metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[*trans*-difluoridotetrakis(pyridine-*kN*)chromium(III)] sodium tetrachloridozincate perchlorate from synchrotron data

Dohyun Moon,^a Keon Sang Ryoo^b and Jong-Ha Choi^{b*}

^aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea

Correspondence e-mail: jhchoi@anu.ac.kr

Received 17 June 2014; accepted 19 June 2014

Key indicators: single-crystal synchrotron study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.047; wR factor = 0.136; data-to-parameter ratio = 21.7.

The title salt, Na[CrF₂(C₅H₅N)₄]₂[ZnCl₄]ClO₄, consists of two cationic Cr^{III} complexes, an Na⁺ cation, one $[ZnCl_4]^{2-}$ anion and one ClO₄⁻ anion. The Cr^{III} atoms are coordinated by four pyridine (py) N atoms and two F atoms in a *trans* arrangement, displaying a distorted octahedral geometry. The mean Cr– N(py) and Cr–F bond lengths are 2.086 (8) and 1.864 (14) Å, respectively. The [ZnCl₄]²⁻ anion has a distorted tetrahedral geometry. The most notable feature of the crystal packing is the formation of weak pyridine–perchlorate C–H···O hydrogen bonds, resulting in supramolecular chains along the *b*-axis direction. The perchlorate anion was disordered over two sets of sites in a 0.868 (3):0.132 (3) ratio.

Related literature

For the synthesis of *trans*-[Cr(py)₄F₂]NO₃, see: Glerup *et al.* (1970). For the structures of *trans*-[Cr(py)₄F₂]ClO₄ and *trans*-[Cr(py)₄F₂]PF₆, see: Moon & Choi (2013); Fochi *et al.* (1991). Chromium(III)-doped crystals are promising materials for tunable solid state lasers in the spectral region between 600 and 1100 nm, see: Powell (1998).

Experimental

Crystal data

Na[CrF₂(C₃H₅N)₄]₂[ZnCl₄]ClO₄ $M_r = 1142.41$ Orthorhombic, *Pbca* a = 25.397 (5) Å b = 14.600 (3) Å c = 25.510 (5) Å V = 9459 (3) Å³

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.136$	
S = 1.05	
13152 reflections	
505 parameters	

6 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.25$ e Å⁻³ $\Delta \rho_{min} = -1.99$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C2-H2\cdots O5P^{i}$ C10-H10\cdots O2P^{ii}	0.95 0.95	2.31 2.49	3.237 (14) 3.352 (3)	165 151		
Symmetry codes: (i) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $y + 1$, $-z + \frac{1}{2}$.						

Z = 8

Synchrotron radiation

 $0.20 \times 0.15 \times 0.10 \ \text{mm}$

86381 measured reflections 13152 independent reflections 12355 reflections with $I > 2\sigma(I)$

 $\lambda = 0.62998 \text{ Å}$ $\mu = 0.94 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.050$

Data collection: *PAL ADSC Quantum-210 ADX* (Arvai & Nielsen, 1983); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm*; program(s) used to solve structure: *XS* in *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *XL* in *SHELXL2014* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The experiment at PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5321).

References

Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

- Fochi, G., Strähle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669-4671.
- Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.
- Moon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography, Part A*, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.

Powell, R. C. (1998). In *Physics of Solid-State Laser Materials*. New York: Springer-Verlag.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

m280

supporting information

Acta Cryst. (2014). E70, m280 [https://doi.org/10.1107/S1600536814014408]

Bis[*trans*-difluoridotetrakis(pyridine-*kN*)chromium(III)] sodium tetrachloridozincate perchlorate from synchrotron data

Dohyun Moon, Keon Sang Ryoo and Jong-Ha Choi

S1. Structural commentary

The preparation and characterization of novel chromium(III) systems have received much attention because chromium(III) doped crystals are promising materials for tunable solid state laser in the spectral region between 600 and 1100 nm (Powell, 1998). Anionic species also play a very important role in chemistry, medicine and in biology, yet their binding characteristics have not received much recognition. The study of the anion effect and geometrical isomer in octahedral transition metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. The $[Cr(py)_4X_2]^{n+}(X = monodentate; py = pyridine)$ cation can be either *trans* or *cis* geometric isomers.

In this communication, we report the synthesis and structure of $2[Cr(C_3H_3N)_4F_2]^+[ZnCl_4]^{2-}$ Na⁺ ClO₄⁻ in order to confirm the arrangement of four py molecules and two F ligands in the complex. This is another example of a *trans*-[Cr(py)_4F_2]⁺ complex but with a different counter anion (Fochi *et al.*, 1991; Moon & Choi, 2013). The asymmetric unit of the title salt contains discrete two *trans*-[Cr(py)_4F_2]⁺, one [ZnCl_4]²⁻, one Na cation and one disordered ClO₄⁻ anion. The structural analysis shows that there are two independent Cr(III) complex cations in which the four nitrogen atoms of four py ligands occupy the equatorial sites and the two F atoms coordinate to the Cr atom in *trans* configuration. An ellipsoid plot (60% probability level) of the title compound, together with the atomic labelling, is depicted in Fig. 1.

The Cr—N(py) bond distances varies from 2.0759 (18) to 2.0986 (18) Å and the Cr–F bond distances are in the range of 1.8532 (12) to 1.8838 (12) Å. These bond lengths are in good agreement with those observed in *trans*-[Cr(py)₄F₂]PF₆ and *trans*-[Cr(py)₄F₂]ClO₄.

The uncoordinated $[ZnCl_4]^{2-}$ anion remains outside the coordination sphere. As expected, the Zn atom in the $[ZnCl_4]^{2-}$ has a distorted tetrahedral geometry surrounded by four Cl atoms. The Zn—Cl bond distance of 2.0228 (19)–2.5558 (7) Å and the Cl—Zn—Cl angles of 100.05 (6)–121.91 (3)° are observed, respectively. The ClO₄⁻ also has distorted tetrahedral geometry due to the influence of hydrogen bonding and connecting Na⁺ ion on the Cl—O lengths and the O—Cl–O angles. In the title complex, the crystal lattice is stabilized by weak hydrogen bonding interactions between the C—H groups of the py ligand and the O atoms of the ClO₄ anion (Table 1).

