Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Rietveld refinement of the langbeinitetype mixed-metal phosphate $\mathrm{K}_{\mathbf{2}} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$

## Igor V. Zatovsky

Department of Inorganic Chemistry, Taras Shevchenko National University, 64/13, Volodymyrska St, 01601 Kyiv, Ukraine
Correspondence e-mail: zvigo@yandex.ru
Received 8 April 2014; accepted 11 June 2014
Key indicators: powder X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.016 \AA$; disorder in main residue; $R$ factor $=0.100 ; w R$ factor $=0.134 ;$ data-to-parameter ratio $=43.9$.

Dipotassium [nickel(II) zirconium(IV)] tris(orthophosphate) was prepared from a self-flux in the system $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{NiO}-$ $\mathrm{K}_{2} \mathrm{ZrF}_{6}$. The title compound belongs to the langbeinite family and is built up from two $\left[M \mathrm{O}_{6}\right]$ octahedra $[M=\mathrm{Ni}: \mathrm{Zr}$ with mixed occupancy in ratios of 0.21 (4):0.79 (4) and 0.29 (4):0.71 (4), respectively] and $\left[\mathrm{PO}_{4}\right]$ tetrahedra interlinked via vertices into a ${ }_{\infty}^{3}\left[M_{2}\left(\mathrm{PO}_{4}\right)_{3}\right]$ framework. Two independent $\mathrm{K}^{+}$cations are located in large cavities of the framework, with coordination numbers to $\mathrm{O}^{2-}$ anions of nine and twelve. The $\mathrm{K}, \mathrm{Ni}$, and Zr sites are located on threefold rotation axes.

## Related literature

For the structure of the mineral langbeinite, see: Zemann \& Zemann (1957). For langbeinite-related phosphates based on different pairs of polyvalent metals, see: Wulff et al. (1992) for $\mathrm{K}_{2} R E \mathrm{Zr}\left(\mathrm{PO}_{4}\right)_{3} \quad(R E=\mathrm{Y}, \mathrm{Gd})$; Orlova et al. (2003) for $\mathrm{K}_{2} \mathrm{Fe} \mathrm{Zr}\left(\mathrm{PO}_{4}\right)_{3}$; Ogorodnyk et al. (2007a) for $\mathrm{K}_{1.96} \mathrm{Mn}_{0.57} \mathrm{Zr}_{1.43^{-}}$ $\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{K}_{1.93} \mathrm{Mn}_{0.53} \mathrm{Hf}_{1.47}\left(\mathrm{PO}_{4}\right)_{3}$; Ogorodnyk et al. (2007b) for $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$. For the profile function used in the Rietveld refinement, see: Thompson et al. (1987).

## Experimental

## Crystal data

| $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ | $Z=4$ |
| :--- | :--- |
| $M_{r}=529.29$ | $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $\lambda=1.540598 \AA$ |
| Cubic, $P 2_{1} 3$ | $T=293 \mathrm{~K}$ |
| $a=10.15724(13) \AA$ | Flat sheet, $25 \times 25 \mathrm{~mm}$ |
| $V=1047.92(2) \AA^{3}$ |  |

## Data collection

Shimadzu LabX XRD-6000 diffractometer
Specimen mounting: glass container
Data collection mode: reflection

$$
\begin{aligned}
& \text { Scan method: step } \\
& 2 \theta_{\min }=10.910^{\circ}, 2 \theta_{\max }=104.911^{\circ}, \\
& 2 \theta_{\text {step }}=0.020^{\circ}
\end{aligned}
$$

## Refinement

$R_{\mathrm{p}}=0.100$
$R_{\text {wp }}=0.134$
$R_{\text {exp }}=0.034$
$R_{\text {Bragg }}=0.041$
$R(F)=0.035$

$$
\begin{aligned}
& \chi^{2}=15.761 \\
& 4701 \text { data points } \\
& 107 \text { parameters } \\
& 2 \text { restraints }
\end{aligned}
$$

Table 1
Selected bond lengths ( $\AA$ ).

