inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

β -K₃Fe(MoO₄)₂Mo₂O₇

Amira Souilem,* Mohamed Faouzi Zid and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: souilem_amira@yahoo.fr

Received 9 May 2014; accepted 5 June 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Fe–O) = 0.005 Å; disorder in main residue; R factor = 0.029; wR factor = 0.076; data-to-parameter ratio = 13.0.

The title compound, tripotassium iron(III) bis(orthomolybdate) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO₆ octahedron, two MoO₄ tetrahedra and one Mo₂O₇ dimolybdate group, all with point group symmetries *m*. These units are linked *via* cornersharing to form ribbons parallel to [010]. The three K⁺ cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO₄ tetrahedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb₃FeMo₄O₁₅.

Related literature

For properties of related molybdates, see: Zhang *et al.* (2000); Muessig *et al.* (2003); Bramnik *et al.* (2003); Soares & Portela (2005); Bowker *et al.* (2008); Otko *et al.* (1978); Klimin *et al.* (2003); Jorge *et al.* (2004); Maczka *et al.* (2005). The closely related crystal structures of α -K₃Fe(MoO₄)₂(Mo₂O₇) and Rb₃Fe(MoO₄)₂Mo₂O₇ were determined by Maczka *et al.* (2009) and Khal'baeva *et al.* (2010), respectively. For bondvalence sums, see: Brown & Altermatt (1985).

Experimental

Crystal data

 $\begin{array}{l} {\rm K}_{3}{\rm Fe}({\rm MoO}_{4})_{2}{\rm Mo_{2}O_{7}}\\ M_{r}=796.91\\ {\rm Monoclinic},\ C2/m\\ a=32.873\ (2)\ {\rm \AA}\\ b=5.7137\ (7)\ {\rm \AA}\\ c=7.9177\ (9)\ {\rm \AA}\\ \beta=91.143\ (8)^{\circ} \end{array}$

 $V = 1486.9 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 5.15 \text{ mm}^{-1}$ T = 298 K $0.36 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.286, T_{\max} = 0.488$ 3443 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.061789 reflections 1789 independent reflections 1636 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ 2 standard reflections every 120 min intensity decay: 1.3%

138 parameters $\Delta \rho_{\text{max}} = 1.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.57 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5025).

References

- Bowker, M., Holroyd, R., House, M., Bracey, R., Bamroongwongdee, C., Shannon, M. & Carley, A. (2008). *Top. Catal.* 48, 158–165.
- Bramnik, K. G., Muessig, E. & Ehrenberg, H. (2003). J. Solid State Chem. 176, 192–197.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Jorge, G. A., Capan, C., Ronning, F., Jaime, M., Kenzelmann, M., Gasparovic, G., Broholm, C., Shapiro, A. & Demianets, Y. (2004). *Physica B*, 354, 297– 299.
- Khal'baeva, K. M., Solodovnikov, S. F., Khaikina, E. G., Kadyrova, Y. M., Solodovnikova, Z. A. & Basovich, O. M. (2010). J. Solid State Chem. 183, 712–719.
- Klimin, S. A., Popova, M. N., Mavrin, B. N., Van Loosdrecht, P. H. M., Svistov, L. E., Smirnov, A. I., Prozorova, L. A., Krug van Nidda, H. A., Seidov, Z. & Loidl, A. (2003). *Phys. Rev.* B68, 174408–174412.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Maczka, M., Pietraszko, A., Paraguassu, W., Souza Filho, A. G., Freire, P. T. C., Mendes Filho, J. & Hanuza, J. (2009). J. Phys. Condens. Matter, 21, 095402, 1–8.
- Maczka, M., Pietraszko, A., Saraiva, G. D., Souza Filho, A. G., Paraguassu, W., Lemos, V., Perottoni, C. A., Gallas, M. R., Freire, P. T. C., Tomaszewski, P. E., Melo, F. E. A., Mendes Filho, J. & Hanuza, J. (2005). J. Phys. Condens. Matter, 17, 6285–6300.
- Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616.North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Otko, A. I., Nesterenko, N. M. & Povstyanyi, L. V. (1978). *Phys. Status Solidi* A, **46**, 577–587.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soares, A. P. V. & Portela, M. F. (2005). Catal. Rev. 47, 125-174.
- Zhang, L. J., Zhou, Y. S., Zuo, J. L., Yu, Z., Fun, H. K., Abdul, I. & You, X. Z. (2000). *Inorg. Chem. Commun.* **3**, 697–699.

