

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The solid solution $K_{3,84}Ni_{0,78}Fe_{3,19}(PO_4)_5$

Nataliia Yu. Strutynska,^a* Ivan V. Ogorodnyk,^a Oksana V. Livitska.^a Vvacheslav N. Baumer^b and Nikolav S. **Slobodyanik**^a

^aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kviv, 64/13, Volodymyrska St, 01601 Kyiv, Ukraine, and ^bSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine Correspondence e-mail: Nataliya_N@ukr.net

Received 16 May 2014; accepted 11 June 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (P–O) = 0.003 Å; disorder in main residue; R factor = 0.040; wR factor = 0.095; data-to-parameter ratio = 23.6.

The title compound, tetrapotassium tetra[nickel(II)/iron(III)] pentakis(orthophosphate), K_{3.84}Ni_{0.78}Fe_{3.19}(PO₄)₅, has been obtained from a flux. The structure is isotypic with that of $K_4MgFe_3(PO_4)_5$. The three-dimensional framework is built up from (Ni/Fe)O₅ trigonal bipyramids with a mixed Fe:Ni occupancy of 0.799 (8):0.196 (10) and isolated PO₄ tetrahedra, one of which is on a general position and one of which has $\overline{4}$. site symmetry. Two K⁺ cations are statistically occupied and are distributed over two positions in hexagonally shaped channels that run parallel to [001]. One K⁺ cation [occupancy (0.73 (3)) is surrounded by nine O atoms, while the other K⁺ cation [occupancy 0.23 (3)] is surrounded by eight O atoms.

Related literature

The structure of isotypic $K_4MgFe_3(PO_4)_5$ was determined by Hidouri et al. (2008). For applications of iron-containing phosphates, see: Barpanda et al. (2012); Fisher et al. (2008); Huang et al. (2005); Shih (2003); Trad et al. (2010). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002, 2003). Lajmi et al. (2002). For crystal-space analysis using Voronoi-Dirichlet polyhedra, see Blatov et al. (1995). For related compounds, see: Strutynska et al. (2014).

Experimental

Crystal data

K3.84Ni0.78Fe3.19(PO4)5 $M_{\rm r} = 848.92$ Tetragonal, $P\overline{4}2_1c$ a = 9.6622 (6) Å c = 9.380(1) Å $V = 875.70 (12) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 4.90 \text{ mm}^{-1}$ T = 293 K $0.12 \times 0.10 \times 0.05 \ \mathrm{mm}$ 14788 measured reflections