| K1-O1 ${ }^{\text {i }}$ | 2.956 (16) | $\mathrm{Zr} 1-\mathrm{O}^{\text {iv }}$ | 2.098 (14) |
| :---: | :---: | :---: | :---: |
| $\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$ | 3.165 (14) | $\mathrm{Zr} 2-\mathrm{O} 4$ | 2.036 (12) |
| $\mathrm{K} 1-\mathrm{O} 4^{\text {ii }}$ | 3.325 (14) | $\mathrm{Zr} 2-\mathrm{O}^{\text {i }}$ | 2.041 (16) |
| $\mathrm{K} 2-\mathrm{O} 3^{\text {ii }}$ | 2.973 (15) | P1-O3 | 1.530 (18) |
| $\mathrm{K} 2-\mathrm{O} 2{ }^{\text {iii }}$ | 3.026 (16) | P1-O4 | 1.523 (13) |
| $\mathrm{K} 2-\mathrm{O} 4{ }^{\text {ii }}$ | 3.127 (15) | $\mathrm{P} 1-\mathrm{O} 2$ | 1.515 (15) |
| $\mathrm{K} 2-\mathrm{O} 4^{\text {iii }}$ | 3.332 (15) | P1-O1 | 1.493 (16) |
| Zr1-O1 | 2.070 (14) |  |  |
| Symmetry $-z+1, x=$ | $\begin{aligned} & -x+1, y+\frac{1}{2} \\ & -\frac{1}{2},-y+\frac{1}{2}, \end{aligned}$ | $\frac{1}{2} ; \quad \text { (ii) }$ | $z+\frac{1}{2} ; \quad \text { (iii) }$ |

Data collection: PCXRD (Shimadzu, 2006); cell refinement: DICVOL-2004 (Boultif \& Louër, 2004); data reduction: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to solve structure: FULLPROF; program(s) used to refine structure: FULLPROF; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5021).

## References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Boultif, A. \& Louër, D. (2004). J. Appl. Cryst. 37, 724-731.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. \& Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838-2844.

Ogorodnyk, I. V., Zatovsky, I. V. \& Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121-125.
Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvado, M. A., Garcia-Granda, S., Khainakov, S. A. \& Garcia, J. R. (2003). J. Solid State Chem. 173, 314-318.
Rodriguez-Carvajal, J. (2006). FULLPROF. Laboratoire León Brillouin (CEA-CNRS), France.
Shimadzu (2006). PCXRD. Shimadzu Corporation, Kyoto, Japan.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thompson, P., Cox, D. E. \& Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83. Wulff, H., Guth, U. \& Loescher, B. (1992). Powder Diffr. 7, 103-106.
Zemann, A. \& Zemann, J. (1957). Acta Cryst. 10, 409-413.

## supporting information

# Rietveld refinement of the langbeinite-type mixed-metal phosphate $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ 

Igor V. Zatovsky

## S1. Comment

Phosphates of the langbeinite structure type are considered as favorable for environmentally safe crystalline forms of radioactive waste solidification (Orlova et al., 2003). Langbeinite-type frameworks ${ }^{3}{ }_{\infty}\left[M_{2}\left(\mathrm{PO}_{4}\right)_{3}\right]$ can be composed of various polyvalent metal pairs, for example, $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Ogorodnyk et al., 2007b), $\mathrm{K}_{1.96} \mathrm{Mn}_{0.57} \mathrm{Zr}_{1.43}\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{K}_{1.93} \mathrm{Mn}_{0.53} \mathrm{Hf}_{1.47}\left(\mathrm{PO}_{4}\right)_{3}\left(\right.$ Ogorodnyk et al., 2007b), $\mathrm{K}_{2} \mathrm{FeZr}\left(\mathrm{PO}_{4}\right)_{3}$ (Orlova et al., 2003), $\mathrm{K}_{2} R E Z r\left(\mathrm{PO}_{4}\right)_{3}, R E=\mathrm{Y}$, Gd (Wulff et al., 1992). Herein the powder X-ray refinement of a phosphate, structurally isotypic with the mineral langbenite, $\mathrm{K}_{2} \mathrm{Mg}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (Zemann \& Zemann, 1957), $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$, (I), is presented (Fig. 1).
The K , Ni , and Zr sites lie on threefold rotation axes in positions $4 a$ with the sequence $\{(\mathrm{Zr}, \mathrm{Ni}) 1-(\mathrm{Zr}, \mathrm{Ni}) 2 — \mathrm{~K} 1 — \mathrm{~K} 2\}$ where $(\mathrm{Zr}, \mathrm{Ni}) 1$ and $(\mathrm{Zr}, \mathrm{Ni}) 2$ are metal sites with a mixed occupancy (Fig. 2). P and O atoms are located in $12 b$ positions.
The structure of (I) contains two independent $\left[(\mathrm{Zr}, \mathrm{Ni}) \mathrm{O}_{6}\right]$ octahedra and one $\left[\mathrm{PO}_{4}\right]$ tetrahedron which are linked together via common vertices, forming a three-dimensional framework (Fig. 3). The ( $\mathrm{Zr}, \mathrm{Ni}$ ) -O bond lengths are 2.070 (14) $\AA$, $2.098(14) \AA$ and $2.036(12) \AA, 2.041(16) \AA$ for $\left[(\mathrm{Zr}, \mathrm{Ni}) 1 \mathrm{O}_{6}\right]$ and $\left[(\mathrm{Zr}, \mathrm{Ni}) 2 \mathrm{O}_{6}\right]$, respectively. It should be noted that the occupancy of the metal sites by $\mathrm{Ni}^{2+}$ is slightly different ( 0.21 (4) for the $M 1$ site and 0.29 (4) for the $M 2$ site) whereas in case of $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Ogorodnyk et al., 2007b) $\mathrm{Ni}^{2+}$ ions are almost equally distributed (occupancy of 0.25 for both positions), with ((Ti,Ni)—O bonds ranging from 1.938 (5) to 1.962 (5) $\AA$. The three-dimensional framework ${ }^{3}{ }_{\infty}\left[(\mathrm{Zr}, \mathrm{Ni})_{2}\left(\mathrm{PO}_{4}\right)_{3}\right]$ has large closed cavities where the two independent $\mathrm{K}^{+}$cations are located. K 1 is coordinated by nine O atoms, while K 2 is surrounded by twelve O atoms (Fig. 4), with $\mathrm{K}-\mathrm{O}$ bond lengths ranging from 2.956 (16) to 3.332 (15) Å (Table 1).

