Received 11 June 2014
Accepted 12 June 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; click chemistry; azides

CCDC references: 1008063; 1008064

Supporting information: this article has supporting information at journals.iucr.org/e


# Crystal structures of 2,5-diazido-1,4-phenylene diacetate and 2,5-diazido-1,4-phenylene dibutyrate 

Florian Glöcklhofer, ${ }^{\text {a }}$ Johannes Fröhlich, ${ }^{\text {a }}$ Berthold Stöger ${ }^{\text {b }}$ and Matthias Weil ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and ${ }^{\mathbf{b}}$ Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

The asymmetric units of the title compounds, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$, (I), and $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$, (II), each contain half of the respective molecule which is completed by inversion symmetry. The two molecules differ in the ester moiety (acetate versus butyrate) and the crystal symmetry is different, i.e. triclinic for (I) and monoclinic for (II). The diazidophenylene moieties are essentially planar [maximum deviation of 0.0216 (7) $\AA$ for (I) and 0.0330 (14) $\AA$ for (II)], and the ester functionalities are almost perpendicular to these planes, making dihedral angles of 79.93 (3) ${ }^{\circ}$ for (I) and 79.42 (6) ${ }^{\circ}$ for (II). In the crystals of both (I) and (II), there are no significant intermolecular interactions present.

## 1. Chemical context

In recent years, copper(I)-catalysed cycloaddition of organic azides and alkynes towards 1,4-disubstituted triazoles attained immense interest in various fields of organic chemistry and became famous as the 'cream of the crop' of click chemistry (Moses \& Moorhouse, 2007). In materials chemistry, this kind of reaction is often applied for the synthesis of functional polymers (Qin et al., 2010).

(I)

(II)

The title compounds, (I) and (II), were synthesized to investigate their applicability in such polymerizations, viz. $A A-B B$ polymerizations with dialkynes. The synthetic accessibility of the two compounds from inexpensive starting materials is remarkable, making them suitable for large scale preparation. However, their electron-deficient character represents a challenge to the polymerization parameters. The crystal structures of (I) and (II) are reported herein.

## 2. Structural commentary

The molecular structures of (I) and (II) are displayed in Figs. 1 and 2, respectively. Both molecules possess inversion symmetry. Although the two molecules differ only in the ester moiety (acetate versus butyrate), the crystal symmetry is


Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $80 \%$ probability level. Unlabelled atoms are generated by the symmetry code $(-x+1,-y,-z)$.


Figure 2
The molecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $80 \%$ probability level. Unlabelled atoms are generated by the symmetry code $(-x+1,-y,-z)$.
different, i.e. triclinic for (I), with $Z=1$, and monoclinic for (II), with $Z=2$. The diazidophenylene moieties do not differ significantly from planarity, with a maximum deviation of 0.0216 (7) $\AA$ in (I) and 0.0330 (14) $\AA$ in (II), for the unsubstituted atom C3 in both cases. The azide groups, both in trans positions to each other, deviate slightly from a linear arrangement, with an $\mathrm{N}-\mathrm{N}-\mathrm{N}$ angle of 173.01 (9) ${ }^{\circ}$ for (I) and $172.59(16)^{\circ}$ for (II). The mean planes of the acetate $[\mathrm{C}-$ $\mathrm{C}(=\mathrm{O})-\mathrm{O})]$ and butyrate $[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}(=\mathrm{O})-\mathrm{O}]$ groups are almost normal to the mean planes of the diazidophenylene moieties, with a dihedral angle of 79.93 (3) ${ }^{\circ}$ for (I) and 79.42 (6) ${ }^{\circ}$ for (II).

## 3. Supramolecular features

There are no notable features in terms of $\pi-\pi$ stacking interactions or hydrogen bonding in either structure. The crystal packing of (I) and (II) seems to be dominated mainly by van der Waals forces (Figs. 3 and 4, respectively).

## 4. Database survey

In the Cambridge Structural Database (Version 5.35, last update February 2014; Allen, 2002) no structures of compounds containing a trans-diazidophenylene entity are listed, making the two examples presented herein the only ones reported so far.


Figure 3 A view along [100] of the crystal packing of compound (I). Colour code: O red, C grey, N light-blue and H white.


Figure 4
A view along [010] of the crystal packing of compound (II). Colour code: O red, C grey, N light-blue and H white.

