, see: Rowland & Gill (1988); Aleman *et al.* (2009); Wu *et al.* (2011); Li *et al.* (2011). For other [5 + 1] annulation reactions, see: Bi *et al.* (2005); Zhao *et al.* (2006); Fu *et al.* (2009); Xu *et al.* (2012).

Experimental

Crystal data $C_{22}H_{19}Cl_2NO_3$ $M_r = 416.28$ Monoclinic, C2/ca = 21.6980 (17) Å

0802

b = 11.0770 (19) Å c = 17.515 (3) Å $\beta = 104.535 (2)^{\circ}$ $V = 4075.0 (10) \text{ Å}^{3}$

Z = 8Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.932, T_{\rm max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.117$ S = 1.013602 reflections

Table 1 Hydrogen-bond geometry (Å, °).

Tydrogen-bolid geometry (A,).

T = 293 K

 $R_{\rm int} = 0.027$

253 parameters

 $\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ \AA}$

 $\Delta \rho_{\rm min} = -0.35$ e Å⁻³

 $0.21 \times 0.19 \times 0.15~\text{mm}$

9983 measured reflections3602 independent reflections

2584 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support of this research by the Science and Technology Development Program Foundation of Jilin Province (No. 20140204022NY) and the Interdisciplinary Innovation Fund of Jilin University (No. 450060481143) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2127).

References

- Aleman, C., Jiménez, A. I., Cativiela, C., Nussinov, R. & Casanovas, J. (2009). J. Org. Chem. 74, 7834–7843.
- Bi, X., Dong, D., Liu, Q., Pan, W., Zhao, L. & Li, B. (2005). J. Am. Chem. Soc. **127**, 4578–4579.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, Z., Wang, M., Dong, Y., Liu, J. & Liu, Q. (2009). J. Org. Chem. 74, 6105– 6110.
- Li, Y., Xu, X., Tan, J., Xia, C., Zhang, D. & Liu, Q. (2011). J. Am. Chem. Soc. 133, 1775–1777.
- Rowland, A. T. & Gill, B. C. (1988). J. Org. Chem. 53, 434-437.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868–2872.
- Wu, B., Liu, G., Li, M., Zhang, Y., Zhang, S., Qiu, J., Xu, X., Ji, S. & Wang, X. (2011). Chem. Commun. 47, 3992–3994.
- Xu, X., Liu, Y. & Park, C. (2012). Angew. Chem. Int. Ed. 51, 9372-9376.
- Zhang, D., Xu, X. & &Liu, Q. (2010). Synlett, 6, 917-920.
- Zhao, L., Liang, F., Bi, X., Sun, S. & Liu, Q. (2006). J. Org. Chem. 71, 1094– 1098.

supporting information

Acta Cryst. (2014). E70, o802 [https://doi.org/10.1107/S160053681401383X] Ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate

Dawei Zhang, Peng Yang, Wei Liu and Jing Li

S1. Experimental

S1.1. Synthesis and crystallization

To the mixture of 1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (303 mg, 1.0 mmol) and ethyl isocyanoacetate (0.132 mL, 1.2 mmol) in DMF (5 mL) was added 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) (0.015 mL, 0.1 mmol) in one portion at room temperature. The reaction mixture was stirred at room temperature, and the reaction mixture was monitored by TLC. After the substrate 1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one was consumed, the resulting mixture was poured into ice-water (30 mL) under stirring. The precipitated solid was collected by filtration, washed with water (3×10 mL), and dried under vacuum to afford the crude product, which was purified by flash chromatography (silica gel, petroleum ether : diethyl ether = 3:1, V/V) to give ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate (387 mg, 93%). The material was recrystallized from a mixture of petroleum ether and diethyl ether to provide a crystalline solid.

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.Hydrogen atoms were generated in idealized positions (according to the *sp*2 or *sp*3 geometries of their parent carbon), and then refined using a riding model with fixed C—H distances (C—H = 0.95-1.00 Å) and with Uiso(H) = 1.2Ueq(C).