## S2. Experimental

A well-ground mixture of $11.8 \mathrm{~g} \mathrm{KPO}_{3}$ and 1.12 g NiO was placed in a platinum crucible and then was heated up to 1273 K . The temperature was kept constant during one hour and after that it was decreased to 1173 K .4 .25 g of $\mathrm{K}_{2} \mathrm{ZrF}_{6}$ were added to the flux under stirring with a platinum stirrer (initial $\mathrm{K}: \mathrm{P}, \mathrm{Zr}: \mathrm{P}$ and $\mathrm{Zr}: \mathrm{Ni}$ ratio equal to $1.3,0.15$, and 1.0 , respectively). The crystallization of the melt was performed in the temperature range from 1173 to 913 K at an rate of 25 $\mathrm{K} / \mathrm{h}$. Finally, the crucible was cooled down to room temperature. The obtained material of (I) was recovered by washing with hot deionized water. The small crystals of (I) had the form of regular tetrahedra and were of light-yellow colour. The atomic ratio of the elements in (I) was found to be 4:1:3:6 for $\mathrm{K} / \mathrm{Ni} / \mathrm{Zr} / \mathrm{P}$, respectively: The sample was dissolved in $80 \%$ sulfuric acid under heating. The amount of the elements was then determined by atomic emission spectroscopy with inductive coupled plasma, AES-ICP, Spectroflame Modula ICP "Spectro".

## S3. Refinement

The powder pattern of (I) was indexed in the cubic system using DICVOL-2004 (Boultif \& Louër, 2004). The pattern indexing showed that the sample was a single phase. Atomic coordinates of $\mathrm{K}_{1.96} \mathrm{Mn}_{0.57} \mathrm{Zr}_{1.43}\left(\mathrm{PO}_{4}\right)_{3}($ Ogorodnyk et al., 2007a) were used during Rietveld refinement as a starting model. For profile refinement a pseudo-Voigt function with axial divergence asymmetry (Thompson et al., 1987) was used. First, the scaling factor, background, cell parameters etc. were refined during profile matching. Atomic coordinates were then refined during the next step. Atomic coordinates and displacement parameters of corresponding Zr and Ni sites were constrained to be the same. Isotropic displacement parameters of all atoms were appended to the refinement. The occupancies of $\mathrm{K}, \mathrm{Ni}$ and Zr were refined taking into account that the occupancies of the hexacoordinated metal site should be equal to unity which was done using occupancy constraints. As the occupancy of the K sites was found to be 1, the occupancy factors of K1 and K2 were fixed at 1. The displacement factors of the O atoms were spread over a large range which is meaningless in this case due to the quality of the powder diffraction data. Thus $U_{\text {iso }}$ values for all O atoms were constrained to be equal. As a result, the values of $U_{\text {iso }}$ and their e.s.d.'s have close values. At the final refinement cycles two geometric restraints were applied to the lengths of $\mathrm{P}-\mathrm{O}$ bonds because their values were unsatisfactory for the model (without restraints, one was $\simeq 1.44 \AA$ while another was close to $1.57 \AA$ ). Experimental, calculated and difference patterns are shown in Fig. 1.