## 5. Synthesis and crystallization

Both target compounds were synthesized following a two-step protocol (Fig. 5), previously published for 2,5-diazido-1,4phenylene diacetate by Moore et al. (1969). In view of the light sensitivity of the intermediate compound 2,5-diazidobenzene-1,4-diol, all reactions were carried out under light protection.

Preparation of 2,5-diazidobenzene-1,4-diol: 1,4-benzoquinone ( $10.81 \mathrm{~g}, 100.0 \mathrm{mmol}, 1.0$ equivalent) was dissolved in glacial acetic acid $(100 \mathrm{ml}, 1.0 \mathrm{M})$ and cooled to 288 K using an ice-water bath. $\mathrm{NaN}_{3}(14.3 \mathrm{~g}, 220 \mathrm{~mol}, 2.2$ equivalents) was dissolved in water $(44 \mathrm{ml}, 5.0 \mathrm{M})$ and added to the cooled and stirred solution of 1,4-benzoquinone in one portion. Stirring was stopped after 15 min and the flask was sealed and stored at 278 K overnight for crystallization. Vacuum filtration afforded a light-yellow solid, which was washed three times with water and dried in vacuo overnight to afford 2,5-di-

Table 1
Experimental details.

|  | (I) | (II) |
| :---: | :---: | :---: |
| Crystal data |  |  |
| Chemical formula | $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$ | $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$ |
| $M_{\text {r }}$ | 276.2 | 332.3 |
| Crystal system, space group | Triclinic, $P \overline{1}$ | Monoclinic, $P 2_{1} / n$ |
| Temperature (K) | 100 | 100 |
| $a, b, c(\AA)$ | 5.4293 (6), 5.5678 (6), 10.4945 (12) | 11.5875 (19), 5.1485 (8), 14.327 (2) |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | 101.508 (3), 104.544 (3), 97.057 (3) | 90, 108.496 (5), 90 |
| $V\left(\AA^{3}\right)$ | 295.86 (6) | 810.6 (2) |
| Z | 1 | 2 |
| Radiation type | Mo $K \alpha$ | Mo $K \alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.12 | 0.10 |
| Crystal size (mm) | $0.65 \times 0.55 \times 0.25$ | $0.65 \times 0.25 \times 0.08$ |
| Data collection |  |  |
| Diffractometer | Bruker Kappa APEXII CCD | Bruker Kappa APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2013) | Multi-scan (SADABS; Bruker, 2013) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.92, 0.97 | 0.97, 0.99 |
| No. of measured, independent and observed [ $I>3 \sigma(I)$ ] reflections | 15989, 2182, 1983 | 17268, 1781, 1211 |
| $R_{\text {int }}$ | 0.037 | 0.043 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$ | 0.764 | 0.662 |
| Refinement |  |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.034, 0.056, 3.22 | 0.042, 0.048, 2.15 |
| No. of reflections | 2182 | 1781 |
| No. of parameters | 91 | 109 |
| H -atom treatment | H-atom parameters constrained | H -atom parameters constrained |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.46, -0.23 | $0.26,-0.23$ |

 (Westrip, 2010).
azidobenzene-1,4-diol (yield: $6.60 \mathrm{~g}, 34.4 \mathrm{mmol}, 69 \%$ ). 1,4Benzoquinone serves as starting material and as oxidation reagent in this reaction, resulting in a theoretical molar yield of only half of the applied starting material ( 50 mmol ).

Preparation of 2,5-diazido-1,4-phenylene diacetate, (I): 2,5-diazidobenzene-1,4-diol $(1.92 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added to preheated ( 313 K ) acetic anhydride ( $100 \mathrm{ml}, 0.1 \mathrm{M}$ ) in one portion and the reaction stirred until complete dissolution of the starting material. The reaction mixture was then allowed to cool to room temperature and stored overnight to allow 2,5-diazido-1,4-phenylene diacetate to crystallize. Vacuum filtration afforded light-orange crystals of compound (I), which were washed with water three time (yield: $1.73 \mathrm{~g}, 6.26 \mathrm{mmol}$, $63 \%) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.89(s, 2 \mathrm{H}), 2.33(s, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 168.3(s), 140.0(s), 129.3(s)$, 115.3 (d), 20.4 (q).