S2. Results and discussion

[5+1] annulation is a novel strategy for the construction of six-membered cyclic compounds and total synthesis of natural products (Rowland & Gill, 1988; Wu *et al.*, 2011; Li *et al.*, 2011). The regiospecific [5+1] annulation reactions have drawn much attentions and both the five-carbon 1,5-bielectrophiles and the one-atom nucleophiles been explored extensively (Bi *et al.*, 2005; Zhao *et al.*, 2006; Fu *et al.*, 2009; Xu *et al.*, 2012). We have been dealing with functionalized ketene dithioacetals for several years and have succeeded in the preparation of six-membered aromatic and heterocyclic compounds based on [5C+1X] annulations (Zhang *et al.*, 2010; Tan *et al.*, 2009). The aromatic cyclic compounds are analogues of phenylalanine (Phe) which are potential moieties for the synthesis of peptide analogues with controlled fold in the backbone. The constrained ring systems play important roles in restricting torsional angle χ 1 and in peptide receptor recognition processes (Aleman *et al.*, 2009).

The crystal structure of title compound, a phenyl substituted highly constrained cyclohexane analogue of Ph, is reported in this paper. Due to the steric hindrance, the oxocyclohexane is in a twist-boat conformation (Fig. 1). The ethoxyl carbonyl and the two aryl groups are located in equatorial positions. The dihedral angle between two aromatic rings is $77.495 (20)^{\circ}$. The C7 axial hydrogen and the CH₂ bonded to C10 are on the flagpole positions of the boat conformation, which give the least torsional strain. The equatorial ethoxyl carbonyl on C18 and the equatorial aryl group on C11 also lead the formation of a comparable stable boat conformation of this compound.

Figure 1

View of the molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.

Ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate

Crystal data

C₂₂H₁₉Cl₂NO₃ $M_r = 416.28$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.6980 (17) Å b = 11.0770 (19) Å c = 17.515 (3) Å $\beta = 104.535 (2)^{\circ}$ $V = 4075.0 (10) \text{ Å}^{3}$ Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.932, T_{\max} = 0.951$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.117$ S = 1.013602 reflections 253 parameters 0 restraints F(000) = 1728 $D_x = 1.357 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 106 reflections $\theta = 1.3-26.0^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 293 KBLOCK, colorless $0.21 \times 0.19 \times 0.15 \text{ mm}$

9983 measured reflections 3602 independent reflections 2584 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -25 \rightarrow 25$ $k = -13 \rightarrow 13$ $l = -20 \rightarrow 9$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0514P)^{2} + 2.7869P] \qquad \Delta \mu$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \mu$ $(\Delta/\sigma)_{max} < 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

