Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 6-Iodo-4-oxo-4*H*-chromene-3-carbaldehyde

#### Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 27 May 2014; accepted 28 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 16.1.

In the title compound,  $C_{10}H_5IO_3$ , an iodinated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0259 Å), with the largest deviation from the least-squares plane [0.056 (5) Å] being found for the formyl O atom. In the crystal, molecules are linked through I···O halogen bonds [I···O = 3.245 (4) Å, C– I···O = 165.95 (13) and C=O···I = 169.7 (4)°] along [101]. The supramolecular chains are assembled into layers *via*  $\pi$ - $\pi$ stacking interactions along the *b* axis [shortest centroid– centroid distance between the pyran and benzene rings = 3.558 (3) Å].

#### **Related literature**

For related structures, see: Ishikawa (2014a,b,c). For the synthesis of the precursor of the title compound, see: Bovonsombat *et al.* (2009). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013).



#### Experimental

*Crystal data* C<sub>10</sub>H<sub>5</sub>IO<sub>3</sub>

 $M_r = 300.05$ 

Triclinic,  $P\overline{1}$  a = 6.5741 (17) Å b = 6.798 (3) Å c = 10.437 (5) Å  $\alpha = 79.03 (3)^{\circ}$   $\beta = 86.45 (3)^{\circ}$  $\gamma = 76.00 (3)^{\circ}$ 

#### Data collection

Rigaku AFC-7R diffractometer Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{min} = 0.432, T_{max} = 0.751$ 2519 measured reflections 2050 independent reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 127 parameters $wR(F^2) = 0.104$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 2.55$  e Å $^{-3}$ 2050 reflections $\Delta \rho_{min} = -3.59$  e Å $^{-3}$ 

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The University of Shizuoka is acknowledged for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5319).

#### References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Bovonsombat, P., Leykajarakul, J., Khan, C., Pla-on, K., Krause, M. M., Khanthapura, P., Ali, R. & Doowa, N. (2009). *Tetrahedron Lett.* 50, 2664– 2667.
- Ishikawa, Y. (2014a). Acta Cryst. E70, o514.
- Ishikawa, Y. (2014b). Acta Cryst. E70, 0555.
- Ishikawa, Y. (2014c). Acta Cryst. E70, 0583.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.



V = 444.3 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.25 \times 0.25 \times 0.08 \text{ mm}$ 

1989 reflections with  $F^2 > 2\sigma(F^2)$ 

3 standard reflections every 150

intensity decay: -1.8%

 $\mu = 3.58 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int} = 0.014$ 

reflections

7 - 2

Acta Cryst. (2014). E70, o744 [https://doi.org/10.1107/S1600536814012471]

### 6-Iodo-4-oxo-4H-chromene-3-carbaldehyde

### Yoshinobu Ishikawa

#### S1. Structural commentary

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013). We have recently reported the crystal structures of monohalogenated 3-formylchromone derivatives 6-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*c*, Fig.·3A), 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*, Fig.·3B), and 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*b*, Fig.·3C). It was found that halogen bond is formed between the formyl oxygen atom and the bromine atom in the bromo derivative, but is not formed in the others light-atom derivatives. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monoidinated 3-formylchromone derivative 6-iodo-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(*s*) can be formed in the crystal structure of the title compound with the iodine atom in the 6-position.

The mean deviation of the least-squares plane for the non-hydrogen atoms is 0.0259 Å, and the largest deviation is 0.056 (5) Å for C10. These mean that these atoms are essentially coplanar (Fig. 1).

In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the *b* axis [shortest centroid–centroid distance between the pyran and benzene<sup>i</sup> rings of the 4*H*-chromene units = 3.588 (3) Å, *i*: -*x* + 1, -*y* + 2, -*z*], as shown in Fig. 1.

Halogen bond is observed between the iodine atom and the formyl oxygen atom of the translation-symmetry equivalent<sup>ii</sup> [I1…O3<sup>ii</sup> = 3.245 (4) Å, *ii*: x - 1, y, z + 1] along [101], as shown in Fig. 2. The angles of C–I…O and I…O=C are 165.95 (13) and 169.7 (4)°, respectively. Thus, it is found that halogen bond is formed for the iodine atom at 6-position, as shown in Fig. 3D. The space group and crystal packing mode of the title compound are the same with those of 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde and 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde. On the other hand, halogen bonding is observed for 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Fig.·3C) and the title compound (Fig.·3D), but is not observed for 6-chloro-4*H*-chromene-3-carbaldehyde (Fig.·3B). These should be accounted for by the larger size of the  $\sigma$  holes of the bromine and iodine atoms at 6-position (Wilcken *et al.*, 2013).