Preparation of 2,5-diazido-1,4-phenylene dibutyrate, (II): 2,5-diazidobenzene-1,4-diol ( $1.34 \mathrm{~g}, 7.0 \mathrm{mmol}$ ) was added to


Reaction scheme for the synthesis of the title compounds.
preheated ( 333 K ) butyric anhydride ( $20 \mathrm{ml}, 0.35 \mathrm{M}$ ) in one portion and the resulting suspension stirred for 45 min at this temperature. The reaction mixture was then allowed to cool to room temperature and stored for 5 days to allow 2,5-diazido-1,4-phenylene dibutyrate to crystallize. Vacuum filtration afforded yellow crystals of compound (II), which were washed with water three times and with ethanol twice (yield: 814 mg , $2.45 \mathrm{mmol}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.88(s, 2 \mathrm{H})$, $2.57(t, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.80($ sext $, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.05(t, J=$ $7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 171.1(s), 140.0(s)$, $129.3(s), 115.3(d), 35.6(t), 18.3(t), 13.6(q)$.

## 6. Refinement

For both structures, (I) and (II), the H atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

## Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Moore, H. W., Shelden, H. R. \& Shellhamer, D. F. (1969). J. Org. Chem. 34, 1999-2001.
Moses, J. E. \& Moorhouse, A. D. (2007). Chem. Soc. Rev. 36, 12491262.

Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Petříček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Qin, A., Lam, J. W. Y. \& Tang, B. Z. (2010). Chem. Soc. Rev. 39, $2522-$ 2544.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2014). E70, 39-42 [https://doi.org/10.1107/S1600536814013762]

## Crystal structures of 2,5-diazido-1,4-phenylene diacetate and 2,5-diazido-1,4phenylene dibutyrate

Florian Glöcklhofer, Johannes Fröhlich, Berthold Stöger and Matthias Weil

## Computing details

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček, et al., 2014); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
(I) 2,5-Diazido-1,4-phenylene diacetate

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$
$M_{r}=276.2$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.4293$ (6) Å
$b=5.5678$ (6) $\AA$
$c=10.4945(12) \AA$
$\alpha=101.508(3)^{\circ}$
$\beta=104.544(3)^{\circ}$
$\gamma=97.057(3)^{\circ}$

## Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: X-ray tube
Graphite monochromator
$\omega$ and $\varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.92, T_{\text {max }}=0.97$

$$
\begin{aligned}
& V=295.86(6) \AA^{3} \\
& Z=1 \\
& F(000)=142 \\
& D_{\mathrm{x}}=1.550 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \theta=3.8-32.8^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Irregular, light-orange } \\
& 0.65 \times 0.55 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

15989 measured reflections
2182 independent reflections
1983 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=32.9^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-15 \rightarrow 16$

## Refinement

Refinement on $F$
$R[F>3 \sigma(F)]=0.034$
$w R(F)=0.056$
$S=3.22$
2182 reflections
91 parameters
0 restraints

## 16 constraints

H -atom parameters constrained
Weighting scheme based on measured s.u.'s $w=$
$1 /\left(\sigma^{2}(F)+0.0001 F^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.011$
$\Delta \rho_{\text {max }}=0.46$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.25671(10)$ | $0.01146(10)$ | $0.20279(5)$ | $0.01189(16)$ |
| O2 | $0.59540(11)$ | $0.28134(10)$ | $0.35546(6)$ | $0.01772(18)$ |
| N1 | $0.36886(13)$ | $0.27117(12)$ | $-0.19926(6)$ | $0.0141(2)$ |
| N2 | $0.19623(12)$ | $0.39755(11)$ | $-0.19328(6)$ | $0.01377(19)$ |
| N3 | $0.04446(14)$ | $0.51922(13)$ | $-0.19896(8)$ | $0.0208(2)$ |
| C1 | $0.42743(13)$ | $0.13837(12)$ | $-0.09681(7)$ | $0.0106(2)$ |
| C2 | $0.38596(13)$ | $0.01109(13)$ | $0.10373(7)$ | $0.01038(19)$ |
| C3 | $0.31388(13)$ | $0.14839(12)$ | $0.00901(7)$ | $0.0108(2)$ |
| C4 | $0.38466(14)$ | $0.15794(13)$ | $0.33011(7)$ | $0.0119(2)$ |
| C5 | $0.22479(16)$ | $0.13357(15)$ | $0.42495(7)$ | $0.0174(2)$ |
| H1c3 | 0.185611 | 0.250721 | 0.016023 | $0.013^{*}$ |
| H1c5 | 0.054271 | 0.162226 | 0.38606 | $0.0208^{*}$ |
| H2c5 | 0.213484 | -0.031171 | 0.440361 | $0.0208^{*}$ |
| H3c5 | 0.303627 | 0.253962 | 0.509525 | $0.0208^{*}$ |