(Fractional atomic coordinates a	ıd isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	---------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C12	-0.01505 (3)	0.07074 (6)	0.62309 (5)	0.0780 (2)	
Cl1	0.59500 (4)	0.06816 (9)	0.99930 (6)	0.1128 (4)	
O2	0.30900 (7)	0.21848 (13)	0.84990 (9)	0.0528 (4)	
C12	0.18929 (9)	0.19357 (17)	0.66846 (12)	0.0443 (5)	
C18	0.30971 (9)	0.15687 (17)	0.72324 (12)	0.0435 (5)	
N1	0.30407 (9)	0.04712 (16)	0.67773 (12)	0.0524 (5)	
C11	0.25594 (9)	0.24575 (18)	0.68262 (12)	0.0424 (5)	
H11	0.2578	0.3129	0.7196	0.051*	
C4	0.42949 (9)	0.17517 (19)	0.79764 (14)	0.0492 (5)	
01	0.28944 (9)	0.02289 (15)	0.82275 (11)	0.0759 (5)	
C7	0.37764 (9)	0.21213 (18)	0.72628 (13)	0.0477 (5)	
H7	0.3901	0.1767	0.6811	0.057*	
C19	0.30148 (9)	0.12206 (19)	0.80460 (13)	0.0475 (5)	
C9	0.33050 (11)	0.3749 (2)	0.63092 (15)	0.0552 (6)	
C17	0.15361 (10)	0.2176 (2)	0.72194 (14)	0.0561 (6)	
H17	0.1719	0.2608	0.7676	0.067*	
03	0.34259 (9)	0.45029 (17)	0.58723 (12)	0.0832 (6)	
C14	0.09922 (11)	0.0868 (2)	0.58857 (14)	0.0567 (6)	
H14	0.0811	0.0413	0.5440	0.068*	
C10	0.27117 (10)	0.2997 (2)	0.60953 (13)	0.0517 (5)	
H10A	0.2767	0.2352	0.5744	0.062*	
H10B	0.2358	0.3494	0.5818	0.062*	
C15	0.06450 (10)	0.1152 (2)	0.64196 (15)	0.0551 (6)	
C8	0.37399 (10)	0.34828 (19)	0.71039 (14)	0.0542 (6)	
H8A	0.3584	0.3888	0.7509	0.065*	
H8B	0.4162	0.3791	0.7125	0.065*	
C13	0.16142 (10)	0.12688 (19)	0.60210 (13)	0.0526 (6)	
H13	0.1849	0.1086	0.5659	0.063*	
C20	0.30188 (13)	0.2027 (3)	0.93036 (14)	0.0705 (7)	
H20A	0.2595	0.2272	0.9327	0.085*	
H20B	0.3074	0.1183	0.9452	0.085*	
C16	0.09146 (11)	0.1789 (2)	0.70886 (16)	0.0646 (7)	