supporting information

Acta Cryst. (2014). E70, i38 [https://doi.org/10.1107/S1600536814013087]

β -K₃Fe(MoO₄)₂Mo₂O₇

Amira Souilem, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

L'étude des composés appartenant à la grande famille des molybdates de fer, métaux alcalins et pseudo-alcalins qui possèdent des propriétés structurelles, catalytiques, magnétiques et ferroélastiques intéressantes (Zhang *et al.*, 2000; Muessig *et al.*, 2003; Bramnik *et al.*, 2003; Soares & Portela, 2005; Bowker *et al.*, 2008; Otko *et al.*, 1978; Maczka *et al.*, 2005; Klimin *et al.*, 2003; Jorge *et al.*, 2004) nous a encouragés à explorer les systèmes molybdates de fer à cations monovalents. Une étude bibliographique a été effectuée sur la famille de composés de formulation AFe(III)Mo₄O₁₅ où Aest un cation monovalent: α -K₃Fe(MoO₄)₂(Mo₂O₇) (Maczka *et al.*, 2009), Rb₃FeMo₄O₁₅ (Khal'baeva *et al.*, 2010). En effet, le présent travail porte sur l'étude structurale d'un molybdate de formulation β -K₃Fe(MoO₄)₂(Mo₂O₇) obtenu par voie sèche.

La structure de K₃Fe(MoO₄)₂(Mo₂O₇) (forme- β) est de formule analogue à une autre phase déjà connue: K₃Fe(MoO₄)₂(Mo₂O₇) (forme- α ; Maczka *et al.*, 2009). Elles pésentent la même symétrie monoclinique.

La nouvelle variété β -K₃Fe(MoO₄)₂(Mo₂O₇) est formée d'un octaèdre FeO₆, de deux tétraèdres MoO₄ et d'un groupement dimolybdate Mo₂O₇ (Fig. 1). Deux unités formulaires centrosymétriques se regroupent par partage de sommets donnant lieu à un dimère de formulation (FeO₆)₂(Mo₄)₄(Mo₂O₇)₂ (Fig. 2*a*). Ces derniers se connectent moyennant des ponts mixtes de type Mo–O–Fe pour donner des rubans disposés selon [010] (Fig. 2*b*). Il en résulte une charpente unidimensionnelle possédant des espaces inter-rubans où résident les cations monovalents K⁺ (Figs. 3 et 4).

L'examen des facteurs géométriques dans la structure montre qu'ils sont en bon accord avec ceux rencontrés dans la littérature (Maczka *et al.*, 2009; Khal'baeva *et al.*, 2010).

D'autre part, le calcul des valences de liaisons (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des cations suivants: Fe1 (3,03), Mo1 (6,03), Mo2 (6,13), Mo3 (5,94), Mo4 (6,03), K1 (0,61), K2 (0,71) et K3 (0,59).

Une comparaison de la structure du composé étudié β -K₃Fe(MoO₄)₂(Mo₂O₇) avec celle de Rb₃Fe(MoO₄)₂Mo₂O₇ (Khal'baeva *et al.*, 2010) montre une différence nette dans la disposition des polyèdres et en particulier des groupements dimolybdates Mo₂O₇ dans la charpente anionique (Fig. 5).