Figure 1
Results of the Rietveld refinement of $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$. Experimental (dots), calculated (red curve) and difference (blue curve) data.


Figure 2
A view of the asymmetric unit of $\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$. Displacement ellipsoid are drawn at the $50 \%$ probability level.


Figure 3
A projection of the structure of (I) along [111]. $\mathrm{PO}_{4}$ tetrahedra are pink, $(\mathrm{Zr}, \mathrm{Ni}) 1 \mathrm{O}_{6}$ octahedra are turquoise, $(\mathrm{Zr}, \mathrm{Ni}) 2 \mathrm{O}_{6}$ octahedra are green, $\mathrm{K}^{+}$cations are shown as yellow spheres.

## $\mathrm{K}_{2} \mathrm{O}_{12} \quad{\mathrm{~K} 1 \mathrm{O}_{9}}$



Figure 4
The O environment of $\mathrm{K}^{+}$and $\mathrm{K} 2^{+}$cations for (I). Displacement ellipsoid are drawn at the $50 \%$ probability level.

## Dipotassium [nickel(II) zirconium(IV)] tris(orthophosphate)

## Crystal data

$\mathrm{K}_{2} \mathrm{Ni}_{0.5} \mathrm{Zr}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=529.29$
Cubic, $P 2_{1} 3$
Hall symbol: P 2ac 2ab 3
$a=10.15724$ (13) $\AA$
$V=1047.92(2) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=3.355 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Shimadzu LabX XRD-6000
diffractometer
Radiation source: X-ray tube, X-ray
Graphite monochromator

## Refinement

$R_{\mathrm{p}}=0.100$
$R_{\text {wp }}=0.134$
$R_{\text {exp }}=0.034$
$R_{\text {Bragg }}=0.041$
$R(F)=0.035$
4701 data points
Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetry 107 parameters
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.540598 \AA$
$T=293 \mathrm{~K}$
Particle morphology: isometric
yellow
flat sheet, $25 \times 25 \mathrm{~mm}$
Specimen preparation: Prepared at 293 K and 101.3 kPa

Specimen mounting: glass container
Data collection mode: reflection
Scan method: step
$2 \theta_{\text {min }}=10.910^{\circ}, 2 \theta_{\max }=104.911^{\circ}, 2 \theta_{\text {step }}=0.020^{\circ}$

## 2 restraints

9 constraints
Standard least squares refinement
$(\Delta / \sigma)_{\text {max }}=0.001$
Background function: Linear Interpolation between a set background points with refinable heights
Preferred orientation correction: March-Dollase Numeric Multiaxial Function

Special details
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| K1 | $0.7043(6)$ | $0.7043(6)$ | $0.7043(6)$ | $0.054(5)^{*}$ |  |
| K2 | $0.9317(7)$ | $0.9317(7)$ | $0.9317(7)$ | $0.052(4)^{*}$ |  |
| Zr1 | $0.1448(2)$ | $0.1448(2)$ | $0.1448(2)$ | $0.007(2)^{*}$ | $0.79(4)$ |
| Zr2 | $0.4146(3)$ | $0.4146(3)$ | $0.4146(3)$ | $0.004(2)^{*}$ | $0.71(4)$ |
| Ni1 | $0.1448(2)$ | $0.1448(2)$ | $0.1448(2)$ | $0.007(2)^{*}$ | $0.21(4)$ |
| Ni2 | $0.4146(3)$ | $0.4146(3)$ | $0.4146(3)$ | $0.004(2)^{*}$ | $0.29(4)$ |
| P1 | $0.4581(6)$ | $0.2296(8)$ | $0.1286(7)$ | $0.004(2)^{*}$ |  |
| O1 | $0.3180(14)$ | $0.2335(14)$ | $0.0844(15)$ | $0.003(2)^{*}$ |  |
| O2 | $0.5417(12)$ | $0.2950(14)$ | $0.0238(14)$ | $0.003(2)^{*}$ |  |
| O3 | $0.5025(12)$ | $0.0869(16)$ | $0.1471(13)$ | $0.003(2)^{*}$ |  |
| O4 | $0.4729(14)$ | $0.3039(12)$ | $0.2580(10)$ | $0.003(2)^{*}$ |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |

