metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(dicyanamido- κN^1)cobalt(II)]bis{ μ -1,2-bis[(1,2,4triazol-1-yl)methyl]benzene- $\kappa^2 N^4$: $N^{4'}$ }]

Jixia Zhang and Xiaoping Shen*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: xiaopingshen@163.com

Received 22 May 2014; accepted 27 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.111; data-to-parameter ratio = 12.4.

In the title complex, $[Co(C_2N_3)_2(C_{12}H_{12}N_6)_2]_n$ the Co^{II} atom lies on a centre of symmetry and displays a slightly distorted octahedral coordination geometry. The 1,2-bis[(1,2,4-triazol-1yl)methyl]benzene ligands link adjacent metal atoms into polymeric chains parallel to the c axis, forming centrosymmetric 26-membered metallamacrocycles. The conformation of the metallamacrocycles is stabilized by pairs of $C-H \cdots N$ hydrogen bonds. The dihedral angles formed by the planes of the triazole rings with those of the benzene ring are 79.4 (2) and 79.1 (2)°. In the crystal, the chains interact through C- $H \cdot \cdot \cdot N$ hydrogen bonds, forming a three-dimensional network.

Related literature

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000); Cui et al. (2012); Han et al. (2012); Wang et al. (2012).

Experimental

Crystal data

 $[Co(C_2N_3)_2(C_{12}H_{12}N_6)_2]$ $\gamma = 97.587 (7)^{\circ}$ $M_r = 671.58$ V = 733.2 (3) Å³ Triclinic, $P\overline{1}$ Z = 1a = 8.517 (2) Å Mo $K\alpha$ radiation b = 9.092 (2) Å $\mu = 0.64 \text{ mm}^{-3}$ c = 9.622 (3) Å T = 293 K $\alpha = 93.984 \ (7)^{\circ}$ $0.30 \times 0.20 \times 0.18 \text{ mm}$ $\beta = 95.015 (7)^{\circ}$

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (REOAB: Jacobson, 1998) $T_{\min} = 0.831, T_{\max} = 0.893$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.111$ S = 1.052658 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9—H9A…N9 ⁱ C11—H11A…N5 ⁱⁱ C12—H12A…N9 ⁱⁱⁱ	0.93 0.93 0.93	2.54 2.56 2.48	3.308 (4) 3.217 (5) 3.286 (4)	140 128 145
Symmetry codes: -x + 2, -y + 1, -z + 1.	(i) $x - 1, y$	-1, z; (ii)	-x + 2, -y, -	-z + 1; (iii)

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5127).

References

- Cui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210-4216.
- Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.
- Han, M. L., Wang, J. G., Ma, L. F., Guo, H. & Wang, L. Y. (2012). CrystEngComm, 14, 2691-2701.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, N., Ma, J. G., Shi, W. & Cheng, P. (2012). CrystEngComm, 14, 5634-5638

7244 measured reflections 2658 independent reflections

 $R_{\rm int} = 0.041$

214 parameters

 $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

2118 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2014). E70, m244 [https://doi.org/10.1107/S1600536814012331]

catena-Poly[[bis(dicyanamido- κN^1)cobalt(II)]bis{ μ -1,2-bis[(1,2,4-triazol-1-yl)methyl]benzene- $\kappa^2 N^4$: N^4 '}]

Jixia Zhang and Xiaoping Shen

S1. Comment

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000; Cui *et al.*, Han *et al.*, and Wang *et al.*, 2012). As a contribution to this field, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. Each cobalt(II) atom lies on a centre of symmetry and displays a slightly distorted octahedral coordination geometry, provided by four nitrogen atoms from four symmetry-related obtz ligands forming the equatorial plane and by two nitrogen atoms from two dca anions at the apices (obtz = 1,2-bis(1,2,4-triazol-1-ylmethyl)benzene, dca = dicyanamide). Two centrosymmetrically-related obtz ligands link adjacent cobalt(II) atoms to form 22-membered metallamacrocycles, which are connected into one-dimensional chains running parallel to the *c* axis (Fig. 2). The Co···Co separations within the chain are equal to the *c*-axis translation (9.622 (3) Å). The obtz ligands exhibit a *gauche* conformation. The triazole rings form a dihedral angle of 80.5 (2)° and are inclined by 79.4 (2) and 79.1 (2)° with respect to the benzene ring. The conformation of the metallamacrocycles is enforced by pairs of C—H···N hydrogen bonds (Table 1). In the crystal, chains interact through C—H···N hydrogen bonds (Table 1) to form a three-dimensional network.