En effet, on remarque que pour le composé au rubidium, cette disposition selon la direction des rubans, permet à chaque groupement dimolybdate Mo₂O₇ de relier par partage de sommets deux octaèdres FeO₆ différents appartenant au même ruban (Fig. 6*a*). Par contre dans le composé étudié chaque octaèdre FeO₆ partage un sommet avec un seul groupement dimolybdate Mo₂O₇, les cinq autres sommets sont mis en commun avec respectivement cinq tétraèdres MoO₄ différents (Fig. 6*b*). Nous pouvant signaler que le second tétraèdre terminal du groupement Mo₂O₇ présente un atome d'oxygène délocalisé sur deux positions proches O11 et O12 donnant une forme pyramidale au tétraèdre (Fig. 6*b*).

S2. Experimental

La synthèse de K_3 FeMo₄O₁₅ a été effectuée par réaction à l'état solide, à partir de carbonate de potassium (Prolabo, 60109), de nitrate de fer (Fluka 44949) et de molybdate d'ammonium (Fluka, 69858) dans un rapport molaire K:Fe:Mo égal à 3:1:6 respectivement. Après un broyage poussé dans un mortier en agate, le mélange est placé dans un creuset en porcelaine, puis porté dans un premier temps à une température de 673 K pendant 4 heures, en vue d'éliminer les produits volatils. Un second traitement thermique a été effectué à la température de synthèse, 1126 K pendant 24 heures. Le résidu final est ensuite ramené à un refroidissement lent de 5 K/12 h jusqu'à 1043 K, suivi d'un autre plus rapide (50 K/24 h) jusqu'à la température ambiante. Des cristaux de couleur verdâtre sont séparés à l'eau chaude.

S3. Refinement

L'examen de la différence de fourier final à révélé la présence d'un pic proche de la position de l'atome d'oxygène O11. L'insertion de ce pic O12 et l'affinement des taux d'occupation [0.524 (11) et 0.476 (11) pour respectivement O11 et O12] conduit à des ellipsoïdes bien définis. De plus, les densités d'électrons maximum et minimum restants dans la Fourierdifférence sont acceptables et sont situées respectivement à 0,43 Å de Mo4 et à 0,92 Å de Mo4.

Figure 1

La structure de β -K₃Fe(MoO₄)₂Mo₂O₇. Les éllipsoïdes ont été définis avec 50% de probabilité. [Symmetry codes: (i) x, - y+1, z; (ii) x, y, z-1; (iii) x, -y, z; (iv) x, y-1, z; (v) x, -y+1, z-1; (vi) -x+3/2, -y+1/2, -z].

(a): Nouvelle unité centrosymétrique. (b): Vue, selon [010], d'un ruban dans β -K₃Fe(MoO₄)₂Mo₂O₇,

Projection de la structure de β -K₃Fe(MoO₄)₂Mo₂O₇, selon *b*, montrant les espaces inter-rubans où résident les cations.

Projection de la structure de β -K₃Fe(MoO₄)₂Mo₂O₇, selon *c*.

Projection de la structure de $Rb_3Fe(MoO_4)_2Mo_2O_7$ selon *c*.

Figure 6

Représentation des rubans mettant en évidence les environnements des octaèdres $FeO_6(a)$: Dans $Rb_3Fe(MoO_4)_2Mo_2O_7$; (*b*): Dans β -K₃Fe(MoO₄)₂Mo₂O₇.