Atomic displacement parameters ( $\AA^{2}$ )

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0113(3)$ | $0.0152(2)$ | $0.0096(2)$ | $0.00109(19)$ | $0.00522(18)$ | $0.00195(18)$ |
| O2 | $0.0164(3)$ | $0.0197(3)$ | $0.0148(3)$ | $-0.0021(2)$ | $0.0057(2)$ | $0.0004(2)$ |
| N1 | $0.0169(3)$ | $0.0155(3)$ | $0.0139(3)$ | $0.0069(2)$ | $0.0072(2)$ | $0.0064(2)$ |
| N2 | $0.0161(3)$ | $0.0132(3)$ | $0.0137(3)$ | $0.0024(2)$ | $0.0056(2)$ | $0.0056(2)$ |
| N3 | $0.0214(4)$ | $0.0201(3)$ | $0.0276(4)$ | $0.0089(3)$ | $0.0118(3)$ | $0.0119(3)$ |
| C1 | $0.0113(3)$ | $0.0107(3)$ | $0.0096(3)$ | $0.0016(2)$ | $0.0032(2)$ | $0.0021(2)$ |
| C2 | $0.0105(3)$ | $0.0116(3)$ | $0.0091(3)$ | $0.0012(2)$ | $0.0042(2)$ | $0.0011(2)$ |
| C3 | $0.0106(3)$ | $0.0115(3)$ | $0.0107(3)$ | $0.0027(2)$ | $0.0040(2)$ | $0.0018(2)$ |
| C4 | $0.0144(3)$ | $0.0124(3)$ | $0.0102(3)$ | $0.0039(2)$ | $0.0049(2)$ | $0.0028(2)$ |
| C5 | $0.0186(4)$ | $0.0228(4)$ | $0.0129(3)$ | $0.0030(3)$ | $0.0091(3)$ | $0.0037(3)$ |

Geometric parameters ( $A,{ }^{\circ}$ )

| O1-C2 | 1.3924 (10) | C1-C3 | 1.3943 (11) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{C} 4$ | 1.3758 (8) | C2-C3 | 1.3810 (11) |
| O2-C4 | 1.1971 (9) | C3-H1c3 | 0.96 |
| N1—N2 | 1.2456 (10) | C4-C5 | 1.4904 (12) |
| N1-C1 | 1.4167 (10) | C5-H1c5 | 0.96 |
| N2-N3 | 1.1269 (10) | C5-H2c5 | 0.96 |
| C1-C2 ${ }^{\text {i }}$ | 1.3944 (11) | C5-H3c5 | 0.96 |
| C2-O1-C4 | 116.60 (5) | C2-C3-H1c3 | 120 |
| N2-N1-C1 | 115.40 (7) | $\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$ | 122.32 (7) |
| N1-N2-N3 | 173.01 (9) | $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$ | 110.16 (6) |
| N1-C1-C2 ${ }^{\text {i }}$ | 116.58 (7) | $\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$ | 127.51 (6) |
| N1-C1-C3 | 124.83 (7) | C4-C5-H1c5 | 109.47 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$ | 118.59 (7) | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 2 \mathrm{c} 5$ | 109.47 |


| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$ | $119.80(7)$ |
| :--- | :--- |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$ | $118.66(7)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $121.42(7)$ |
| $\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$ | $120.00(7)$ |
| $\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$ | 120 |


| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 3 \mathrm{c} 5$ | 109.47 |
| :--- | :--- |
| $\mathrm{H} 1 \mathrm{c} 5-\mathrm{C} 5-\mathrm{H} 2 \mathrm{c} 5$ | 109.47 |
| $\mathrm{H} 1 \mathrm{c} 5-\mathrm{C} 5-\mathrm{H} 3 \mathrm{c} 5$ | 109.47 |
| $\mathrm{H} 2 \mathrm{c} 5-\mathrm{C} 5-\mathrm{H} 3 \mathrm{c} 5$ | 109.47 |