#### S2. Synthesis and crystallization

2'-Hydroxy-5'-iodoacetophenone was prepared according to the literature method (Bovonsombat *et al.*, 2009). To a solution of 2'-hydroxy-5'-iodoacetophenone (1.4 mmol) in *N*,*N*-dimethylformamide (5 ml) was added dropwise POCl<sub>3</sub> (3.4 mmol) for 3 min at 0 °C. After the mixture was stirred for 17 h at room temperature, water (30 ml) was added. The precipitates were collected, washed with water, and dried *in vacuo* (yield: 83%). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 7.60 (d, 1H, *J* = 8.8 Hz), 8.18 (dd, 1H, *J* = 2.4 and 8.8 Hz), 8.37 (d, 1H, *J* = 2.4 Hz), 8.95 (s, 1H), 10.10 (s, 1H). DART-MS calcd for [C<sub>10</sub>H<sub>3</sub>I<sub>1</sub>O<sub>3</sub> + H<sup>+</sup>]: 300.936, found 300.947. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroform solution of the title compound held at room temperature.

#### **S3. Refinement**

The C(*sp*<sup>2</sup>)-bound hydrogen atoms were placed in geometrical positions [C–H = 0.95 Å,  $U_{iso}$ (H) = 1.2 $U_{eq}$ (C)], and refined using a riding model.



#### Figure 1

A packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.



#### Figure 2

A packing view of the title compound. The intermolecular halogen bonds are represented as dashed lines for I···O.



### Figure 3

Sphere models of the supramolecular aggregation in the crystal structures of 6-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde (A), 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (B), 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (C), and the title compound (D).

6-Iodo-4-oxo-4H-chromene-3-carbaldehyde

| Crystal data                   |                                               |
|--------------------------------|-----------------------------------------------|
| $C_{10}H_5IO_3$                | $\gamma = 76.00 \ (3)^{\circ}$                |
| $M_r = 300.05$                 | V = 444.3 (3) Å <sup>3</sup>                  |
| Triclinic, $P\overline{1}$     | Z = 2                                         |
| Hall symbol: -P 1              | F(000) = 284.00                               |
| a = 6.5741 (17)  Å             | $D_{\rm x} = 2.243 {\rm ~Mg} {\rm ~m}^{-3}$   |
| b = 6.798 (3)  Å               | Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å |
| c = 10.437 (5)  Å              | Cell parameters from 25 reflections           |
| $\alpha = 79.03 \ (3)^{\circ}$ | $\theta = 15.1 - 17.0^{\circ}$                |
| $\beta = 86.45 \ (3)^{\circ}$  | $\mu = 3.58 \text{ mm}^{-1}$                  |

| T = 100  K                                                                                                                                                                                                                               | $0.25 \times 0.25 \times 0.08 \text{ mm}$                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |
| Rigaku AFC-7R<br>diffractometer<br>$\omega$ -2 $\theta$ scans<br>Absorption correction: $\psi$ scan<br>(North <i>et al.</i> , 1968)<br>$T_{\min} = 0.432, T_{\max} = 0.751$<br>2519 measured reflections<br>2050 independent reflections | 1989 reflections with $F^2 > 2\sigma(F^2)$<br>$R_{int} = 0.014$<br>$\theta_{max} = 27.5^{\circ}$<br>$h = -4 \rightarrow 8$<br>$k = -8 \rightarrow 8$<br>$l = -13 \rightarrow 13$<br>3 standard reflections every 150 reflections<br>intensity decay: -1.8% |
| Refinement                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                            |
| Refinement on $F^2$<br>$R[F^2 > 2\sigma(F^2)] = 0.039$<br>$wR(F^2) = 0.104$<br>S = 1.11                                                                                                                                                  | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites                                                                                                                                     |
| 2050 reflections<br>127 parameters<br>0 restraints                                                                                                                                                                                       | H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0828P)^2 + 0.5762P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                       |
| Primary atom site location: structure-invariant direct methods                                                                                                                                                                           | $(\Delta/\sigma)_{\rm max} < 0.001$<br>$\Delta\rho_{\rm max} = 2.55 \text{ e } \text{\AA}^{-3}$<br>$\Delta\rho_{\rm min} = -3.59 \text{ e } \text{\AA}^{-3}$                                                                                               |