supporting information

H16	0.0680	0.1961	0.7453	0.078*	
C3	0.46190 (11)	0.2575 (2)	0.85150 (16)	0.0690 (7)	
H3	0.4496	0.3381	0.8459	0.083*	
C5	0.44867 (12)	0.0562 (2)	0.80921 (17)	0.0694 (7)	
Н5	0.4275	-0.0025	0.7744	0.083*	
C1	0.53022 (11)	0.1084 (3)	0.92278 (17)	0.0717 (7)	
C6	0.49881 (14)	0.0224 (3)	0.87177 (19)	0.0829 (9)	
H6	0.5109	-0.0582	0.8789	0.099*	
C22	0.30053 (14)	-0.0380 (2)	0.63980 (18)	0.0765 (8)	
C2	0.51188 (12)	0.2252 (3)	0.91352 (18)	0.0793 (8)	
H2	0.5329	0.2834	0.9489	0.095*	
C21	0.34862 (18)	0.2745 (3)	0.98441 (18)	0.1104 (12)	
H21A	0.3437	0.2640	1.0370	0.166*	
H21B	0.3428	0.3581	0.9698	0.166*	
H21C	0.3905	0.2493	0.9825	0.166*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Cl2	0.0464 (3)	0.0811 (5)	0.1010 (6)	-0.0096 (3)	0.0083 (3)	-0.0033 (4)
Cl1	0.0699 (5)	0.1466 (8)	0.1075 (7)	0.0144 (5)	-0.0045 (4)	0.0360 (6)
O2	0.0637 (9)	0.0523 (9)	0.0461 (9)	-0.0020 (7)	0.0207 (7)	0.0016 (7)
C12	0.0474 (11)	0.0384 (10)	0.0454 (12)	0.0012 (9)	0.0087 (10)	0.0009 (9)
C18	0.0492 (11)	0.0345 (10)	0.0487 (13)	-0.0035 (8)	0.0159 (10)	-0.0030 (9)
N1	0.0580 (11)	0.0386 (10)	0.0609 (12)	-0.0003 (8)	0.0153 (9)	-0.0051 (9)
C11	0.0472 (11)	0.0377 (10)	0.0428 (12)	-0.0030 (8)	0.0122 (9)	-0.0017 (9)
C4	0.0417 (11)	0.0520 (12)	0.0586 (14)	-0.0016 (9)	0.0216 (10)	0.0030 (11)
01	0.1060 (14)	0.0511 (10)	0.0770 (13)	-0.0162 (9)	0.0350 (11)	0.0125 (9)
C7	0.0480 (12)	0.0463 (12)	0.0534 (13)	-0.0034 (9)	0.0210 (10)	-0.0009 (10)
C19	0.0430 (11)	0.0458 (12)	0.0543 (14)	-0.0024 (9)	0.0136 (10)	0.0049 (11)
C9	0.0647 (14)	0.0492 (12)	0.0582 (15)	-0.0031 (11)	0.0275 (12)	0.0072 (12)
C17	0.0511 (13)	0.0594 (14)	0.0583 (15)	-0.0059 (10)	0.0147 (11)	-0.0144 (12)
O3	0.0888 (13)	0.0857 (13)	0.0778 (13)	-0.0170 (10)	0.0257 (11)	0.0318 (11)
C14	0.0580 (14)	0.0522 (13)	0.0528 (14)	-0.0055 (10)	0.0009 (11)	-0.0060 (11)
C10	0.0611 (13)	0.0484 (12)	0.0456 (13)	0.0006 (10)	0.0133 (11)	0.0013 (10)
C15	0.0456 (12)	0.0486 (12)	0.0674 (16)	-0.0023 (10)	0.0076 (11)	0.0037 (12)
C8	0.0538 (12)	0.0498 (13)	0.0609 (15)	-0.0114 (10)	0.0179 (11)	0.0043 (11)
C13	0.0548 (13)	0.0538 (13)	0.0491 (14)	-0.0020 (10)	0.0130 (11)	-0.0039 (11)
C20	0.0799 (17)	0.0865 (19)	0.0499 (15)	0.0054 (14)	0.0254 (14)	0.0099 (14)
C16	0.0535 (13)	0.0734 (16)	0.0714 (17)	-0.0050 (12)	0.0240 (13)	-0.0131 (14)
C3	0.0583 (14)	0.0608 (15)	0.0810 (19)	0.0014 (12)	0.0046 (14)	-0.0045 (14)
C5	0.0659 (15)	0.0577 (15)	0.0817 (19)	0.0030 (12)	0.0130 (14)	0.0013 (14)
C1	0.0472 (13)	0.095 (2)	0.0732 (18)	0.0015 (13)	0.0148 (13)	0.0141 (16)
C6	0.0760 (18)	0.0686 (17)	0.102 (2)	0.0186 (15)	0.0177 (17)	0.0211 (17)
C22	0.0902 (19)	0.0528 (15)	0.083 (2)	0.0022 (14)	0.0155 (16)	-0.0109 (15)
C2	0.0608 (16)	0.087 (2)	0.080 (2)	-0.0032 (14)	-0.0005 (15)	-0.0080 (16)
C21	0.143 (3)	0.130 (3)	0.0617 (19)	-0.051 (2)	0.033 (2)	-0.021 (2)

Geometric parameters (Å, °)