## Geometric parameters ( $A,{ }^{\circ}$ )

| $\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}}$ | 2.956 (16) | $\mathrm{Zr} 1-\mathrm{O} 1^{\text {xiii }}$ | 2.070 (14) |
| :---: | :---: | :---: | :---: |
| $\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$ | 3.165 (14) | $\mathrm{Zr} 1-\mathrm{O} 2^{\text {xiv }}$ | 2.098 (14) |
| $\mathrm{K} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 3.325 (14) | Zr2-O4 | 2.036 (12) |
| $\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$ | 2.956 (16) | $\mathrm{Zr} 2-\mathrm{O} 3{ }^{\text {i }}$ | 2.041 (16) |
| $\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$ | 3.165 (14) | $\mathrm{Zr} 2-\mathrm{O} 4^{\text {xi }}$ | 2.036 (12) |
| $\mathrm{K} 1-\mathrm{O} 4^{\text {iv }}$ | 3.325 (14) | $\mathrm{Zr} 2-\mathrm{O} 3{ }^{\text {iii }}$ | 2.041 (16) |
| $\mathrm{K} 1-\mathrm{O} 1^{\text {v }}$ | 2.956 (16) | $\mathrm{Zr} 2-\mathrm{O} 4^{\text {xii }}$ | 2.036 (12) |
| $\mathrm{K} 1-\mathrm{O} 2^{\text {vi }}$ | 3.165 (14) | $\mathrm{Zr} 2-\mathrm{O} 3^{\text {v }}$ | 2.041 (16) |
| $\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vi }}$ | 3.325 (14) | $\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {xii }}$ | 2.098 (14) |
| $\mathrm{K} 2-\mathrm{O} 3{ }^{\text {ii }}$ | 2.973 (15) | Ni1-O1 ${ }^{\text {xiii }}$ | 2.070 (14) |
| $\mathrm{K} 2-\mathrm{O} 2{ }^{\text {vii }}$ | 3.026 (16) | Ni1-O2 ${ }^{\text {xiv }}$ | 2.098 (14) |
| $\mathrm{K} 2-\mathrm{O} 4{ }^{\text {ii }}$ | 3.127 (15) | $\mathrm{Ni} 1-\mathrm{O} 1^{\text {xi }}$ | 2.070 (14) |
| $\mathrm{K} 2-\mathrm{O} 4{ }^{\text {vii }}$ | 3.332 (15) | Ni1-O1 | 2.070 (14) |
| K2-O3 ${ }^{\text {iv }}$ | 2.973 (15) | Ni1-O2 ${ }^{\text {x }}$ | 2.098 (14) |
| $\mathrm{K} 2-\mathrm{O} 2{ }^{\text {viii }}$ | 3.026 (16) | Ni2-O4 | 2.036 (12) |
| $\mathrm{K} 2-\mathrm{O} 4{ }^{\text {iv }}$ | 3.127 (15) | $\mathrm{Ni} 2-\mathrm{O}^{\text {v }}$ | 2.041 (16) |
| $\mathrm{K} 2-\mathrm{O} 4{ }^{\text {viii }}$ | 3.332 (15) | $\mathrm{Ni} 2-\mathrm{O}^{\text {i }}$ | 2.041 (16) |
| $\mathrm{K} 2-\mathrm{O}^{\text {vi }}$ | 2.973 (15) | $\mathrm{Ni} 2-\mathrm{O} 4^{\mathrm{xi}}$ | 2.036 (12) |
| $\mathrm{K} 2-\mathrm{O} 2^{\text {ix }}$ | 3.026 (16) | $\mathrm{Ni} 2-\mathrm{O} 3^{\text {iii }}$ | 2.041 (16) |
| $\mathrm{K} 2-\mathrm{O} 4^{\text {vi }}$ | 3.127 (15) | $\mathrm{Ni} 2-\mathrm{O} 4^{\text {xiii }}$ | 2.036 (12) |
| $\mathrm{K} 2-\mathrm{O} 4^{\text {ix }}$ | 3.332 (15) | P1-O3 | 1.530 (18) |