S2. Experimental

A 20 ml H₂O/MeOH solution (1:1 ν/ν) of Co(NO₃)₂·6H₂O (0.5 mmol) was added to one leg of an "H-shaped" tube, and a 20 ml H₂O/MeOH (1:1 ν/ν) solution of obtz (1.0 mmol) and Na[N(CN)₂] (1.0 mmol) was added to the other leg of the tube. After two weeks, well shaped single crystals were obtained. Yield: 61%. Found: C, 50.03; H, 3.54; N, 37.49. Calcd. for C₂₈H₂₄CoN₁₈ (I): C, 50.08; H, 3.60; N, 37.55%.

S3. Refinement

H atoms were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole and benzene) and 0.97 Å (methylene), and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y, -z + 1; (iii) x, y, z - 1]. Hydrogen atoms are omitted for clarity.

The polymeric one-dimensional chain in the title compound. Hydrogen atoms are omitted for clarity.

catena-Poly[[bis(dicyanamido- κN^1)cobalt(II)]bis{ μ -1,2-bis[(1,2,4-triazol-1-yl)methyl]benzene- $\kappa^2 N^4$: N^4 '}]

Z = 1

F(000) = 345

 $\theta = 3.1 - 25.4^{\circ}$

 $\mu = 0.64 \text{ mm}^{-1}$

Block, orange

 $0.30 \times 0.20 \times 0.18 \text{ mm}$

7244 measured reflections

 $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

2658 independent reflections

2118 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.041$

 $h = -9 \rightarrow 10$

 $k = -10 \rightarrow 10$

 $l = -11 \rightarrow 9$

 $D_{\rm x} = 1.521 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71070$ Å

Cell parameters from 2443 reflections

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_2\text{N}_3)_2(\text{C}_{12}\text{H}_{12}\text{N}_6)_2 \end{bmatrix}$ $M_r = 671.58$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.517 (2) Å b = 9.092 (2) Å c = 9.622 (3) Å $a = 93.984 \text{ (7)}^\circ$ $\beta = 95.015 \text{ (7)}^\circ$ $\gamma = 97.587 \text{ (7)}^\circ$ $V = 733.2 \text{ (3) Å}^3$

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.31 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\min} = 0.831, T_{\max} = 0.893$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.111$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
2658 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.3399P]$
214 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	1.0000	0.0000	0.0000	0.0318 (2)	
N1	0.6352 (3)	0.1812 (3)	0.2157 (2)	0.0372 (6)	
N2	0.5728 (4)	0.0354 (3)	0.2084 (3)	0.0596 (8)	