Tripotassium iron(III) bis(orthomolybdate) dimolybdate

Crystal data

F(000) = 1484 $K_3Fe(MoO_4)_2Mo_2O_7$ $M_r = 796.91$ $D_{\rm x} = 3.560 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, C2/mHall symbol: -C 2y Cell parameters from 25 reflections a = 32.873 (2) Å $\theta = 11 - 15^{\circ}$ $\mu = 5.15 \text{ mm}^{-1}$ b = 5.7137 (7) Å*c* = 7.9177 (9) Å T = 298 K $\beta = 91.143 \ (8)^{\circ}$ Prism, green V = 1486.9 (3) Å³ $0.36 \times 0.22 \times 0.18 \text{ mm}$ Z = 4Data collection Enraf-Nonius CAD-4 1789 independent reflections diffractometer 1636 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube $R_{\rm int} = 0.028$ $\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$ Graphite monochromator $h = -41 \rightarrow 41$ $\omega/2\theta$ scans Absorption correction: ψ scan $k = -1 \rightarrow 7$ (North et al., 1968) $l = -10 \rightarrow 5$ $T_{\min} = 0.286, \ T_{\max} = 0.488$ 2 standard reflections every 120 min 3443 measured reflections intensity decay: 1.3%

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$	Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 20.6944P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
1789 reflections	$\Delta \rho_{\rm max} = 1.22 \text{ e } \text{\AA}^{-3}$
138 parameters	$\Delta \rho_{\rm min} = -1.57 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.00379 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.568576 (15)	0.5000	-0.03610(7)	0.01354 (16)	
Mo2	0.649834 (16)	0.0000	0.73776 (7)	0.01577 (16)	
Mo3	0.718491 (15)	0.0000	0.18432 (7)	0.01355 (16)	
Mo4	0.55700 (2)	0.5000	0.49609 (8)	0.0375 (2)	
Fe1	0.68040 (3)	0.5000	-0.01846 (11)	0.0118 (2)	
K1	0.51309 (5)	0.0000	0.7616 (2)	0.0253 (3)	
K2	0.60638 (5)	0.0000	0.2307 (2)	0.0340 (4)	
K3	0.68689 (5)	0.5000	0.4756 (2)	0.0361 (5)	
O1	0.62085 (14)	0.5000	0.0211 (7)	0.0257 (11)	
O2	0.73729 (17)	0.0000	0.3855 (7)	0.0373 (15)	
O3	0.54601 (11)	0.7403 (7)	0.0504 (5)	0.0277 (8)	
O4	0.68711 (12)	0.7469 (9)	0.1610 (6)	0.0459 (13)	
O5	0.60430 (19)	0.5000	0.4216 (9)	0.053 (2)	
O6	0.75919 (14)	0.0000	0.0434 (6)	0.0223 (11)	
07	0.67523 (14)	0.2575 (11)	0.8080 (7)	0.0669 (19)	
O8	0.55792 (18)	0.5000	0.7337 (6)	0.0329 (13)	
O9	0.64948 (18)	0.0000	0.5221 (7)	0.0346 (14)	
O10	0.60110 (17)	0.0000	0.8120 (8)	0.0396 (15)	
011	0.5491 (2)	0.1696 (14)	0.4498 (9)	0.031 (2)	0.524 (11)
O12	0.5224 (3)	0.3608 (15)	0.3916 (10)	0.034 (3)	0.476 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Mo1	0.0084 (3)	0.0180 (3)	0.0142 (3)	0.000	-0.00063 (19)	0.000