| Zr1-O1 | 2.070 (14) | P1-O4 | 1.523 (13) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Zr} 1-\mathrm{O} 2^{\text {x }}$ | 2.098 (14) | $\mathrm{P} 1-\mathrm{O} 2$ | 1.515 (15) |
| $\mathrm{Zr} 1-\mathrm{O} 1^{\text {xi }}$ | 2.070 (14) | P1-O1 | 1.493 (16) |
| $\mathrm{Zr} 1-\mathrm{O} 2^{\text {xii }}$ | 2.098 (14) |  |  |
| $\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O}^{\text {x }}$ | 93.2 (5) | $\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O}^{\text {x }}$ | 93.2 (5) |
| $\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O}^{\text {xi }}$ | 90.6 (6) | $\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\text {xi }}$ | 90.6 (6) |
| $\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 2{ }^{\text {xii }}$ | 175.9 (5) | $\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {xii }}$ | 175.9 (5) |
| $\mathrm{O} 1-\mathrm{Zr1}-\mathrm{O} 1^{\text {xiii }}$ | 90.6 (6) | $\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\text {xiii }}$ | 90.6 (6) |
| $\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xiv }}$ | 87.7 (6) | O1-Ni1-O2 ${ }^{\text {xiv }}$ | 87.7 (6) |
| $\mathrm{O} 1^{\mathrm{xi}}-\mathrm{Zr1}-\mathrm{O}^{\text {x }}$ | 87.7 (6) | $\mathrm{O} 1^{\mathrm{xi}}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {x }}$ | 87.7 (6) |
| $\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xii }}$ | 88.6 (5) | $\mathrm{O} 2^{\mathrm{x}}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {xii }}$ | 88.6 (5) |
| $\mathrm{O} 1^{\text {xiii }}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {x }}$ | 175.9 (5) | $\mathrm{O} 1^{\text {xiii }}-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{x}}$ | 175.9 (5) |
| $\mathrm{O} 2^{\mathrm{x}}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xiv }}$ | 88.6 (5) | $\mathrm{O} 2^{\mathrm{x}}-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{xiv}}$ | 88.6 (5) |
| $\mathrm{O} 1^{\text {xi }}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xii }}$ | 93.2 (5) | $\mathrm{O} 4{ }^{\text {xi }}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xiii }}$ | 87.5 (5) |
| $\mathrm{O} 1^{\text {xi }}-\mathrm{Zr} 1-\mathrm{O} 1^{\text {xiii }}$ | 90.6 (6) | $\mathrm{O} 3{ }^{\text {v }}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xi }}$ | 170.8 (5) |
| $\mathrm{O1}^{\text {xi }}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xiv }}$ | 175.9 (5) | $\mathrm{O} 3 \mathrm{iii}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xiii }}$ | 84.5 (5) |
| $\mathrm{O} 1^{\text {xiii }}-\mathrm{Zr1}-\mathrm{O} 2^{\text {xii }}$ | 87.7 (6) | $\mathrm{O}^{\text {iii }}$ - $\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {v }}$ | 92.1 (5) |
| $\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Zr} 1-\mathrm{O}^{\text {xiv }}$ | 88.6 (5) | $\mathrm{O} 3^{v}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xiii }}$ | 96.5 (5) |
| $\mathrm{O} 1^{\text {xiii }}-\mathrm{Zr} 1-\mathrm{O} 2^{\text {xiv }}$ | 93.2 (5) | $\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {iii }}$ | 92.1 (5) |
| O3 ${ }^{\text {i }}$ - $\mathrm{Zr} 2-\mathrm{O} 4$ | 96.5 (5) | $\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Ni} 2-\mathrm{O} 4$ | 96.5 (5) |
| $\mathrm{O} 4-\mathrm{Zr} 2-\mathrm{O} 4{ }^{\text {xi }}$ | 87.5 (5) | $\mathrm{O} 4-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xi }}$ | 87.5 (5) |