S2. Synthesis and crystallization

All chemicals were reagent grade materials and used without further purification. As starting material,

trans-[Cr(py)₄F₂]NO₃ was prepared as described previously (Glerup *et al.*, 1970). The crude [Cr(py)₄F₂]NO₃ (0.2 g) was dissolved in 10 ml water at 60 °C. The 10 ml solution of 1*M* HCl containing 0.1 g sodium perchlorate and 0.5 g of ZnCl₂ was gradually added. The unreacted materials were removed by filtration and allowed to stand at room temperature for several days to give purple crystals of the title compound suitable for X-ray structural analysis.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C—H = 0.95) and were included in the refinement in the riding model approximation with U_{iso} (H) set to $1.2U_{eq}$ (C). The perchlorate anion was distorted over two positions in a 0.868 (3):0.132 (3) ratio.

Figure 1

A perspective view of the molecular structures of the asymmetric unit in the title compound

Bis[trans-difluoridotetrakis(pyridine-*kN*)chromium(III)] sodium tetrachloridozincate perchlorate

Crystal data

Na[CrF ₂ (C ₅ H ₅ N) ₄] ₂ [ZnCl ₄]ClO ₄ $M_r = 1142.41$ Orthorhombic, <i>Pbca</i> a = 25.397 (5) Å b = 14.600 (3) Å c = 25.510 (5) Å V = 9459 (3) Å ³ Z = 8	$D_x = 1.604 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.62998 \text{ Å}$ Cell parameters from 237022 reflections $\theta = 0.4-33.6^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 100 K Block, purple $0.20 \times 0.15 \times 0.10 \text{ mm}$
F(000) = 4624	
Data collection	
ADSC Q210 CCD area-detector diffractometer	86381 measured reflections 13152 independent reflections
Radiation source: PLSII 2D bending magnet	12355 reflections with $I > 2\sigma(I)$
ωscan	$R_{\rm int} = 0.050$
Absorption correction: empirical (using	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
intensity measurements)	$h = -35 \rightarrow 35$
(HKL3000sm; Otwinowski & Minor, 1997)	$k = -19 \rightarrow 19$
$T_{\min} = 0.835, T_{\max} = 0.912$	$l = -35 \rightarrow 35$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_c^2) + (0.0773P)^2 + 19.7848P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
13152 reflections	$(\Delta/\sigma)_{max} = 0.002$
605 parameters	$\Delta\rho_{max} = 1.25 \text{ e } \text{Å}^{-3}$
6 restraints	$\Delta\rho_{min} = -1.99 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Crl	0.35117 (2)	0.76013 (2)	0.12316 (2)	0.00754 (8)	
F1	0.30651 (4)	0.70701 (9)	0.17189 (5)	0.0118 (2)	
F2	0.39507 (5)	0.81430 (9)	0.07234 (5)	0.0134 (2)	
N1	0.37558 (7)	0.63065 (12)	0.09803 (7)	0.0116 (3)	
N2	0.28923 (7)	0.75603 (12)	0.06915 (6)	0.0105 (3)	
N3	0.32920 (6)	0.89005 (12)	0.14979 (6)	0.0099 (3)	
N4	0.41194 (6)	0.75688 (12)	0.17755 (7)	0.0107 (3)	
C1	0.35464 (10)	0.55497 (16)	0.12003 (9)	0.0188 (4)	
H1	0.3272	0.5618	0.1451	0.023*	
C2	0.37167 (12)	0.46750 (17)	0.10742 (10)	0.0258 (5)	
H2	0.3556	0.4154	0.1230	0.031*	