#### Special details

**Refinement**. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on  $F^2$ . *R*-factor (gt) are based on *F*. The threshold expression of  $F^2 > 2.0 \sigma(F^2)$  is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|---------------|-----------------------------|--|
| I1  | 0.09130 (3) | 0.75924 (3) | 0.412452 (19) | 0.01417 (14)                |  |
| 01  | 0.7896 (5)  | 0.6863 (5)  | -0.0188 (3)   | 0.0146 (6)                  |  |
| O2  | 0.1807 (5)  | 0.8519 (5)  | -0.1406 (3)   | 0.0160 (6)                  |  |
| 03  | 0.6616 (5)  | 0.7995 (5)  | -0.4137 (3)   | 0.0204 (7)                  |  |
| C1  | 0.7417 (7)  | 0.7311 (6)  | -0.1454 (5)   | 0.0155 (8)                  |  |
| C2  | 0.5449 (6)  | 0.7856 (6)  | -0.1926 (4)   | 0.0112 (7)                  |  |
| C3  | 0.3623 (7)  | 0.8053 (6)  | -0.1040 (4)   | 0.0112 (7)                  |  |
| C4  | 0.2610 (6)  | 0.7778 (6)  | 0.1343 (4)    | 0.0120 (7)                  |  |
| C5  | 0.3206 (6)  | 0.7330 (6)  | 0.2634 (4)    | 0.0115 (7)                  |  |
| C6  | 0.5314 (7)  | 0.6711 (6)  | 0.2983 (5)    | 0.0136 (8)                  |  |
| C7  | 0.6858 (7)  | 0.6540 (6)  | 0.2022 (4)    | 0.0143 (8)                  |  |
| C8  | 0.4172 (6)  | 0.7620 (5)  | 0.0363 (4)    | 0.0103 (7)                  |  |
| C9  | 0.6270 (7)  | 0.7003 (6)  | 0.0722 (4)    | 0.0126 (8)                  |  |
| C10 | 0.5169 (7)  | 0.8281 (6)  | -0.3362 (4)   | 0.0139 (8)                  |  |
| H1  | 0.8547      | 0.7242      | -0.2070       | 0.0186*                     |  |
| H2  | 0.1169      | 0.8186      | 0.1124        | 0.0144*                     |  |
| H3  | 0.5684      | 0.6409      | 0.3877        | 0.0163*                     |  |
| H4  | 0.8297      | 0.6115      | 0.2246        | 0.0172*                     |  |
| Н5  | 0.3788      | 0.8801      | -0.3689       | 0.0167*                     |  |