Symmetry code: (i) $-x+1,-y,-z$.
(II) 2,5-Diazido-1,4-phenylene dibutyrate

## Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$
$M_{r}=332.3$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=11.5875$ (19) $\AA$
$b=5.1485$ (8) $\AA$
$c=14.327(2) \AA$
$\beta=108.496$ (5) ${ }^{\circ}$
$V=810.6(2) \AA^{3}$
$Z=2$

$$
F(000)=348
$$

$D_{\mathrm{x}}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7352 reflections
$\theta=2.7-27.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rod, light-yellow
$0.65 \times 0.25 \times 0.08 \mathrm{~mm}$

## Data collection

## Bruker Kappa APEXII CCD

diffractometer
Radiation source: X-ray tube
Graphite monochromator
$\omega$ and $\varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.97, T_{\text {max }}=0.99$

> 17268 measured reflections
> 1781 independent reflections
> 1211 reflections with $I>3 \sigma(I)$
> $R_{\text {int }}=0.043$
> $\theta_{\max }=28.1^{\circ}, \theta_{\min }=2.0^{\circ}$
> $h=-13 \rightarrow 14$
> $k=-6 \rightarrow 6$
> $l=-17 \rightarrow 18$

## Refinement

Refinement on $F$
$R[F>3 \sigma(F)]=0.042$
$w R(F)=0.048$
$S=2.15$
1781 reflections
109 parameters
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.28390(9)$ | $0.01294(17)$ | $0.04347(7)$ | $0.0217(4)$ |
| O2 | $0.33949(10)$ | $-0.32997(19)$ | $0.14715(7)$ | $0.0269(4)$ |
| N1 | $0.68785(12)$ | $0.3626(2)$ | $0.07891(8)$ | $0.0224(5)$ |
| N2 | $0.67449(11)$ | $0.5255(2)$ | $0.13953(9)$ | $0.0225(5)$ |
| N3 | $0.67447(13)$ | $0.6825(2)$ | $0.19484(9)$ | $0.0296(5)$ |
| C1 | $0.58925(14)$ | $0.1863(2)$ | $0.04072(10)$ | $0.0177(5)$ |
| C2 | $0.39470(14)$ | $0.0013(3)$ | $0.02402(10)$ | $0.0181(5)$ |
| C3 | $0.48219(14)$ | $0.1877(3)$ | $0.06446(10)$ | $0.0190(5)$ |
| C4 | $0.26254(15)$ | $-0.1781(3)$ | $0.10334(10)$ | $0.0214(6)$ |