C3	0.41235 (11)	0.45702 (18)	0.07181 (10)	0.0268 (5)	
H3	0.4258	0.3980	0.0637	0.032*	
C4	0.43310 (10)	0.53502 (19)	0.04820 (11)	0.0252 (5)	
H4	0.4603	0.5298	0.0228	0.030*	
C5	0.41370 (9)	0.62005 (17)	0.06204 (9)	0.0180 (4)	
H5	0.4278	0.6729	0.0455	0.022*	
C6	0.29780 (8)	0.75294 (15)	0.01708 (8)	0.0143 (4)	
H6	0.3330	0.7565	0.0045	0.017*	
C7	0.25712 (9)	0.74470 (17)	-0.01887 (8)	0.0188 (4)	
H7	0.2644	0.7426	-0.0554	0.023*	
C8	0.20558 (9)	0.73955 (16)	-0.00069 (9)	0.0183 (4)	
H8	0.1771	0.7332	-0.0246	0.022*	
C9	0.19644 (8)	0.74378 (16)	0.05288 (9)	0.0165 (4)	
H9	0.1616	0.7412	0.0663	0.020*	
C10	0.23912 (8)	0.75180 (15)	0.08642 (8)	0.0133 (4)	
H10	0.2328	0.7544	0.1231	0.016*	
C11	0.35537 (8)	0.96612 (14)	0.13505 (8)	0.0125 (3)	
H11	0.3854	0.9599	0.1132	0.015*	
C12	0.33995 (9)	1.05350 (15)	0.15071 (8)	0.0165 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	0.3592	1.1058	0.1397	0.020*
C13	0.29607 (9)	1.06300 (16)	0.18269 (9)	0.0177 (4)
H13	0.2845	1.1219	0.1935	0.021*
C14	0.26955 (9)	0.98475 (16)	0.19856 (9)	0.0173 (4)
H14	0.2395	0.9892	0.2206	0.021*
C15	0.28738 (8)	0.89998 (15)	0.18182 (8)	0.0137 (4)
H15	0.2694	0.8466	0.1934	0.016*
C16	0.40251 (9)	0.7286 (2)	0.22661 (9)	0.0259 (5)
H16	0.3673	0.7145	0.2362	0.031*
C17	0.44161 (10)	0.7191 (2)	0.26391 (10)	0.0288 (6)
H17	0.4332	0.6992	0.2984	0.035*
C18	0.49271 (9)	0.7387 (2)	0.25044 (10)	0.0245 (5)
H18	0.5204	0.7316	0.2751	0.029*
C19	0.50286 (10)	0.7688 (3)	0.20023 (11)	0.0441 (9)
H19	0.5378	0.7838	0.1899	0.053*
C20	0.46157 (9)	0.7770 (2)	0.16487 (9)	0.0301 (6)
H20	0.4689	0.7977	0.1303	0.036*
Cr2	0.65746 (2)	0.50377 (2)	0.11947 (2)	0.00778 (8)
F3	0.61676 (5)	0.45700 (9)	0.06534 (4)	0.0118 (2)
F4	0.70069 (5)	0.55143 (9)	0.17181 (5)	0.0130 (2)
N5	0.63053 (6)	0.63505 (12)	0.10134 (7)	0.0103 (3)
N6	0.59384 (6)	0.49421 (12)	0.17052 (6)	0.0098 (3)
N7	0.67945 (7)	0.37247 (12)	0.14187 (7)	0.0126 (3)
N8	0.72058 (7)	0.50992 (12)	0.06649 (6)	0.0104 (3)
C21	0.64820 (9)	0.70809 (15)	0.12802 (8)	0.0143 (4)
H21	0.6759	0.6999	0.1526	0.017*
C22	0.62733 (10)	0.79550 (16)	0.12082 (9)	0.0187 (4)
H22	0.6408	0.8459	0.1402	0.022*
C23	0.58692 (9)	0.80824 (16)	0.08526 (9)	0.0200 (4)
H23	0.5721	0.8672	0.0798	0.024*
C24	0.56850 (9)	0.73228 (17)	0.05761 (10)	0.0198 (4)
H24	0.5409	0.7387	0.0328	0.024*
C25	0.59096 (8)	0.64744 (15)	0.06679 (9)	0.0153 (4)
H25	0.5780	0.5959	0.0480	0.018*
C26	0.54766 (8)	0.45919 (16)	0.15431 (8)	0.0162 (4)
H26	0.5448	0.4377	0.1193	0.019*
C27	0.50407 (9)	0.4532 (2)	0.18677 (9)	0.0241 (5)
H27	0.4721	0.4272	0.1744	0.029*
C28	0.50789 (9)	0.4858 (2)	0.23773 (9)	0.0227 (5)
H28	0.4784	0.4837	0.2606	0.027*
C29	0.55529 (9)	0.52141 (19)	0.25454 (9)	0.0214 (5)
H29	0.5590	0.5435	0.2894	0.026*
C30	0.59751 (8)	0.52459 (16)	0.22017 (8)	0.0156 (4)
H30	0.6301	0.5490	0.2320	0.019*
C31	0.71928 (9)	0.35834 (16)	0.17617 (8)	0.0177 (4)
H31	0.7389	0.4096	0.1883	0.021*
C32	0.73252 (10)	0.27212 (18)	0.19426 (9)	0.0222 (5)
H32	0.7609	0.2642	0.2180	0.027*