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|--------------|---------------|
| I1  | 0.01465 (19) | 0.01545 (19) | 0.01309 (19) | -0.00418 (12) | 0.00051 (11) | -0.00369 (11) |
| 01  | 0.0083 (12)  | 0.0180 (14)  | 0.0178 (14)  | -0.0035 (10)  | -0.0002 (11) | -0.0035 (11)  |
| O2  | 0.0100 (13)  | 0.0212 (14)  | 0.0155 (13)  | -0.0030 (11)  | -0.0019 (10) | -0.0004 (11)  |
| O3  | 0.0206 (15)  | 0.0224 (15)  | 0.0188 (15)  | -0.0056 (12)  | 0.0051 (12)  | -0.0062 (12)  |
| C1  | 0.0130 (17)  | 0.0118 (17)  | 0.023 (2)    | -0.0053 (14)  | 0.0004 (15)  | -0.0038 (15)  |
| C2  | 0.0137 (17)  | 0.0075 (16)  | 0.0139 (18)  | -0.0043 (13)  | -0.0011 (14) | -0.0025 (13)  |
| C3  | 0.0104 (17)  | 0.0062 (15)  | 0.0172 (19)  | -0.0024 (13)  | -0.0024 (14) | -0.0015 (13)  |
| C4  | 0.0117 (17)  | 0.0085 (16)  | 0.0167 (18)  | -0.0032 (13)  | -0.0010 (14) | -0.0033 (13)  |
| C5  | 0.0136 (17)  | 0.0076 (15)  | 0.0139 (17)  | -0.0041 (13)  | 0.0002 (13)  | -0.0015 (12)  |
| C6  | 0.0143 (19)  | 0.0115 (17)  | 0.0156 (18)  | -0.0038 (14)  | -0.0032 (15) | -0.0018 (14)  |
| C7  | 0.0120 (17)  | 0.0129 (17)  | 0.0185 (19)  | -0.0025 (14)  | -0.0035 (14) | -0.0034 (14)  |
| C8  | 0.0129 (17)  | 0.0034 (14)  | 0.0146 (19)  | -0.0027 (12)  | -0.0017 (14) | -0.0001 (12)  |
| C9  | 0.0124 (17)  | 0.0097 (16)  | 0.017 (2)    | -0.0037 (13)  | -0.0016 (15) | -0.0042 (14)  |
| C10 | 0.0145 (17)  | 0.0130 (17)  | 0.0144 (19)  | -0.0038 (14)  | 0.0003 (14)  | -0.0023 (14)  |
|     |              |              |              |               |              |               |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| I1—C5                      | 2.100 (4) | C4—C8                   | 1.404 (6) |
|----------------------------|-----------|-------------------------|-----------|
| 01—C1                      | 1.338 (6) | C5—C6                   | 1.397 (6) |
| O1—C9                      | 1.383 (5) | C6—C7                   | 1.383 (6) |
| O2—C3                      | 1.224 (5) | С7—С9                   | 1.390 (6) |
| O3—C10                     | 1.213 (5) | C8—C9                   | 1.394 (6) |
| C1—C2                      | 1.353 (6) | C1—H1                   | 0.950     |
| C2—C3                      | 1.466 (6) | C4—H2                   | 0.950     |
| C2-C10                     | 1.485 (6) | С6—Н3                   | 0.950     |
| С3—С8                      | 1.487 (6) | С7—Н4                   | 0.950     |
| C4—C5                      | 1.383 (6) | C10—H5                  | 0.950     |
| 01                         | 2,876(5)  | 11H <i>4</i> v          | 2 12 27   |
| $01 \cdot \cdot \cdot C_3$ | 2.870 (5) |                         | 2.2845    |
| $02 \cdots C1$             | 3.379 (3) |                         | 3.3843    |
| 02C4                       | 2.877 (6) | П····НЭ···              | 3.4429    |
| 02C10                      | 2.910 (5) | 01H2 <sup>m</sup>       | 3.0137    |
| 03···C1                    | 2.811 (6) | O1H2 <sup>1</sup>       | 3.5123    |
| C1…C7                      | 3.575 (7) | O2…H1 <sup>v</sup>      | 2.6723    |
| C1…C8                      | 2.762 (6) | O2····H2 <sup>vi</sup>  | 2.6440    |
| C2…C9                      | 2.774 (6) | O2…H4 <sup>vii</sup>    | 3.4433    |
| C4…C7                      | 2.809 (6) | O2…H4 <sup>iv</sup>     | 3.5709    |
| C5…C9                      | 2.746 (6) | O3…H3 <sup>x</sup>      | 2.6765    |
| C6…C8                      | 2.795 (6) | O3…H5 <sup>ix</sup>     | 2.8065    |
| I1···O3 <sup>i</sup>       | 3.245 (4) | C1····H2 <sup>vii</sup> | 3.5802    |
| 01…01 <sup>ii</sup>        | 3.254 (4) | C1····H2 <sup>iv</sup>  | 3.4884    |
| O1…O2 <sup>iii</sup>       | 3.154 (5) | C1····H4 <sup>ii</sup>  | 3.3639    |
| O1····C4 <sup>iv</sup>     | 3.554 (5) | C3…H2 <sup>vi</sup>     | 3.5381    |
| O2…O1 <sup>v</sup>         | 3.154 (5) | C4···H1 <sup>iv</sup>   | 3.5034    |
| $O2 \cdots C1^{v}$         | 3.192 (6) | $C4\cdots H4^{v}$       | 3.3197    |
|                            |           |                         |           |