supporting information

N3	0.7995 (3)	0.0625 (3)	0.1044 (2)	0.0344 (6)
N4	0.7413 (3)	0.1313 (3)	0.6393 (2)	0.0399 (6)
N5	0.8430 (4)	0.0608 (3)	0.5692 (3)	0.0589 (8)
N6	0.8898 (3)	0.0428 (3)	0.8003 (2)	0.0358 (6)
N7	1.1984 (3)	0.4878 (3)	0.0020 (3)	0.0530 (8)
N8	1.1042 (3)	0.2262 (3)	0.0262 (3)	0.0433 (7)
N9	1.4468 (3)	0.6425 (3)	0.0931 (3)	0.0545 (8)
C1	0.6521 (4)	0.3991 (3)	0.3874 (3)	0.0397 (7)
C2	0.6915 (4)	0.3559 (4)	0.5211 (3)	0.0408 (8)
C3	0.7892 (4)	0.4559 (4)	0.6162 (4)	0.0562 (9)
H3A	0.8178	0.4273	0.7048	0.067*
C4	0.8452 (5)	0.5969 (4)	0.5828 (4)	0.0673 (11)
H4A	0.9114	0.6621	0.6483	0.081*
C5	0.8034 (5)	0.6410 (4)	0.4529 (4)	0.0695 (11)
H5A	0.8385	0.7370	0.4308	0.083*
C6	0.7093 (5)	0.5422 (4)	0.3556 (4)	0.0562 (9)
H6A	0.6834	0.5715	0.2668	0.067*
C7	0.5494 (4)	0.2970 (4)	0.2755 (3)	0.0463 (8)
H7A	0.4564	0.2499	0.3151	0.056*
H7B	0.5130	0.3552	0.2015	0.056*
C8	0.6221 (4)	0.2075 (4)	0.5666 (3)	0.0469 (8)
H8A	0.5403	0.2229	0.6281	0.056*
H8B	0.5722	0.1446	0.4849	0.056*
C9	0.6753 (4)	-0.0309 (4)	0.1403 (4)	0.0540 (9)
H9A	0.6631	-0.1333	0.1188	0.065*
C10	0.7693 (3)	0.1939 (3)	0.1547 (3)	0.0348 (7)
H10A	0.8339	0.2835	0.1482	0.042*
C11	0.9294 (4)	0.0098 (4)	0.6696 (3)	0.0539 (9)
H11A	1.0116	-0.0449	0.6525	0.065*
C12	0.7701 (4)	0.1187 (3)	0.7761 (3)	0.0401 (7)
H12A	0.7136	0.1580	0.8448	0.048*
C13	1.1548 (3)	0.3483 (3)	0.0180 (3)	0.0356 (7)
C14	1.3340 (4)	0.5617 (3)	0.0535 (3)	0.0396 (7)

Atomic displacement parameters $(Å^2)$

U ¹³ 0.0037 (2) 0.0040 (12)	U^{23} 0.0028 (2) 0.0027 (11)
0.0037 (2) 0.0040 (12)	0.0028 (2)
0.0040 (12)	0.0027(11)
	0.0037(11)
0.0282 (16)	-0.0005 (16)
0.0064 (11)	0.0045 (11)
0.0061 (12)	0.0100 (12)
0.0117 (15)	0.0035 (15)
0.0069 (11)	0.0018 (11)
-0.0094 (15)	0.0137 (14)
0.0081 (13)	0.0027 (12)
0.0032 (16)	-0.0001 (15)
0.0086 (14)	0.0063 (14)
	0.0282 (16) 0.0064 (11) 0.0061 (12) 0.0117 (15) 0.0069 (11) -0.0094 (15) 0.0081 (13) 0.0032 (16) 0.0086 (14)

C2	0.0428 (18)	0.0438 (19)	0.0388 (17)	0.0132 (15)	0.0090 (14)	0.0051 (15)
C3	0.067 (2)	0.057 (2)	0.043 (2)	0.0051 (19)	0.0021 (18)	0.0044 (18)
C4	0.080 (3)	0.056 (2)	0.061 (3)	0.001 (2)	-0.001 (2)	-0.004(2)
C5	0.091 (3)	0.045 (2)	0.072 (3)	0.002 (2)	0.011 (2)	0.012 (2)
C6	0.077 (3)	0.053 (2)	0.046 (2)	0.022 (2)	0.0127 (19)	0.0172 (18)
C7	0.051 (2)	0.056 (2)	0.0377 (17)	0.0278 (17)	0.0034 (15)	0.0071 (16)
C8	0.0436 (19)	0.055 (2)	0.0440 (19)	0.0090 (16)	0.0008 (15)	0.0165 (16)
C9	0.054 (2)	0.0355 (19)	0.073 (2)	-0.0015 (16)	0.0240 (19)	-0.0050 (17)
C10	0.0358 (17)	0.0304 (16)	0.0385 (16)	0.0042 (13)	0.0046 (14)	0.0050 (13)
C11	0.072 (2)	0.055 (2)	0.0413 (19)	0.0341 (19)	0.0077 (17)	0.0024 (17)
C12	0.0437 (19)	0.0464 (19)	0.0329 (16)	0.0124 (15)	0.0099 (14)	0.0031 (14)
C13	0.0378 (17)	0.0336 (18)	0.0356 (17)	0.0055 (14)	0.0047 (13)	0.0023 (14)
C14	0.049 (2)	0.0287 (17)	0.0442 (18)	0.0092 (16)	0.0119 (16)	0.0059 (14)

Geometric parameters (Å, °)