C33	0.70374 (10)	0.19765 (18)	0.17718 (10)	0.0248 (5)	
H33	0.7118	0.1378	0.1893	0.030*	
C34	0.66268 (10)	0.21171 (16)	0.14187 (11)	0.0229 (5)	
H34	0.6425	0.1614	0.1296	0.027*	
C35	0.65162 (9)	0.29982 (16)	0.12486 (9)	0.0169 (4)	
H35	0.6237	0.3092	0.1006	0.020*	
C36	0.77078 (8)	0.51247 (15)	0.08380 (8)	0.0136 (4)	
H36	0.7771	0.5151	0.1205	0.016*	
C37	0.81361 (8)	0.51134 (16)	0.04979 (9)	0.0164 (4)	
H37	0.8486	0.5123	0.0631	0.020*	
C38	0.80443 (8)	0.50876 (16)	-0.00376 (9)	0.0174 (4)	
H38	0.8330	0.5078	-0.0278	0.021*	
C39	0.75289 (9)	0.50755 (16)	-0.02167 (8)	0.0171 (4)	
H39	0.7457	0.5069	-0.0582	0.020*	
C40	0.71206 (8)	0.50729 (15)	0.01433 (8)	0.0137 (4)	
H40	0.6768	0.5052	0.0018	0.016*	
Cl1P	0.63013 (3)	-0.20630 (5)	0.28660 (3)	0.01264 (18)	0.868 (3)
O1P	0.60224 (9)	-0.23420 (16)	0.33334 (8)	0.0262 (5)	0.868 (3)
O2P	0.68283 (8)	-0.1857 (2)	0.30024 (11)	0.0374 (7)	0.868 (3)
O3P	0.62633 (11)	-0.2764 (3)	0.24867 (13)	0.0354 (7)	0.868 (3)
O4P	0.60397 (9)	-0.12621 (15)	0.26743 (10)	0.0370 (5)	0.868 (3)
Cl2P	0.6450 (2)	-0.1831 (4)	0.2710 (2)	0.0221 (12)	0.132 (3)
O5P	0.6630 (6)	-0.2113 (10)	0.3260 (5)	0.0221 (12)	0.132 (3)
O6P	0.6833 (5)	-0.1475 (10)	0.2396 (5)	0.0221 (12)	0.132 (3)
O7P	0.6415 (8)	-0.2796 (17)	0.2504 (9)	0.0221 (12)	0.132 (3)
O8P	0.60397 (9)	-0.12621 (15)	0.26743 (10)	0.0370 (5)	0.132 (3)
Zn1	0.51089 (2)	0.13481 (2)	0.06065 (2)	0.01240 (7)	
Cl1	0.52526 (2)	0.28484 (4)	0.05651 (2)	0.02034 (12)	
Cl2	0.42603 (2)	0.10088 (4)	0.04318 (2)	0.02115 (12)	
C13	0.55209 (11)	0.09300 (14)	-0.00286 (9)	0.1300 (9)	
Cl4	0.54386 (3)	0.04804 (5)	0.12572 (2)	0.03005 (14)	
Na1P	0.65188 (10)	-0.00419 (16)	0.19280 (11)	0.0856 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.00589 (14)	0.00984 (15)	0.00688 (14)	-0.00199 (10)	0.00172 (9)	0.00211 (10)
F1	0.0085 (5)	0.0164 (6)	0.0106 (5)	-0.0028 (4)	0.0025 (4)	0.0051 (4)
F2	0.0136 (5)	0.0156 (6)	0.0110 (5)	-0.0050 (4)	0.0066 (4)	0.0024 (4)
N1	0.0108 (7)	0.0129 (8)	0.0111 (7)	0.0001 (6)	-0.0006 (6)	0.0004 (6)
N2	0.0108 (7)	0.0113 (8)	0.0093 (7)	-0.0014 (6)	-0.0008 (6)	0.0016 (6)
N3	0.0088 (7)	0.0130 (8)	0.0079 (7)	-0.0006 (6)	-0.0003(5)	0.0010 (6)
N4	0.0066 (7)	0.0150 (8)	0.0106 (7)	-0.0008 (6)	0.0008 (5)	0.0003 (6)
C1	0.0266 (11)	0.0125 (10)	0.0173 (9)	-0.0004 (8)	0.0012 (8)	0.0049 (7)
C2	0.0433 (15)	0.0134 (10)	0.0208 (11)	0.0032 (10)	-0.0058 (10)	0.0040 (8)
C3	0.0364 (14)	0.0183 (11)	0.0258 (11)	0.0116 (10)	-0.0128 (10)	-0.0055 (9)
C4	0.0216 (11)	0.0263 (13)	0.0279 (12)	0.0073 (9)	-0.0003 (9)	-0.0106 (10)
C5	0.0152 (9)	0.0196 (11)	0.0192 (10)	-0.0004 (8)	0.0036 (7)	-0.0043 (8)