| O2····C4 <sup>vi</sup>  | 3.358 (5)        | C5····H1 <sup>iv</sup>      | 3.5345          |
|-------------------------|------------------|-----------------------------|-----------------|
| O2…C7 <sup>vii</sup>    | 3.510 (6)        | C5…H4 <sup>v</sup>          | 3.5834          |
| O3…I1 <sup>viii</sup>   | 3.245 (4)        | C6····H5 <sup>vii</sup>     | 3.5870          |
| O3····O3 <sup>ix</sup>  | 3.316 (5)        | C6····H5 <sup>iv</sup>      | 3.4606          |
| O3…C6 <sup>x</sup>      | 3.494 (6)        | C7···H1 <sup>ii</sup>       | 3.4570          |
| O3····C10 <sup>ix</sup> | 3.321 (5)        | C7···H2 <sup>iii</sup>      | 3.3116          |
| C1···O2 <sup>iii</sup>  | 3.192 (6)        | C9····H2 <sup>iii</sup>     | 3.5699          |
| C1····C4 <sup>vii</sup> | 3.444 (6)        | C10H3 <sup>x</sup>          | 3.3327          |
| C1···C4 <sup>iv</sup>   | 3.358 (6)        | C10H3 <sup>vii</sup>        | 3.5102          |
| C1···C5 <sup>iv</sup>   | 3.548 (6)        | C10H3 <sup>iv</sup>         | 3.4573          |
| C2····C5 <sup>iv</sup>  | 3.526 (6)        | C10H5 <sup>ix</sup>         | 3.4573          |
| C2···C6 <sup>iv</sup>   | 3.568 (6)        | H1···O2 <sup>iii</sup>      | 2.6723          |
| C3····C7 <sup>vii</sup> | 3.555 (7)        | H1····C4 <sup>iv</sup>      | 3.5034          |
| C3····C7 <sup>iv</sup>  | 3.564 (6)        | H1····C5 <sup>iv</sup>      | 3.5345          |
| C3····C9 <sup>vii</sup> | 3.373 (6)        | H1····C7 <sup>ii</sup>      | 3.4570          |
| C3…C9 <sup>iv</sup>     | 3.457 (7)        | H1····H2 <sup>vii</sup>     | 3.5954          |
| C4…O1 <sup>iv</sup>     | 3.554 (5)        | $H1\cdots H2^{iv}$          | 3.4845          |
| C4…O2 <sup>vi</sup>     | 3.358 (5)        | H1…H4 <sup>ii</sup>         | 2.7142          |
| C4···C1 <sup>vii</sup>  | 3.444 (6)        | H2···O1 <sup>v</sup>        | 3.0137          |
| C4…C1 <sup>iv</sup>     | 3,358 (6)        | H2···O1 <sup>iv</sup>       | 3.5123          |
| C5…C1 <sup>iv</sup>     | 3,548 (6)        | H2····O2 <sup>vi</sup>      | 2.6440          |
| C5····C2 <sup>iv</sup>  | 3,526 (6)        | $H2\cdots C1^{vii}$         | 3.5802          |
| C6O3 <sup>xi</sup>      | 3,494 (6)        | H2···C1 <sup>iv</sup>       | 3.4884          |
| C6…C2 <sup>iv</sup>     | 3.568 (6)        | H2…C3 <sup>vi</sup>         | 3.5381          |
| C6···C10 <sup>vii</sup> | 3,430 (7)        | H2···C7 <sup>v</sup>        | 3.3116          |
| C6C10 <sup>iv</sup>     | 3.438 (7)        | $H2\cdots C9^{v}$           | 3.5699          |
| C7…O2 <sup>vii</sup>    | 3.510 (6)        | H2···H1 <sup>vii</sup>      | 3.5954          |
| C7···C3 <sup>vii</sup>  | 3.555 (7)        | $H2\cdots H1^{iv}$          | 3.4845          |
| C7···C3 <sup>iv</sup>   | 3 564 (6)        | $H2\cdots H2^{vi}$          | 3 2186          |
| C8…C8 <sup>iv</sup>     | 3,591 (6)        | $H2\cdots H4^{v}$           | 2.7025          |
| C8…C9 <sup>iv</sup>     | 3 561 (6)        | H3[1 <sup>xii</sup>         | 3 4972          |
| C9····C3 <sup>vii</sup> | 3,373 (6)        | H3····O3 <sup>xi</sup>      | 2.6765          |
| C9····C3 <sup>iv</sup>  | 3457(7)          | $H3\cdots C10^{xi}$         | 3 3327          |
| C9C8 <sup>iv</sup>      | 3 561 (6)        | $H3\cdots C10^{vii}$        | 3 5102          |
| C10O3 <sup>ix</sup>     | 3 321 (5)        | $H3 \cdots C10^{iv}$        | 3 4573          |
| C10C6 <sup>vii</sup>    | 3430(7)          | НЗ…НЗхії                    | 2 9731          |
| C10C6 <sup>iv</sup>     | 3 438 (7)        | H3H5 <sup>xi</sup>          | 3 2942          |
| 11H2                    | 3 0799           | H3H5 <sup>vii</sup>         | 3 5164          |
| II II2<br>I1…H3         | 3.0514           | H3H5 <sup>iv</sup>          | 3 3247          |
| 01····H4                | 2 5116           | H4I1 <sup>iii</sup>         | 3 1327          |
| 01 II4<br>02…H2         | 2.5110           | $H4\cdots O2^{vii}$         | 3 4433          |
| 02 H2<br>02…H5          | 2.6234           | H4O2 <sup>iv</sup>          | 3 5709          |
| 02 HJ<br>03…H1          | 2.0408           | H4C1 <sup>ii</sup>          | 3 3630          |
| С1…Н5                   | 2.7/32           |                             | 3 3 1 0 7       |
| C3H1                    | 3.2031           |                             | 2 5 9 2 1       |
| C3H2                    | 5.2975<br>7.6056 | П4 <sup></sup> U3<br>НДЦ1ії | 5.5054<br>27112 |
| C3H5                    | 2.0350           | цлцэіі                      | 2./142          |
| С5…115<br>С4…Ц2         | 2./133           | 114···112                   | 2.7023          |
| U+U                     | 5.2805           | п.у11                       | 3.3643          |