Cl2—C15	1.745 (2)	C14—C15	1.377 (3)
Cl1—C1	1.739 (3)	C14—C13	1.383 (3)
O2—C19	1.316 (3)	C14—H14	0.9300
O2—C20	1.466 (3)	C10—H10A	0.9700
C12—C13	1.382 (3)	C10—H10B	0.9700
C12—C17	1.383 (3)	C15—C16	1.367 (3)
C12—C11	1.519 (3)	C8—H8A	0.9700
C18—N1	1.442 (3)	C8—H8B	0.9700
C18—C19	1.529 (3)	С13—Н13	0.9300
C18—C11	1.556 (3)	C20—C21	1.441 (4)
C18—C7	1.584 (3)	C20—H20A	0.9700
N1—C22	1.144 (3)	C20—H20B	0.9700
C11—C10	1.523 (3)	C16—H16	0.9300
C11—H11	0.9800	C3—C2	1.376 (4)
C4—C3	1.373 (3)	С3—Н3	0.9300
C4—C5	1.382 (3)	C5—C6	1.388 (4)
C4—C7	1.513 (3)	С5—Н5	0.9300
O1—C19	1.191 (3)	C1—C2	1.352 (4)
C7—C8	1.532 (3)	C1—C6	1.365 (4)
С7—Н7	0.9800	С6—Н6	0.9300
С9—ОЗ	1.205 (3)	C2—H2	0.9300
C9—C10	1.500 (3)	C21—H21A	0.9600
С9—С8	1.502 (3)	C21—H21B	0.9600
C17—C16	1.378 (3)	C21—H21C	0.9600
С17—Н17	0.9300		
C19—O2—C20	117.11 (18)	H10A—C10—H10B	108.0
C13—C12—C17	118.1 (2)	C16—C15—C14	120.7 (2)
C13—C12—C11	122.58 (19)	C16—C15—Cl2	119.88 (19)
C17—C12—C11	119.21 (19)	C14—C15—Cl2	119.39 (18)
N1—C18—C19	106.80 (16)	C9—C8—C7	110.72 (19)
N1-C18-C11	109.33 (17)	С9—С8—Н8А	109.5
C19—C18—C11	109.64 (16)	С7—С8—Н8А	109.5
N1—C18—C7	107.07 (16)	С9—С8—Н8В	109.5
C19—C18—C7	113.03 (17)	С7—С8—Н8В	109.5
C11—C18—C7	110.82 (15)	H8A—C8—H8B	108.1
C22—N1—C18	177.6 (2)	C12—C13—C14	121.2 (2)
C12—C11—C10	114.26 (17)	C12—C13—H13	119.4
C12-C11-C18	114.07 (16)	C14—C13—H13	119.4
C10-C11-C18	109.69 (16)	C21—C20—O2	109.8 (2)
C12—C11—H11	106.0	C21—C20—H20A	109.7
C10-C11-H11	106.0	O2—C20—H20A	109.7
C18—C11—H11	106.0	C21—C20—H20B	109.7
C3—C4—C5	116.7 (2)	O2—C20—H20B	109.7
C3—C4—C7	122.3 (2)	H20A—C20—H20B	108.2
C5—C4—C7	120.9 (2)	C15—C16—C17	119.6 (2)