supporting information

C6	0.0157 (9)	0.0166 (9)	0.0107 (8)	-0.0003 (7)	-0.0004(7)	0.0011 (7)
C7	0.0217 (10)	0.0238 (11)	0.0110 (9)	0.0020 (8)	-0.0039 (8)	-0.0011 (8)
C8	0.0183 (10)	0.0188 (10)	0.0179 (10)	0.0003 (8)	-0.0083 (8)	0.0003 (8)
C9	0.0124 (9)	0.0179 (10)	0.0193 (10)	-0.0018 (7)	-0.0036 (7)	0.0026 (8)
C10	0.0108 (8)	0.0169 (9)	0.0121 (8)	-0.0023 (7)	-0.0009 (7)	0.0023 (7)
C11	0.0143 (8)	0.0125 (9)	0.0107 (8)	-0.0023 (7)	-0.0007 (7)	0.0015 (7)
C12	0.0221 (10)	0.0116 (9)	0.0157 (9)	-0.0014 (7)	-0.0031 (7)	0.0010(7)
C13	0.0216 (10)	0.0156 (10)	0.0157 (9)	0.0058 (8)	-0.0048 (8)	-0.0015 (7)
C14	0.0149 (9)	0.0210 (10)	0.0160 (9)	0.0048 (8)	0.0013 (7)	-0.0020(8)
C15	0.0115 (8)	0.0174 (10)	0.0122 (8)	0.0003 (7)	0.0023 (7)	0.0005 (7)
C16	0.0096 (9)	0.0503 (16)	0.0177 (10)	-0.0052(9)	-0.0016 (8)	0.0148 (10)
C17	0.0160 (10)	0.0515 (17)	0.0188 (11)	-0.0053 (10)	-0.0057 (8)	0.0147 (11)
C18	0.0106 (9)	0.0430 (15)	0.0197 (10)	0.0016 (9)	-0.0049 (8)	-0.0003 (10)
C19	0.0085 (10)	0.104 (3)	0.0196 (12)	-0.0125 (14)	-0.0014 (9)	0.0057 (15)
C20	0.0097 (9)	0.067 (2)	0.0133 (10)	-0.0130 (11)	0.0004 (8)	0.0044 (11)
Cr2	0.00645 (14)	0.01014 (15)	0.00675 (14)	-0.00042 (10)	-0.00057 (9)	-0.00142 (10)
F3	0.0122 (5)	0.0140 (6)	0.0091 (5)	-0.0032 (4)	-0.0019 (4)	-0.0029 (4)
F4	0.0099 (5)	0.0185 (6)	0.0107 (5)	-0.0007 (4)	-0.0030 (4)	-0.0032 (4)
N5	0.0089 (7)	0.0115 (8)	0.0104 (7)	-0.0010 (5)	0.0010 (6)	-0.0006 (6)
N6	0.0087 (7)	0.0121 (8)	0.0087 (7)	0.0002 (5)	0.0001 (5)	-0.0011 (5)
N7	0.0129 (7)	0.0142 (8)	0.0108 (7)	0.0039 (6)	0.0027 (6)	0.0009 (6)
N8	0.0084 (7)	0.0135 (8)	0.0093 (7)	0.0004 (6)	0.0001 (5)	-0.0008 (6)
C21	0.0181 (9)	0.0131 (10)	0.0118 (8)	-0.0020 (7)	0.0016 (7)	-0.0024 (7)
C22	0.0269 (11)	0.0132 (10)	0.0159 (9)	-0.0014 (8)	0.0053 (8)	-0.0030(7)
C23	0.0223 (10)	0.0151 (10)	0.0225 (10)	0.0050 (8)	0.0086 (8)	0.0032 (8)
C24	0.0147 (9)	0.0181 (11)	0.0264 (11)	0.0019 (8)	-0.0014 (8)	0.0056 (8)
C25	0.0135 (9)	0.0147 (10)	0.0178 (9)	-0.0017 (7)	-0.0042 (7)	0.0016 (7)
C26	0.0122 (9)	0.0231 (11)	0.0134 (9)	-0.0065 (7)	0.0014 (7)	-0.0047 (7)
C27	0.0134 (9)	0.0409 (15)	0.0180 (10)	-0.0110 (9)	0.0028 (8)	-0.0065 (10)
C28	0.0137 (10)	0.0383 (14)	0.0160 (10)	-0.0030 (9)	0.0048 (7)	-0.0036 (9)
C29	0.0149 (9)	0.0369 (13)	0.0125 (9)	-0.0013 (9)	0.0033 (7)	-0.0077 (9)
C30	0.0114 (8)	0.0246 (11)	0.0110 (8)	-0.0010 (7)	0.0004 (7)	-0.0056 (8)
C31	0.0187 (10)	0.0213 (11)	0.0133 (9)	0.0069 (8)	0.0002 (7)	0.0007 (7)
C32	0.0254 (11)	0.0253 (12)	0.0160 (9)	0.0129 (9)	0.0025 (8)	0.0037 (8)
C33	0.0292 (12)	0.0207 (11)	0.0244 (11)	0.0121 (9)	0.0109 (9)	0.0073 (9)
C34	0.0245 (11)	0.0129 (10)	0.0312 (12)	0.0022 (8)	0.0087 (9)	0.0006 (9)
C35	0.0154 (9)	0.0139 (10)	0.0214 (10)	0.0021 (7)	0.0051 (7)	0.0000 (7)
C36	0.0094 (8)	0.0194 (10)	0.0121 (8)	0.0003 (7)	-0.0004 (7)	-0.0005 (7)
C37	0.0087 (8)	0.0232 (11)	0.0172 (9)	0.0015 (7)	0.0011 (7)	0.0013 (8)
C38	0.0135 (9)	0.0224 (11)	0.0162 (9)	0.0036 (8)	0.0060 (7)	0.0009 (8)
C39	0.0168 (9)	0.0239 (11)	0.0104 (8)	0.0016 (8)	0.0033 (7)	0.0007 (7)
C40	0.0120 (8)	0.0185 (10)	0.0105 (8)	0.0009 (7)	-0.0001 (7)	0.0001 (7)
Cl1P	0.0113 (3)	0.0140 (3)	0.0127 (3)	0.0026 (2)	-0.0047 (2)	-0.0003 (2)
O1P	0.0341 (11)	0.0252 (11)	0.0193 (9)	-0.0025 (9)	0.0063 (8)	0.0046 (8)
O2P	0.0090 (9)	0.0603 (17)	0.0430 (14)	-0.0026 (10)	-0.0084 (9)	-0.0126 (12)
O3P	0.0316 (15)	0.0470 (16)	0.0276 (12)	0.0024 (15)	-0.0071 (13)	-0.0239 (11)
O4P	0.0288 (10)	0.0346 (12)	0.0476 (13)	0.0188 (9)	0.0081 (9)	0.0216 (10)
Cl2P	0.0194 (14)	0.0263 (14)	0.0205 (14)	-0.0016 (9)	-0.0010 (9)	-0.0038 (9)

supporting information

O5P	0.0194 (14)	0.0263 (14)	0.0205 (14)	-0.0016 (9)	-0.0010 (9)	-0.0038 (9)
O6P	0.0194 (14)	0.0263 (14)	0.0205 (14)	-0.0016 (9)	-0.0010 (9)	-0.0038 (9)
O7P	0.0194 (14)	0.0263 (14)	0.0205 (14)	-0.0016 (9)	-0.0010 (9)	-0.0038 (9)
O8P	0.0288 (10)	0.0346 (12)	0.0476 (13)	0.0188 (9)	0.0081 (9)	0.0216 (10)
Zn1	0.01514 (13)	0.01067 (13)	0.01138 (12)	-0.00326 (8)	0.00344 (8)	-0.00087 (8)
C11	0.0246 (3)	0.0112 (2)	0.0252 (3)	-0.00530 (19)	-0.0023 (2)	-0.00346 (18)
Cl2	0.0145 (2)	0.0141 (2)	0.0348 (3)	-0.00498 (17)	0.0031 (2)	0.0015 (2)
C13	0.173 (2)	0.0881 (13)	0.1291 (17)	-0.0183 (13)	0.0785 (16)	-0.0087 (11)
Cl4	0.0477 (4)	0.0215 (3)	0.0209 (3)	0.0029 (3)	-0.0073 (2)	0.0041 (2)
Na1P	0.0897 (16)	0.0696 (14)	0.0974 (17)	-0.0081 (12)	0.0211 (13)	0.0102 (12)

Geometric parameters (Å, °)