Co1–N8 ⁱ	2.118 (3)	N9—C14	1.148 (4)
Co1—N8	2.118 (3)	C1—C6	1.392 (5)
Co1—N6 ⁱⁱ	2.147 (2)	C1—C2	1.397 (4)
Co1—N6 ⁱⁱⁱ	2.147 (2)	C1—C7	1.506 (4)
Co1—N3	2.174 (2)	C2—C3	1.381 (4)
Co1—N3 ⁱ	2.174 (2)	C2—C8	1.510 (4)
N1-C10	1.325 (4)	C3—C4	1.377 (5)
N1—N2	1.356 (4)	С3—НЗА	0.9300
N1—C7	1.472 (4)	C4—C5	1.370 (5)
N2—C9	1.319 (4)	C4—H4A	0.9300
N3—C10	1.322 (4)	C5—C6	1.374 (5)
N3—C9	1.352 (4)	C5—H5A	0.9300
N4—C12	1.333 (4)	С6—Н6А	0.9300
N4—N5	1.344 (4)	С7—Н7А	0.9700
N4—C8	1.459 (4)	С7—Н7В	0.9700
N5-C11	1.311 (4)	C8—H8A	0.9700
N6-C12	1.318 (4)	C8—H8B	0.9700
N6-C11	1.354 (4)	С9—Н9А	0.9300
N6—Co1 ^{iv}	2.147 (2)	C10—H10A	0.9300
N7—C14	1.296 (4)	C11—H11A	0.9300
N7—C13	1.297 (4)	C12—H12A	0.9300
N8—C13	1.147 (4)		
N8 ⁱ —Co1—N8	180.00 (6)	С4—С3—Н3А	119.3
N8 ⁱ —Co1—N6 ⁱⁱ	88.36 (9)	С2—С3—НЗА	119.3
N8—Co1—N6 ⁱⁱ	91.64 (9)	C5—C4—C3	120.0 (4)
N8 ⁱ —Co1—N6 ⁱⁱⁱ	91.64 (9)	C5—C4—H4A	120.0
N8—Co1—N6 ⁱⁱⁱ	88.36 (9)	C3—C4—H4A	120.0
N6 ⁱⁱ —Co1—N6 ⁱⁱⁱ	180.00 (13)	C4—C5—C6	119.5 (4)
N8 ⁱ —Co1—N3	91.36 (9)	C4—C5—H5A	120.3
N8—Co1—N3	88.64 (9)	С6—С5—Н5А	120.3
N6 ⁱⁱ —Co1—N3	88.73 (9)	C5—C6—C1	121.3 (3)