supporting information

Mo2	0.0111 (3)	0.0210 (3)	0.0151 (3)	0.000	-0.00068 (19)	0.000
Mo3	0.0080 (2)	0.0163 (3)	0.0164 (3)	0.000	-0.00035 (19)	0.000
Mo4	0.0169 (3)	0.0820 (6)	0.0137 (3)	0.000	0.0003 (2)	0.000
Fe1	0.0092 (4)	0.0101 (4)	0.0160 (4)	0.000	-0.0006 (3)	0.000
K1	0.0184 (7)	0.0324 (9)	0.0250 (8)	0.000	-0.0022 (6)	0.000
K2	0.0195 (7)	0.0563 (12)	0.0260 (8)	0.000	-0.0046 (6)	0.000
K3	0.0226 (8)	0.0665 (14)	0.0191 (8)	0.000	-0.0004 (6)	0.000
01	0.010 (2)	0.042 (3)	0.025 (3)	0.000	-0.0025 (19)	0.000
O2	0.023 (3)	0.065 (4)	0.023 (3)	0.000	-0.008(2)	0.000
O3	0.0224 (17)	0.0242 (18)	0.037 (2)	0.0016 (16)	0.0069 (15)	-0.0049 (17)
O4	0.031 (2)	0.051 (3)	0.058 (3)	-0.029 (2)	0.0281 (19)	-0.040(2)
O5	0.027 (3)	0.085 (6)	0.048 (4)	0.000	0.011 (3)	0.000
O6	0.009 (2)	0.032 (3)	0.026 (3)	0.000	0.0045 (18)	0.000
O7	0.038 (2)	0.087 (4)	0.077 (4)	-0.036 (3)	0.026 (2)	-0.068 (3)
08	0.035 (3)	0.048 (4)	0.015 (2)	0.000	-0.006 (2)	0.000
09	0.033 (3)	0.056 (4)	0.015 (2)	0.000	-0.004 (2)	0.000
O10	0.018 (3)	0.056 (4)	0.045 (4)	0.000	0.005 (2)	0.000
O11	0.031 (4)	0.036 (4)	0.025 (4)	0.005 (3)	0.002 (3)	-0.002 (3)
O12	0.036 (5)	0.033 (5)	0.031 (4)	-0.017 (4)	-0.003 (3)	-0.015 (4)

Geometric parameters (Å, °)

Mo1-03	1.710 (4)	K1—O3 ^x	2.882 (4)
Mo1-O3 ⁱ	1.710 (4)	K1—O10	2.913 (6)
Mo1—O1	1.768 (5)	K1—O3 ^{xi}	2.916 (4)
Mo1—O8 ⁱⁱ	1.849 (5)	K1—O3 ^{xii}	2.916 (4)
Mo2—O9	1.708 (5)	K1—O11 ⁱⁱⁱ	2.924 (7)
Mo2—O10	1.717 (6)	K1—O11	2.924 (7)
Mo2—O7	1.776 (5)	K1—O8 ^{iv}	3.224 (3)
Mo2—O7 ⁱⁱⁱ	1.776 (5)	K2—O9	2.683 (6)
Mo3—O2	1.697 (5)	K2—O11	2.762 (7)
Mo3—O6	1.759 (5)	K2—O11 ⁱⁱⁱ	2.762 (7)
Mo3—O4 ^{iv}	1.784 (4)	K2—O3 ^{iv}	2.841 (4)
Mo3—O4 ⁱ	1.784 (4)	K2—O3 ⁱ	2.841 (4)
Mo4—O12	1.605 (7)	K2—O4 ⁱ	3.082 (5)
Mo4—O12 ⁱ	1.605 (7)	K2—O4 ^{iv}	3.082 (5)
Mo4—O5	1.674 (6)	K2—O5	3.233 (3)
Mo4—O8	1.881 (5)	K2—O5 ^{iv}	3.233 (3)
Mo4—O11	1.940 (8)	K2—O10 ⁱⁱ	3.317 (7)
Mo4—O11 ⁱ	1.940 (8)	K2—O1 ^{iv}	3.343 (3)
Fe1—O7 ⁱⁱ	1.956 (4)	K2—O1	3.343 (3)
Fe1—O7 ^v	1.956 (4)	K3—O2 ^{xiii}	2.704 (6)
Fe1—O1	1.989 (5)	K3—O5	2.740 (7)
Fe1—O6 ^{vi}	2.000 (5)	K3—O4 ⁱ	2.863 (5)
Fe1—O4	2.011 (4)	K3—O4	2.863 (5)
Fe1—O4 ⁱ	2.011 (4)	K3—O7 ⁱ	3.005 (7)
K1-012 ^{vii}	2.650 (8)	К3—О7	3.005 (7)
K1-O12 ^{viii}	2.650 (8)	K3—O9	3.135 (3)