Cr1—F1	1.8532 (12)	N6—C26	1.344 (3)
Cr1—F2	1.8838 (12)	N6-C30	1.345 (2)
Cr1—N4	2.0759 (17)	N7—C35	1.346 (3)
Cr1—N1	2.0902 (18)	N7—C31	1.353 (3)
Cr1—N3	2.0906 (18)	N8—C40	1.349 (2)
Cr1—N2	2.0920 (17)	N8—C36	1.350 (2)
N1-C5	1.343 (3)	C21—C22	1.394 (3)
N1—C1	1.349 (3)	C21—H21	0.9500
N2-C6	1.347 (3)	C22—C23	1.382 (3)
N2-C10	1.348 (2)	C22—H22	0.9500
N3—C11	1.348 (3)	C23—C24	1.395 (4)
N3—C15	1.348 (2)	С23—Н23	0.9500
N4—C20	1.334 (3)	C24—C25	1.384 (3)
N4—C16	1.339 (3)	C24—H24	0.9500
C1—C2	1.386 (3)	С25—Н25	0.9500
C1—H1	0.9500	C26—C27	1.385 (3)
C2—C3	1.384 (4)	C26—H26	0.9500
С2—Н2	0.9500	C27—C28	1.388 (3)
C3—C4	1.392 (4)	С27—Н27	0.9500
С3—Н3	0.9500	C28—C29	1.380 (3)
C4—C5	1.382 (3)	C28—H28	0.9500
C4—H4	0.9500	C29—C30	1.386 (3)
С5—Н5	0.9500	С29—Н29	0.9500
С6—С7	1.387 (3)	С30—Н30	0.9500
С6—Н6	0.9500	C31—C32	1.382 (3)
С7—С8	1.391 (3)	C31—H31	0.9500
С7—Н7	0.9500	C32—C33	1.381 (4)
С8—С9	1.388 (3)	С32—Н32	0.9500
С8—Н8	0.9500	C33—C34	1.393 (4)
C9—C10	1.386 (3)	С33—Н33	0.9500
С9—Н9	0.9500	C34—C35	1.386 (3)
С10—Н10	0.9500	C34—H34	0.9500
C11—C12	1.393 (3)	С35—Н35	0.9500
C11—H11	0.9500	C36—C37	1.391 (3)
C12—C13	1.388 (3)	C36—H36	0.9500

C12—H12	0.9500	C37—C38	1.386 (3)
C13—C14	1.387 (3)	С37—Н37	0.9500
C13—H13	0.9500	C38—C39	1.387 (3)
C14—C15	1.385 (3)	C38—H38	0.9500
C14—H14	0.9500	C39—C40	1.385 (3)
C15—H15	0.9500	С39—Н39	0.9500
C16—C17	1.382 (3)	C40—H40	0.9500
C16—H16	0.9500	Cl1P—O3P	1.412 (3)
C17—C18	1.372 (3)	Cl1P—O2P	1.415 (2)
С17—Н17	0.9500	Cl1P—O4P	1.431 (2)
C18—C19	1.379 (4)	Cl1P—O1P	1.445 (2)
C18—H18	0.9500	O4P—Na1P	2.877 (3)
C19—C20	1.388 (3)	C12P—06P	1.362 (15)
С19—Н19	0.9500	Cl2P—O7P	1.51 (3)
C20—H20	0.9500	Cl2P—O5P	1.531 (15)
Cr2—F3	1.8552 (12)	Cl2P—Na1P	3.291 (8)
Cr2—F4	1 8634 (12)	O6P—Na1P	2,537(15)
Cr2—N7	2,0769 (18)	Zn1-Cl3	2.0278(10)
Cr2—N6	2.0801 (17)	Zn1—Cl1	2.0220(13)
Cr2—N5	2.0001(17) 2.0868(18)	Zn1-Cl4	2.2232(7) 2 2499(7)
Cr2—N8	2.0000 (10)	Zn1-Cl2	2.2159(7) 2 2558(7)
N5-C21	1 342 (3)	Cl4—Na1P	3322(3)
N5-C25	1.349(3)		5.522 (5)
	1.5 19 (5)		
F1— $Cr1$ — $F2$	178.47 (6)	N6—Cr2—N8	178.11 (7)
F1— $Cr1$ — $N4$	89.83 (6)	N5-Cr2-N8	93 92 (7)
F2— $Cr1$ —N4	91.70 (6)	$C_{21} = N_{5} = C_{25}$	$118\ 28\ (19)$
F1— $Cr1$ — $N1$	90.50(6)	$C_{21} = N_{5} = C_{23}$	120.52(19)
F_2 — Cr_1 — N_1	89.61 (6)	C25 - N5 - Cr2	120.32(11) 120.81(14)
N4— $Cr1$ — $N1$	87.93 (7)	$C_{26} = N_{6} = C_{30}$	120.01(14) 118.39(18)
F1— $Cr1$ — $N3$	89.90 (6)	$C_{26} = N_{6} = C_{r_{2}}^{26}$	120.70(14)
F_2 C_r_1 N3	90.04 (6)	$C_{20} = N_0 = C_{12}$	120.70(14) 120.90(14)
N4— $Cr1$ — $N3$	90.12 (7)	$C_{35} = N_{7} = C_{31}$	120.90(14) 11873(19)
N1 Cr1 N3	178.00(7)	C35 = N7 = C31	110.73(17) 110.82(15)
F1 Cr1 N2	88 25 (6)	$C_{33} = N7 = C_{12}$	119.82(15) 121.30(15)
$F_1 = C_1 = N_2$ $F_2 = C_r (1 = N_2)$	88.25 (0) 90.22 (6)	$C_{1} = 10^{-1} - 12^{-12}$	121.30(13) 118.38(17)
$N_{12} = C_{11} = N_{2}$	90.22 (0) 176.95 (7)	C40 = 108 = C30	118.38(17) 120.77(14)
$N_1 = C_{r1} = N_2$	170.95(7)	$C_{40} = 108 = C_{12}$	120.77(14) 120.70(13)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	89.72(7)	$N_{5} = C_{12}$	120.79(13)
N_{3} C_{1} N_{2} C_{3} N_{1} C_{1}	92.23(7)	$N_{5} = C_{21} = C_{22}$	122.2 (2)
$C_5 N_1 C_7$	110.3(2) 121.84(15)	$N_{3} = C_{21} = H_{21}$	118.9
C_{1} N1 C_{2}	121.64(13) 110.77(15)	$C_{22} = C_{21} = H_{21}$	110.5 (2)
CI-NI-CII	119.77 (13)	$C_{23} = C_{22} = C_{21}$	119.3 (2)
$C_0 = N_2 = C_1 U$	118.23(17) 121.02(17)	$C_{23} - C_{22} - H_{22}$	120.3
$C_{10} = N_{2} = C_{11}$	121.95 (14)	$C_{21} = C_{22} = C_{24}$	120.3
C10 - N2 - C11	117.74(13)	$C_{22} = C_{23} = C_{24}$	118.3 (2)
C11 = N3 = C13	11/.9/(18)	C_{22} — C_{23} — H_{23}	120.9
CII - N3 - CII	121.09 (14)	$C_{24} - C_{23} - H_{23}$	120.9
CID—N3—Crl	120.33 (14)	C23 - C24 - C23	119.2 (2)