N6 ⁱⁱⁱ —Co1—N3	91.27 (9)	С5—С6—Н6А	119.3
N8 ⁱ —Co1—N3 ⁱ	88.64 (9)	C1—C6—H6A	119.3
N8—Co1—N3 ⁱ	91.36 (9)	N1—C7—C1	112.1 (2)
N6 ⁱⁱ —Co1—N3 ⁱ	91.27 (9)	N1—C7—H7A	109.2
N6 ⁱⁱⁱ —Co1—N3 ⁱ	88.73 (9)	C1—C7—H7A	109.2
N3—Co1—N3 ⁱ	180.00 (12)	N1—C7—H7B	109.2
C10—N1—N2	109.0 (2)	C1—C7—H7B	109.2
C10—N1—C7	130.1 (3)	H7A—C7—H7B	107.9
N2—N1—C7	120.8 (3)	N4—C8—C2	112.7 (3)
C9—N2—N1	103.0 (3)	N4—C8—H8A	109.0
C10—N3—C9	102.4 (3)	C2—C8—H8A	109.0
C10—N3—Co1	131.0 (2)	N4—C8—H8B	109.0
C9—N3—Co1	126.5 (2)	C2—C8—H8B	109.0
C12—N4—N5	109.6 (2)	H8A—C8—H8B	107.8
C12—N4—C8	129.0 (3)	N2—C9—N3	114.4 (3)
N5—N4—C8	121.4 (2)	N2—C9—H9A	122.8
C11—N5—N4	102.8 (3)	N3—C9—H9A	122.8
C12—N6—C11	102.3 (3)	N3—C10—N1	111.2 (3)
C12—N6—Co1 ^{iv}	127.4 (2)	N3—C10—H10A	124.4
C11—N6—Co1 ^{iv}	130.2 (2)	N1—C10—H10A	124.4
C14—N7—C13	124.1 (3)	N5—C11—N6	114.8 (3)
C13—N8—Co1	169.2 (3)	N5-C11-H11A	122.6
C6-C1-C2	119.0 (3)	N6—C11—H11A	122.6
C6-C1-C7	118.3 (3)	N6-C12-N4	110.5 (3)
C_2 — C_1 — C_7	122.7 (3)	N6-C12-H12A	124.7
$C_3 - C_2 - C_1$	118.7 (3)	N4—C12—H12A	124.7
C_{3} C_{2} C_{8}	110.7(3) 119.4(3)	N8-C13-N7	1742(3)
C1 - C2 - C8	121.8(3)	N9-C14-N7	171.2(3) 171.4(3)
C4-C3-C2	121.5(3)		1/11/(5)
01 03 02	121.5 (5)		
C10—N1—N2—C9	-0.8 (4)	C2—C1—C6—C5	0.0 (5)
C7—N1—N2—C9	175.3 (3)	C7—C1—C6—C5	179.9 (3)
N8 ⁱ —Co1—N3—C10	-178.4(3)	C10—N1—C7—C1	-56.9 (4)
N8—Co1—N3—C10	1.6 (3)	N2—N1—C7—C1	128.0 (3)
N6 ⁱⁱ —Co1—N3—C10	93.2 (3)	C6—C1—C7—N1	105.8 (3)
N6 ⁱⁱⁱ —Co1—N3—C10	-86.8 (3)	C2—C1—C7—N1	-74.3 (4)
N8 ⁱ —Co1—N3—C9	5.4 (3)	C12—N4—C8—C2	102.7 (4)
N8—Co1—N3—C9	-174.6 (3)	N5—N4—C8—C2	-77.0 (4)
N6 ⁱⁱ —Co1—N3—C9	-83.0 (3)	C3—C2—C8—N4	-49.1 (4)
N6 ⁱⁱⁱ —Co1—N3—C9	97.0 (3)	C1—C2—C8—N4	134.9 (3)
C12—N4—N5—C11	-0.4(4)	N1—N2—C9—N3	0.4 (4)
C8—N4—N5—C11	179.3 (3)	C10—N3—C9—N2	0.1 (4)
N6 ⁱⁱ —Co1—N8—C13	162.9 (13)	Co1—N3—C9—N2	177.2 (2)
N6 ⁱⁱⁱ —Co1—N8—C13	-17.1 (13)	C9—N3—C10—N1	-0.6(3)
N3—Co1—N8—C13	-108.5 (13)	Co1—N3—C10—N1	-177.47 (18)
N3 ⁱ —Co1—N8—C13	71.5 (13)	N2—N1—C10—N3	0.9 (3)
C6—C1—C2—C3	-1.5 (5)	C7—N1—C10—N3	-174.6 (3)
C7—C1—C2—C3	178.6 (3)	N4—N5—C11—N6	0.1 (4)
	(-)		

supporting information

C6—C1—C2—C8	174.6 (3)	C12—N6—C11—N5	0.3 (4)	
C7—C1—C2—C8	-5.3 (5)	Co1 ^{iv} —N6—C11—N5	-175.5 (2)	
C1—C2—C3—C4	1.3 (5)	C11—N6—C12—N4	-0.6 (3)	
C8—C2—C3—C4	-174.9 (3)	Co1 ^{iv} —N6—C12—N4	175.45 (18)	
C2—C3—C4—C5	0.4 (6)	N5—N4—C12—N6	0.7 (4)	
C3—C4—C5—C6	-1.9 (6)	C8—N4—C12—N6	-179.0 (3)	
C4—C5—C6—C1	1.7 (6)			

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*, *y*, *z*-1; (iv) *x*, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9 <i>A</i> ····N9 ^v	0.93	2.54	3.308 (4)	140
C11—H11A····N5 ⁱⁱ	0.93	2.56	3.217 (5)	128
C12—H12A····N9 ^{vi}	0.93	2.48	3.286 (4)	145

Symmetry codes: (ii) -*x*+2, -*y*, -*z*+1; (v) *x*-1, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.