| С5…Н4                                           | 3 2663                 | H5…I1 <sup>vi</sup>             | 3 4429     |
|-------------------------------------------------|------------------------|---------------------------------|------------|
| С6…Н2                                           | 3.2850                 | H5…O3 <sup>ix</sup>             | 2.8065     |
| C8…H4                                           | 3 2886                 | H5…C6 <sup>vii</sup>            | 3 5870     |
| C9H1                                            | 3 1874                 | H5···C6 <sup>iv</sup>           | 3 4606     |
| C9H2                                            | 3 2740                 | $H5 \cdots C10^{ix}$            | 3 4573     |
| C0H3                                            | 3 2505                 | H5H3x                           | 3 2012     |
| C10H1                                           | 2 5402                 | H5H3 <sup>vii</sup>             | 3 5164     |
| u1                                              | 2.3492                 | 115 115<br>H5H2 <sup>iv</sup>   | 3 3 2 4 7  |
| 111 115<br>112114                               | 2.4022                 | 115 115<br>115115ix             | 3.3247     |
|                                                 | 2.3427                 | H3H3                            | 5.4207     |
| Пнэ                                             | 5.4972                 |                                 |            |
| C1—O1—C9                                        | 118.2 (4)              | C4—C8—C9                        | 119.0 (4)  |
| 01—C1—C2                                        | 125.1 (4)              | O1—C9—C7                        | 115.8 (4)  |
| C1—C2—C3                                        | 120.7 (4)              | 01—C9—C8                        | 122.3 (4)  |
| C1—C2—C10                                       | 118.9 (4)              | C7—C9—C8                        | 121.9 (4)  |
| C3—C2—C10                                       | 120.4 (4)              | O3—C10—C2                       | 123.2 (4)  |
| O2—C3—C2                                        | 123.7 (4)              | 01—C1—H1                        | 117.453    |
| 02 - C3 - C8                                    | 122.5 (4)              | C2-C1-H1                        | 117 444    |
| $C_2 - C_3 - C_8$                               | 113 7 (4)              | C5-C4-H2                        | 120 591    |
| $C_{5}-C_{4}-C_{8}$                             | 118.8 (4)              | C8—C4—H2                        | 120 596    |
| 11 - C5 - C4                                    | 119 9 (3)              | C5-C6-H3                        | 120.161    |
| 11 - C5 - C6                                    | 118.4 (3)              | C7—C6—H3                        | 120.160    |
| C4 - C5 - C6                                    | 121.7(4)               | C6-C7-H4                        | 120.100    |
| $C_{2} = C_{2} = C_{2}$                         | 121.7(4)<br>1197(4)    | C9 - C7 - H4                    | 120.551    |
| $C_{5} = C_{7}$                                 | 119.7 (4)<br>118.0 (4) | $C_{2} = C_{1} = H_{4}$         | 118 305    |
| $C_0 = C_1 = C_2$                               | 110.9(4)               | $C_{2}$ $C_{10}$ $H_{5}$        | 118.393    |