supporting information

K1-011 ^{vii}	2 789 (8)		3 135 (3)
	2 789 (8)	$K_3 = O^{2xiv}$	3 386 (3)
$K1 - O3^{ix}$	2.882(4)	K3_02	3 386 (3)
	2.002 (4)	K5 02	5.500 (5)
O3—Mo1—O3 ⁱ	106.8 (3)	O12—Mo4—O11	47.9 (4)
O3—Mo1—O1	108.94 (15)	O12 ⁱ —Mo4—O11	107.1 (4)
O3 ⁱ —Mo1—O1	108.94 (15)	O5—Mo4—O11	93.2 (2)
O3—Mo1—O8 ⁱⁱ	108.63 (16)	O8—Mo4—O11	100.9 (2)
O3 ⁱ —Mo1—O8 ⁱⁱ	108.63 (16)	O12-Mo4-O11 ⁱ	107.1 (4)
O1—Mo1—O8 ⁱⁱ	114.6 (2)	O12 ⁱ —Mo4—O11 ⁱ	47.9 (4)
O9—Mo2—O10	110.8 (3)	O5-Mo4-O11 ⁱ	93.2 (2)
O9—Mo2—O7	107.9 (2)	O8-Mo4-O11 ⁱ	100.9 (2)
O10—Mo2—O7	109.20 (18)	O11—Mo4—O11 ⁱ	153.4 (4)
O9—Mo2—O7 ⁱⁱⁱ	107.9 (2)	$O7^{ii}$ —Fe1— $O7^{v}$	90.2 (4)
O10—Mo2—O7 ⁱⁱⁱ	109.20 (18)	O7 ⁱⁱ —Fe1—O1	92.22 (17)
O7—Mo2—O7 ⁱⁱⁱ	111.9 (4)	O7 ^v —Fe1—O1	92.22 (17)
O2—Mo3—O6	109.2 (3)	$O7^{ii}$ —Fe1— $O6^{vi}$	90.18 (17)
O2—Mo3—O4 ^{iv}	107.2 (2)	$O7^{v}$ —Fe1— $O6^{vi}$	90.18 (17)
O6—Mo3—O4 ^{iv}	112.33 (14)	O1—Fe1—O6 ^{vi}	176.6 (2)
O2—Mo3—O4 ⁱ	107.2 (2)	O7 ⁱⁱ —Fe1—O4	178.6 (2)
O6—Mo3—O4 ⁱ	112.33 (14)	O7 ^v —Fe1—O4	90.4 (3)
O4 ^{iv} —Mo3—O4 ⁱ	108.3 (3)	O1—Fe1—O4	89.03 (15)
O12-Mo4-O12 ⁱ	59.4 (7)	O6 ^{vi} —Fe1—O4	88.54 (16)
O12—Mo4—O5	118.2 (4)	O7 ⁱⁱ —Fe1—O4 ⁱ	90.4 (3)
O12 ⁱ —Mo4—O5	118.2 (4)	$O7^{v}$ —Fe1—O4 ⁱ	178.6 (2)
O12—Mo4—O8	120.8 (3)	O1—Fe1—O4 ⁱ	89.03 (15)
O12 ⁱ —Mo4—O8	120.8 (3)	$O6^{vi}$ —Fe1—O4 ⁱ	88.54 (16)
O5—Mo4—O8	110.9 (3)	O4—Fe1—O4 ⁱ	89.1 (3)

Symmetry codes: (i) x, -y+1, z; (ii) x, y, z-1; (iii) x, -y, z; (iv) x, y-1, z; (v) x, -y+1, z-1; (vi) -x+3/2, -y+1/2, -z; (vii) -x+1, -y, -z+1; (viii) -x+1, y, -z+1; (xi) -x+1, y-1, -z+1; (x) -x+1, -y+1, -z+1; (x) x, -y+1, z+1; (x) x, y-1, z+1; (x) -x+3/2, -y+1/2, -z+1; (x) x, y+1, z.