C4—C7—C8	114.22 (18)	C15—C16—H16	120.2
C4—C7—C18	114.57 (17)	C17—C16—H16	120.2
C8—C7—C18	111.65 (16)	C4—C3—C2	122.4 (3)
С4—С7—Н7	105.1	С4—С3—Н3	118.8
С8—С7—Н7	105.1	С2—С3—Н3	118.8
С18—С7—Н7	105.1	C4—C5—C6	121.4 (3)
01 - C19 - 02	126.2 (2)	C4—C5—H5	119.3
01 - C19 - C18	1245(2)	C6—C5—H5	1193
02-C19-C18	109.36(17)	$C_{2} - C_{1} - C_{6}$	1204(3)
03-C9-C10	109.50(17) 122.4(2)	$C_{2} = C_{1} = C_{1}$	120.1(3) 119.6(2)
$O_3 C_9 C_8$	122.7(2)		119.0(2)
$C_{10} = C_{10} = C_{10}$	122.0(2) 114.00(18)	$C_0 = C_1 = C_1$	120.0(2)
$C_{10} - C_{2} - C_{3}$	114.33(10) 121.2(2)	$C_1 = C_0 = C_3$	119.5 (5)
C16 - C17 - C12	121.2(2)	$C_1 = C_0 = H_0$	120.2
	119.4	C_{3} C_{0} C_{1} C_{2} C_{3}	120.2
C12-C17-H17	119.4	C1 = C2 = C3	119.6 (3)
C15—C14—C13	119.1 (2)	CI = C2 = H2	120.2
C15—C14—H14	120.4	C3—C2—H2	120.2
C13—C14—H14	120.4	C20—C21—H21A	109.5
C9—C10—C11	111.22 (18)	C20—C21—H21B	109.5
C9—C10—H10A	109.4	H21A—C21—H21B	109.5
C11—C10—H10A	109.4	C20—C21—H21C	109.5
C9—C10—H10B	109.4	H21A—C21—H21C	109.5
C11—C10—H10B	109.4	H21B—C21—H21C	109.5
C19—C18—N1—C22	-164 (6)	C7—C18—C19—O2	59.8 (2)
C11—C18—N1—C22	78 (6)	C13—C12—C17—C16	-1.5 (3)
C7-C18-N1-C22	-43 (6)	C11—C12—C17—C16	175.7 (2)
C13—C12—C11—C10	41.3 (3)	O3—C9—C10—C11	-160.1 (2)
C17—C12—C11—C10	-135.7 (2)	C8—C9—C10—C11	20.6 (3)
C13—C12—C11—C18	-86.0(2)	C12-C11-C10-C9	166.34 (18)
C17—C12—C11—C18	96.9 (2)	C18—C11—C10—C9	-64.1 (2)
N1—C18—C11—C12	55.2 (2)	C13—C14—C15—C16	-2.0(4)
C19—C18—C11—C12	-61.5 (2)	C13—C14—C15—Cl2	177.18 (17)
C7—C18—C11—C12	173.01 (17)	O3—C9—C8—C7	-139.3(2)
N1—C18—C11—C10	-74.4 (2)	C10—C9—C8—C7	40.1 (3)
C19—C18—C11—C10	168.84 (17)	C4—C7—C8—C9	169.06 (18)
C7—C18—C11—C10	43.4 (2)	C18—C7—C8—C9	-58.9(2)
$C_{3}-C_{4}-C_{7}-C_{8}$	11.8(3)	C_{17} C_{12} C_{13} C_{14}	11(3)
$C_{5} - C_{4} - C_{7} - C_{8}$	-1647(2)	C11 - C12 - C13 - C14	-1760(2)
C_{3} C_{4} C_{7} C_{18}	-1187(2)	C_{15} C_{14} C_{13} C_{12}	0.7(3)
$C_5 C_4 C_7 C_{18}$	64.7(3)	C_{19} C_{20} C_{21} C_{21}	140.9(3)
$C_{3} - C_{4} - C_{7} - C_{18}$	-032(2)	$C_{19} = 02 = 020 = 021$	140.9(3)
$C_{10} = C_{10} = C$	93.2(2)	$C_{17} = C_{15} = C_{16} = C_{17}$	-177.61(10)
$C_{12} = C_{10} = C$	24.1 (2) 147 62 (19)	C_{12} $-C_{13}$ $-C_{10}$ $-C_{17}$ C_{15}	0.2(4)
11 - 10 - 10 - 14	147.03(10) 124.06(10)	$C_{12} - C_{17} - C_{10} - C_{13}$	0.2(4)
N1 - C18 - C7 - C8	134.90 (19)	$C_{3} - C_{4} - C_{3} - C_{2}$	1.1(4)
$C_{19} = C_{18} = C_{7} = C_{8}$	-10/./(2)	$C_{1} - C_{4} - C_{3} - C_{2}$	-1/5.6(2)
CII—CI8—C/—C8	15 8 (2)	$1^{3} - 1^{4} - 1^{3} - 1^{5} - 1^{5} - 1^{5}$	$-(1 \times (/1))$
			0.0 (4)

supporting information

C20—O2—C19—C18	179.17 (17)	C2-C1-C6-C5	1.3 (4)
N1-C18-C19-O1	-3.5 (3)	Cl1—C1—C6—C5	-177.6 (2)
C11-C18-C19-O1	114.8 (2)	C4—C5—C6—C1	-0.4 (4)
C7—C18—C19—O1	-121.0 (2)	C6-C1-C2-C3	-1.0 (4)
N1-C18-C19-O2	177.26 (16)	Cl1—C1—C2—C3	178.0 (2)
C11—C18—C19—O2	-64.4 (2)	C4—C3—C2—C1	-0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H…A
C11—H11…O1 ⁱ	0.98	2.57	3.218 (3)	123

Symmetry code: (i) -x+1/2, y+1/2, -z+3/2.