C20—N4—C16	117.59 (19)	C25—C24—H24	120.4
C20—N4—Cr1	122.37 (15)	C23—C24—H24	120.4
C16—N4—Cr1	119.92 (14)	N5-C25-C24	122.5 (2)
N1-C1-C2	122.4 (2)	N5—C25—H25	118.7
N1-C1-H1	118.8	C24—C25—H25	118.7
C2-C1-H1	118.8	N6-C26-C27	122.5(2)
$C_3 - C_2 - C_1$	119.1 (2)	N6-C26-H26	118.8
$C_3 = C_2 = H_2$	120.4	C_{27} C_{26} H_{26}	118.8
$C_1 - C_2 - H_2$	120.1	$C_{26} = C_{27} = C_{28}$	118.8(2)
$C_1 C_2 C_3 C_4$	118.4(2)	$C_{26} C_{27} C_{26} C_{27} C_{26}$	120.6
$C_2 = C_3 = C_4$	120.8	$C_{20} = C_{27} = H_{27}$	120.0
$C_2 = C_3 = H_3$	120.0	$C_{20} = C_{27} = H_{27}$	120.0
C4 - C3 - H3	120.0	$C_{29} = C_{20} = C_{27}$	110.0 (2)
C_{5}	119.3 (2)	$C_{29} = C_{28} = H_{28}$	120.6
$C_3 = C_4 = H_4$	120.3	$C_2/-C_{28}-H_{28}$	120.6
C3—C4—H4	120.3	$C_{28} = C_{29} = C_{30}$	119.4 (2)
NIC5C4	122.4 (2)	С28—С29—Н29	120.3
N1—C5—H5	118.8	С30—С29—Н29	120.3
C4—C5—H5	118.8	N6—C30—C29	122.08 (19)
N2—C6—C7	122.3 (2)	N6—C30—H30	119.0
N2—C6—H6	118.8	С29—С30—Н30	119.0
С7—С6—Н6	118.8	N7—C31—C32	122.4 (2)
C6—C7—C8	119.1 (2)	N7—C31—H31	118.8
С6—С7—Н7	120.5	С32—С31—Н31	118.8
С8—С7—Н7	120.5	C33—C32—C31	118.9 (2)
C9—C8—C7	118.90 (19)	С33—С32—Н32	120.6
С9—С8—Н8	120.5	С31—С32—Н32	120.6
С7—С8—Н8	120.5	C32—C33—C34	119.0 (2)
C10—C9—C8	118.8 (2)	С32—С33—Н33	120.5
С10—С9—Н9	120.6	С34—С33—Н33	120.5
С8—С9—Н9	120.6	C35—C34—C33	119.4 (2)
N2—C10—C9	122.72 (19)	С35—С34—Н34	120.3
N2-C10-H10	118.6	С33—С34—Н34	120.3
C9—C10—H10	118.6	N7—C35—C34	121.6 (2)
N3-C11-C12	122.42 (19)	N7—C35—H35	119.2
N3-C11-H11	118.8	C34—C35—H35	119.2
C12—C11—H11	118.8	N8-C36-C37	122 27 (19)
$C_{12} = C_{12} = C_{11}$	119.1 (2)	N8-C36-H36	118.9
C_{13} C_{12} H_{12}	120.5	C_{37} C_{36} H_{36}	118.0
$C_{13} = C_{12} = H_{12}$	120.5	C_{38} C_{37} C_{36}	118.9
$C_{11} = C_{12} = C_{12}$	119.6 (2)	$C_{38} = C_{37} = C_{30}$	120.5
C14 - C13 - C12	110.0 (2)	$C_{36} = C_{37} = H_{37}$	120.5
С12—С13—П13	120.7	$C_{30} = C_{37} = C_{30}$	120.3
С12—С13—Н13	120.7	$C_{37} = C_{38} = C_{39}$	118.92 (19)
C15 - C14 - C13	119.2 (2)	C37—C38—H38	120.5
C13—C14—H14	120.4	C39—C38—H38	120.5
C13—C14—H14	120.4	C40—C39—C38	119.2 (2)
N3-C15-C14	122.7 (2)	C40—C39—H39	120.4
N3—C15—H15	118.6	C38—C39—H39	120.4
C14—C15—H15	118.6	N8—C40—C39	122.26 (19)