| $\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Zr} 2-\mathrm{O} 4$ | 170.8 (5) | $\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ni} 2-\mathrm{O} 4$ | 170.8 (5) |
| $\mathrm{O} 4-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xiii }}$ | 87.5 (5) | $\mathrm{O} 4-\mathrm{Ni} 2-\mathrm{O} 4{ }^{\text {xiii }}$ | 87.5 (5) |
| O3 ${ }^{\text {v }} \mathrm{Z} \mathrm{Zr} 2-\mathrm{O} 4$ | 84.5 (5) | $\mathrm{O}^{2}-\mathrm{Ni} 2-\mathrm{O} 4$ | 84.5 (5) |
| $\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xi }}$ | 84.5 (5) | $\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xi }}$ | 84.5 (5) |
| O3 ${ }^{\text {i }}$ - $\mathrm{Zr} 2-\mathrm{O} 3{ }^{\text {iii }}$ | 92.1 (5) | $\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{Ni} 2-\mathrm{O} 4^{\text {xi }}$ | 96.5 (5) |
| O3 ${ }^{\text {i }} \mathrm{Zr} 2-\mathrm{O} 4^{\text {xiii }}$ | 170.8 (5) | O 3 - $\mathrm{Ni} 2-\mathrm{O} 4^{\text {xiii }}$ | 170.8 (5) |
| $\mathrm{O} 3-\mathrm{Zr} 2-\mathrm{O}^{\text {v }}$ | 92.1 (5) | $\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ni} 2-\mathrm{O}^{\text {v }}$ | 92.1 (5) |
| $\mathrm{O}{ }^{\text {iii }}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xi }}$ | 96.5 (5) | $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$ | 109.5 (8) |
| $\mathrm{O} 4{ }^{\text {xi }}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xiii }}$ | 87.5 (5) | $\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$ | 108.1 (9) |
| $\mathrm{O3}^{\mathrm{v}}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xi }}$ | 170.8 (5) | $\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$ | 110.1 (9) |
| $\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xiii }}$ | 84.5 (5) | $\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$ | 109.9 (9) |
| $\mathrm{O}^{\text {iii }}-\mathrm{Zr} 2-\mathrm{O} 3^{\text {v }}$ | 92.1 (5) | $\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$ | 109.7 (8) |
| $\mathrm{O} 3^{\mathrm{v}}-\mathrm{Zr} 2-\mathrm{O} 4^{\text {xiii }}$ | 96.5 (5) | $\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$ | 109.5 (9) |
| $\mathrm{O} 1^{\text {xi}}-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {xii }}$ | 93.2 (5) | $\mathrm{Zr} 1-\mathrm{O} 1-\mathrm{P} 1$ | 135.2 (10) |
| O1 ${ }^{\text {xi_- }}$ Ni1-O1 $1^{\text {xiii }}$ | 90.6 (6) | Ni1-O1-P1 | 135.2 (10) |
| $\mathrm{O} 1^{\text {xi }}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {xiv }}$ | 175.9 (5) | $\mathrm{Zr}^{12 \mathrm{xv}}-\mathrm{O} 2-\mathrm{P} 1$ | 168.8 (10) |
| $\mathrm{O} 1^{\text {xiii }}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {xii }}$ | 87.7 (6) | $\mathrm{Zr} 2{ }^{\text {xvi }}-\mathrm{O} 3-\mathrm{P} 1$ | 153.7 (9) |
| $\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {xiv }}$ | 88.6 (5) | $\mathrm{Zr} 2-\mathrm{O} 4-\mathrm{P} 1$ | 156.8 (9) |
| $\mathrm{O} 1^{\text {xiii }}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {xiv }}$ | 93.2 (5) | Ni2-O4-P1 | 156.8 (9) |

[^0]
[^0]:    Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+3 / 2,-y+1, z+1 / 2$; (iii) $-z+1 / 2,-x+1, y+1 / 2$; (iv) $-y+1, z+1 / 2,-x+3 / 2$; (v) $y+1 / 2,-z+1 / 2,-x+1$; (vi) $z+1 / 2,-x+3 / 2,-y+1$; (vii) $-z+1, x+1 / 2,-y+3 / 2$; (viii) $-y+3 / 2,-z+1, x+1 / 2$; (ix) $x+1 / 2,-y+3 / 2,-z+1$; (x) $x-1 / 2,-y+1 / 2,-z$; (xi) $z, x, y$; (xii) $-z, x-1 / 2$, $-y+1 / 2$; (xiii) $y, z, x$; (xiv) $-y+1 / 2,-z, x-1 / 2$; (xv) $x+1 / 2,-y+1 / 2,-z$; (xvi) $-x+1, y-1 / 2,-z+1 / 2$.