| $C_3 = C_8 = C_4$                               | 121.2(4)               | C2-C10-115                      | 110.392    |
| 05-08-09                                        | 119.8 (4)              |                                 |            |
| C1—O1—C9—C7                                     | -179.3 (4)             | C8—C4—C5—I1                     | 179.1 (3)  |
| C1C9C8                                          | -1.0 (6)               | C8—C4—C5—C6                     | -0.5 (6)   |
| C9—O1—C1—C2                                     | -1.5 (6)               | H2—C4—C5—I1                     | -0.9       |
| C9—O1—C1—H1                                     | 178.5                  | H2-C4-C5-C6                     | 179.5      |
| O1—C1—C2—C3                                     | 1.7 (6)                | H2-C4-C8-C3                     | -0.9       |
| O1-C1-C2-C10                                    | -179.1 (4)             | H2-C4-C8-C9                     | -179.5     |
| H1—C1—C2—C3                                     | -178.3                 | I1—C5—C6—C7                     | -179.5 (3) |
| H1-C1-C2-C10                                    | 0.9                    | I1—C5—C6—H3                     | 0.5        |
| C1—C2—C3—O2                                     | -179.2 (4)             | C4—C5—C6—C7                     | 0.1 (6)    |
| C1—C2—C3—C8                                     | 0.4 (6)                | С4—С5—С6—Н3                     | -179.9     |
| C1—C2—C10—O3                                    | 6.5 (6)                | C5—C6—C7—C9                     | 0.3 (6)    |
| C1—C2—C10—H5                                    | -173.5                 | С5—С6—С7—Н4                     | -179.7     |
| C3—C2—C10—O3                                    | -174.3(4)              | H3—C6—C7—C9                     | -179.7     |
| C3—C2—C10—H5                                    | 5.7                    | H3—C6—C7—H4                     | 0.3        |
| $C_{10} - C_{2} - C_{3} - O_{2}$                | 1.6 (6)                | C6-C7-C9-01                     | 178.0 (4)  |
| C10-C2-C3-C8                                    | -178.7(3)              | C6-C7-C9-C8                     | -0.4(7)    |
| 02-C3-C8-C4                                     | -1.6 (6)               | H4—C7—C9—O1                     | -2.0       |
| 02-03-08-09                                     | 177.0 (4)              | H4-C7-C9-C8                     | 179.7      |
| $C_2 = C_3 = C_8 = C_4$                         | 178 7 (3)              | $C_3 - C_8 - C_9 - O_1$         | 31(6)      |
| $C_{2}^{-}$ $C_{3}^{-}$ $C_{8}^{-}$ $C_{9}^{0}$ | -2.7(5)                | $C_{3}$ $C_{8}$ $C_{9}$ $C_{7}$ | -1787(4)   |
| 02 03 00 07                                     | 2.7 (3)                | 0                               | (T) (I)    |

| C5—C4—C8—C3 | 179.1 (3) | C4—C8—C9—O1 | -178.3 (4) |
|-------------|-----------|-------------|------------|
| C5—C4—C8—C9 | 0.5 (6)   | C4—C8—C9—C7 | -0.1 (6)   |

Symmetry codes: (i) *x*-1, *y*, *z*+1; (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+2, -*z*; (v) *x*-1, *y*, *z*; (vi) -*x*, -*y*+2, -*z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) *x*+1, *y*, *z*-1; (ix) -*x*+1, -*y*+2, -*z*-1; (x) *x*, *y*, *z*-1; (xi) *x*, *y*, *z*+1; (xii) -*x*+1, -*y*+1, -*z*+1.