N4—C16—C17	123.1 (2)	N8—C40—H40	118.9
N4—C16—H16	118.5	C39—C40—H40	118.9
C17—C16—H16	118.5	O3P—Cl1P—O2P	112.79 (16)
C18—C17—C16	119.1 (2)	O3P—C11P—O4P	109.07 (18)
C18—C17—H17	120.5	O2P—Cl1P—O4P	110.45 (17)
C16—C17—H17	120.5	O3P—C11P—O1P	109.10 (19)
C17—C18—C19	118.4 (2)	O2P—C11P—O1P	108.70 (16)
C17—C18—H18	120.8	O4P—C11P—O1P	106.53 (13)
C19—C18—H18	120.8	Cl1P—O4P—Na1P	122.39 (13)
C18—C19—C20	119.3 (2)	O6P—C12P—O7P	101.2 (11)
C18—C19—H19	120.3	O6P-C12P-O5P	115.5 (9)
C20—C19—H19	120.3	07P—Cl2P—O5P	94.8 (11)
N4—C20—C19	122.5 (2)	O6P-C12P-Na1P	45.8 (6)
N4—C20—H20	118 7	O7P— $C12P$ — $Na1P$	122.3(10)
C19 - C20 - H20	118.7	O5P-C12P-Na1P	138.9 (6)
F_{3} Cr_{2} F_{4}	177 55 (6)	C12P = O6P = Na1P	111 5 (8)
F_{3} Cr_{2} N_{7}	90.85 (7)	C_{13} Z_{n1} C_{11}	100.05 (6)
F_{4} Cr_{2} N7	89 38 (7)	C_{13} Z_{n1} C_{14}	103.03(0)
F_{3} $C_{r_{2}}$ N_{6}	90.48 (6)	Cl1 - Zn1 - Cl4	103.21(0) 121.91(3)
$F_4 = Cr^2 = N6$	91.96 (6)	$C_{11}^{11} = C_{12}^{11}$	121.91(3) 105.65(9)
$N7 Cr^2 N6$	91.90 (0) 88 54 (7)	C_{13} $-Z_{11}$ $-C_{12}$	105.05(9) 111.33(2)
$F_2 = Cr_2 = NS$	80.14 (7)	C_{11} Z_{n1} C_{12}	111.33(2) 112.10(3)
F_{3} C_{12} N_{3} F_{4} C_{r2} N_{5}	09.40 (0) 00.51 (6)	$C_1 - C_1 $	112.19(3) 144.75(5)
$\Gamma 4 - C_{12} - N_{5}$	90.31(0) 175 42 (7)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	144.73(3)
N = C = 2 N5	1/3.43(7)	OGP Na1P Cl2P	22.0(3)
NO-CI2-NS	80.89 (7)	O4P N=1P $C14$	133.7(3)
$F_3 - C_{F_2} - N_8$	87.82 (0)	O4P—NaTP—CI4	97.08 (9)
F4— $Cr2$ — $N8$	89.74 (6)	CI2P—NaTP—CI4	116.80 (12)
N/—Cr2—N8	90.05 (7)		
C5—N1—C1—C2	1.1 (3)	C21—C22—C23—C24	-0.1 (3)
Cr1—N1—C1—C2	-175.75 (19)	C22—C23—C24—C25	0.3 (3)
N1—C1—C2—C3	1.4 (4)	C21—N5—C25—C24	0.6 (3)
C1—C2—C3—C4	-2.8 (4)	Cr2—N5—C25—C24	173.43 (17)
C2—C3—C4—C5	1.9 (4)	C23—C24—C25—N5	-0.5 (3)
C1—N1—C5—C4	-2.1 (3)	C30—N6—C26—C27	-0.1 (4)
Cr1—N1—C5—C4	174.69 (18)	Cr2—N6—C26—C27	-178.8(2)
C3—C4—C5—N1	0.6 (4)	N6-C26-C27-C28	1.0 (4)
C10—N2—C6—C7	-0.7 (3)	C26—C27—C28—C29	-1.3 (4)
Cr1—N2—C6—C7	176.06 (17)	C27—C28—C29—C30	0.7 (4)
N2—C6—C7—C8	0.1 (3)	C26—N6—C30—C29	-0.5(3)
C6—C7—C8—C9	0.7 (3)	Cr2—N6—C30—C29	178.14 (19)
C7—C8—C9—C10	-0.8(3)	C28—C29—C30—N6	0.2 (4)
C6—N2—C10—C9	0.5 (3)	C35—N7—C31—C32	0.2 (3)
Cr1—N2—C10—C9	-176.32 (17)	Cr2—N7—C31—C32	175.81 (17)
C8—C9—C10—N2	0.3 (3)	N7-C31-C32-C33	-0.7 (3)
C15—N3—C11—C12	-1.5 (3)	C31—C32—C33—C34	0.7 (3)
Cr1—N3—C11—C12	177.33 (15)	C32—C33—C34—C35	-0.2(4)
N3-C11-C12-C13	0.0 (3)	$C_{31} = N_7 = C_{35} = C_{34}$	0.3(3)
	(-)		

C11—C12—C13—C14 C12—C13—C14—C15 C11—N3—C15—C14 Cr1—N3—C15—C14 C13—C14—C15—N3 C20—N4—C16—C17 Cr1—N4—C16—C17 N4—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C20 C16—N4—C20—C19 Cr1—N4—C20—C19 C18—C19—C20—N4 C25—N5—C21—C22 Cr2—N5—C21—C22	$\begin{array}{c} 0.9 (3) \\ -0.4 (3) \\ 2.1 (3) \\ -176.77 (16) \\ -1.2 (3) \\ -0.5 (4) \\ 175.7 (2) \\ -0.4 (5) \\ 1.1 (5) \\ -1.0 (6) \\ 0.6 (5) \\ -175.5 (3) \\ 0.1 (6) \\ -0.5 (3) \\ -173.30 (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -175.35(17)\\ -0.4(3)\\ -0.8(3)\\ 176.29(17)\\ 0.9(3)\\ 0.1(3)\\ -1.2(3)\\ -0.3(3)\\ -177.39(17)\\ 1.3(3)\\ -79.1(2)\\ 45.3(2)\\ 163.23(16)\\ 124.6(10)\\ -134.5(8)\end{array}$
N5-C21-C22-C23	-1/3.30 (16) 0.2 (3)	USP—CI2P—U6P—NalP	-134.5 (8)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···O5P ⁱ	0.95	2.31	3.237 (14)	165
C10—H10····O2 <i>P</i> ⁱⁱ	0.95	2.49	3.352 (3)	151

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x-1/2, y+1, -z+1/2.