| C5 | $0.13432(15)$ | $-0.1622(3)$ | $0.10373(11)$ | $0.0265(6)$ |
| :--- | :--- | :--- | :--- | :--- |
| C6 | $0.10348(15)$ | $-0.3423(3)$ | $0.17548(11)$ | $0.0303(6)$ |
| C7 | $-0.02989(17)$ | $-0.3320(4)$ | $0.16734(13)$ | $0.0411(7)$ |
| H1c3 | 0.468982 | 0.31648 | 0.108459 | $0.0228^{*}$ |
| H1c5 | 0.080047 | -0.194143 | 0.038568 | $0.0318^{*}$ |
| H2c5 | 0.116086 | 0.013496 | 0.116656 | $0.0318^{*}$ |
| H1c6 | 0.152049 | -0.298391 | 0.241353 | $0.0364^{*}$ |
| H2c6 | 0.125093 | -0.51698 | 0.164467 | $0.0364^{*}$ |
| H1c7 | -0.045158 | -0.450116 | 0.21394 | $0.0493^{*}$ |
| H2c7 | -0.050726 | -0.158801 | 0.180958 | $0.0493^{*}$ |
| H3c7 | -0.078376 | -0.380637 | 0.101973 | $0.0493^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0263(7)$ | $0.0157(5)$ | $0.0273(6)$ | $0.0017(5)$ | $0.0143(5)$ | $0.0033(4)$ |
| O2 | $0.0324(7)$ | $0.0217(6)$ | $0.0303(6)$ | $0.0055(5)$ | $0.0150(5)$ | $0.0053(5)$ |
| N 1 | $0.0290(9)$ | $0.0153(6)$ | $0.0251(7)$ | $-0.0013(6)$ | $0.0114(6)$ | $-0.0036(6)$ |
| N2 | $0.0264(9)$ | $0.0159(6)$ | $0.0247(7)$ | $-0.0015(6)$ | $0.0072(6)$ | $0.0037(6)$ |
| N3 | $0.0397(10)$ | $0.0189(7)$ | $0.0297(7)$ | $-0.0022(6)$ | $0.0101(7)$ | $-0.0052(6)$ |
| C1 | $0.0231(10)$ | $0.0108(7)$ | $0.0194(7)$ | $-0.0002(6)$ | $0.0069(7)$ | $0.0020(6)$ |
| C2 | $0.0218(10)$ | $0.0148(7)$ | $0.0208(8)$ | $0.0040(7)$ | $0.0109(7)$ | $0.0048(6)$ |
| C3 | $0.0283(10)$ | $0.0112(7)$ | $0.0189(8)$ | $0.0023(6)$ | $0.0095(7)$ | $0.0016(6)$ |
| C4 | $0.0309(11)$ | $0.0135(7)$ | $0.0225(8)$ | $-0.0025(7)$ | $0.0124(7)$ | $-0.0029(6)$ |
| C5 | $0.0286(11)$ | $0.0212(8)$ | $0.0320(9)$ | $0.0005(7)$ | $0.0131(7)$ | $0.0019(7)$ |
| C6 | $0.0338(11)$ | $0.0259(9)$ | $0.0356(9)$ | $-0.0051(8)$ | $0.0173(8)$ | $0.0004(7)$ |
| C7 | $0.0376(12)$ | $0.0516(12)$ | $0.0386(11)$ | $-0.0118(9)$ | $0.0184(9)$ | $0.0030(9)$ |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{O} 1-\mathrm{C} 2$ | 1.399 (2) | C4-C5 | 1.490 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{C} 4$ | 1.3780 (19) | C5-C6 | 1.509 (2) |
| $\mathrm{O} 2-\mathrm{C} 4$ | 1.2023 (17) | C5-H1c5 | 0.96 |
| N1-N2 | 1.2518 (18) | C5-H2c5 | 0.96 |
| N1-C1 | 1.4257 (18) | C6-C7 | 1.513 (3) |
| N2-N3 | 1.1318 (18) | C6-H1c6 | 0.96 |
| $\mathrm{C} 1-\mathrm{C} 2^{\text {i }}$ | 1.392 (2) | C6-H2c6 | 0.96 |
| C1-C3 | 1.387 (2) | C7-H1c7 | 0.96 |
| C2-C3 | 1.3825 (19) | C7-H2c7 | 0.96 |
| C3-H1c3 | 0.96 | C7-H3c7 | 0.96 |
| C2-O1-C4 | 116.81 (11) | C4-C5-H2c5 | 109.47 |
| N2-N1-C1 | 115.62 (14) | C6-C5-H1c5 | 109.47 |
| N1-N2-N3 | 172.59 (16) | C6-C5-H2c5 | 109.47 |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$ | 115.94 (15) | H1c5-C5-H2c5 | 103.47 |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$ | 124.96 (13) | C5-C6-C7 | 112.50 (13) |
| C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 3$ | 119.09 (13) | C5-C6-H1c6 | 109.47 |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{Cl}^{\mathrm{i}}$ | 119.18 (12) | C5-C6-H2c6 | 109.47 |


| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$ | $118.96(13)$ |
| :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $121.71(15)$ |
| $\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$ | $119.20(14)$ |
| $\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$ | 120.4 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$ | 120.4 |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$ | $122.63(16)$ |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$ | $109.84(12)$ |
| $\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$ | $127.53(15)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $114.88(12)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 1 \mathrm{c} 5$ | 109.47 |


| $\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 1 \mathrm{c} 6$ | 109.47 |
| :--- | :--- |
| $\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 2 \mathrm{c} 6$ | 109.47 |
| $\mathrm{H} 1 \mathrm{c} 6-\mathrm{C} 6-\mathrm{H} 2 \mathrm{c} 6$ | 106.26 |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 1 \mathrm{c} 7$ | 109.47 |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 2 \mathrm{c} 7$ | 109.47 |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 3 \mathrm{c} 7$ | 109.47 |
| $\mathrm{H} 1 \mathrm{c} 7-\mathrm{C} 7-\mathrm{H} 2 \mathrm{c} 7$ | 109.47 |
| H1c7-C7-H3c7 | 109.47 |
| H2c7-C7-H3c7 | 109.47 |

Symmetry code: (i) $-x+1,-y,-z$.