 $R_{\rm int} = 0.064$

1935 independent reflections

1771 reflections with $I > 2\sigma(I)$

Data collection

```
Oxford Diffraction Xcalibur-3
  diffractometer
Absorption correction: multi-scan
  (Blessing, 1995)
  T_{\min} = 0.562, T_{\max} = 0.743
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.095$	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
S = 1.04	Absolute structure: Flack (1983),
1935 reflections	829 Friedel pairs
82 parameters	Absolute structure parameter:
1 restraint	0.02 (3)

Table 1 Selected bond lengths (Å).

Fe1-O1	1.908 (3)	$P1-O5^{v}$	1.53	1 (3)
Fe1-O4 ⁱ	1.908 (3)	P1-O5 ^{vi}	1.53	1(2)
Fe1-O3 ⁱⁱ	1.918 (3)	P2-O2	1.51	0(3)
Fe1-O5	1.975 (2)	P2-O4	1.51	4 (3)
Fe1-O2 ⁱⁱⁱ	1.979 (3)	P2-O3	1.52	0(3)
P1-O5 ^{iv}	1.531 (3)	P2-O1	1.54	2(3)
P1-O5	1.531 (2)			
Symmetry codes: (i)	$-x+\frac{1}{2}, y+\frac{1}{2}, -$	$-z + \frac{1}{2};$ (ii)	$x - \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{1}{2};$	(iii)
$y = \frac{1}{2}, x + \frac{1}{2}, z = \frac{1}{2};$ (iv)	-y + 1, x + 1, -	$z + \tilde{1};$ (v)	y - 1, -x + 1, -z + 1;	(vi)
-x, -y + 2, z.				

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5027).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Barpanda, P., Nishimura, S., Chung, S., Yamada, Y., Okubo, M., Zhou, H. & Yamada, A. (2012). Electrochem. Commun. 24, 116-119.
- Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909_916
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fisher, C. A. J., Hart-Prieto, V. M. & Islam, M. S. (2008). Chem. Mater. 20, 5907-5915

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hidouri, M., Lajmi, B. & Ben Amara, M. (2002). Acta Cryst. C58, i147-i148.
- Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2003). J. Alloys Compd, 358, 36-41.
- Hidouri, M., Sendi, N., Wattiaux, A. & Ben Amara, M. (2008). J. Phys. Chem. Solids, 69, 2555-2558.
- Huang, W., Day, D. E., Ray, C. S. & Kim, C. W. (2005). J. Nucl. Mater. 346, 298-305.
- Lajmi, B., Hidouri, M., Rzeigui, M. & Ben Amara, M. (2002). Mater. Res. Bull. 37 2407-2416
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shih, P. Y. (2003). Mater. Chem. Phys. 80, 299-304.

Strutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160–164.

Trad, K., Carlier, D., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). J. Electrochem. Soc. 157, A947–A952.

supporting information

Acta Cryst. (2014). E70, i39-i40 [https://doi.org/10.1107/S1600536814013609]

The solid solution K_{3.84}Ni_{0.78}Fe_{3.19}(PO₄)₅

Nataliia Yu. Strutynska, Ivan V. Ogorodnyk, Oksana V. Livitska, Vyacheslav N. Baumer and Nikolay S. Slobodyanik

S1. Comment

Complex iron-containing phosphates have different applications, for example as ionic conductors (Fisher *et al.*, 2008), cathode materials (Barpanda *et al.*, 2012; Trad *et al.*, 2010) and matrices for storage of nuclear waste (Huang *et al.*, 2005; Shih, 2003). In the crystal structures of these compounds the iron cations can adopt different coordination numbers and hence different oxygen polyhedra: FeO₄ (Hidouri *et al.*, 2002), FeO₅ (Hidouri *et al.*, 2003) or FeO₆ (Lajmi *et al.*, 2002). Herein, the structure of the solid solution K_{3.84}Ni_{0.78}Fe_{3.19}(PO₄)₅, tetrapotassium tetra(nickel(II)/iron(III)) pentakis-(orthophosphate), (I), is reported. The crystal structure of (I) is isotypic with K₄MgFe₃(PO₄)₅ (Hidouri *et al.*, 2008).

The asymmetric unit of (I) consists of one mixed-occupied (Ni^{II}/Fe^{III}) site, two P sites (one of which is located on a fourfold rotoinversion axis), five oxygen sites and two K⁺ sites which are partly occupied and distributed over two positions (K1A and K1B) (Fig. 1). The main building blocks are one [(Ni/Fe^{III})O₅] trigonal bipyramid and two [PO₄] tetrahedra. The [(Ni/Fe^{III})O₅] polyhedron is linked with [P1O₄] tetrahedra into chains along [001] which additionally are aggregated by the linkage with [P2O₄] tetrahedra into a three-dimensional framework with composition [Ni_{0.78}Fe_{3.19}(PO₄)₅]^{3.84-} (Fig. 2).

The environment of the mixed (Ni^{II}/Fe^{III}) site is defined by five oxygen atoms from four [P2O₄] tetrahedra and one [P1O₄] tetrahedron. The distances (Ni/Fe)—O vary between 1.908 (3) and 1.979 (3) Å. The average distance ((Ni/Fe)—O) = 1.937 Å is slightly less than that in K₄MgFe₃(PO₄)₅ (d((Mg/Fe)—O) = 1.952 Å) (Hidouri *et al.*, 2008). The tetrahedral orthophosphate anions deviate only slightly from ideal values with P—O bond lengths ranging from 1.510 (3) to 1.542 (3) Å.

The disordered K⁺ cations are located in hexagonally-shaped channels running along [001], with occupancies of 0.73 (3) (K1A) and 0.23 (3) (K1B). The results of the construction of Voronoi-Dirichlet polyhedra (Blatov *et al.*, 1995) show the K1A being surrounded by nine O atoms while K1B is surrounded by eight O atoms. The K—O distances in the [K1AO₉]-polyhedron are in the range 2.719 (5)–3.072 (6) Å, while in the [K1BO₈]-polyhedron they are in the range 2.636 (13)– 3.065 (15) Å.

The main difference between the obtained solid solution and the phosphate $K_4MgFe_3(PO_4)_5$ (Hidouri *et al.*, 2008) is the splitting of the K⁺ site in two positions. The occupation of the K1B site (0.23 (3)) correlates with the increase of the iron content (from 3 to 3.19) in the starting matrix $[M^{II}Fe^{III}_3(PO_4)_5]^4$. It seems that a partial substitution of Ni by Fe in $[M^{II}Fe^{III}_3(PO_4)_5]^4$ causes the formation of vacancies in the cationic K⁺ lattice and a splitting of the respective K⁺ site. A similar influence of an heterovalent substitution on the splitting of alkaline metal sites was found for $KNi_{0.93}Fe^{II}_{0.07}Fe^{III}(PO_4)_2$ (Strutynska *et al.*, 2014).

S2. Experimental

The title compound was obtained during investigation of the melting system $K_2O-P_2O_5$ -Fe₂O₃-NiO-MoO₃. A mixture of KPO₃ (14.16 g), NiO (2.70 g), Fe₂O₃ (2.88 g) and $K_2Mo_2O_7$ (4 g) was ground in an agate mortar, placed in a platinum crucible and heated up to 1273 K. The melt was kept at this temperature for 3 h. After that, the temperature was cooled down to 873 K at a rate of 10 K/h. The crystals of (I) were separated from the remaining flux by boiling with water. The chemical composition of selected single-crystal was verified by EDX analysis. Analysis found (calculated) for $K_{3.84}Ni_{0.78}Fe_{3.19}$ (PO₄)₅ in atomic percentage: K 17.62 (17.69), Ni 5.34 (5.39), Fe 20.83 (20.99), P 18.44 (18.24) and O 37.77 (37.69).

S3. Refinement

Because of the similarity of possible coordination by O atoms, Ni and Fe were placed on the same site. Their coordinates and anisotropic displacement parameters (ADP) were constrained to be equal. The corresponding occupancy factors were refined using free variables. After that procedure, an unidentified high electron density peak was found near the position of the K site. It was supposed that this site can be occupied only by another K^+ caion. ADPs of both split K sites were constrained to be equal, while the occupancies were refined using free variables. The calculated occupancy factors of all partially occupied positions were close to those reported in this paper. To fix the electroneutrality of the compound, SUMP restraints in SHELXL (Sheldrick, 2008) were applied to the occupancy factors of the refined atoms.

The highest and lowest electron densities were found 1.00 Å from O1 and 0.76 Å from NI1, respectively.

The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

The main building blocks and their linkage into chains and the three-dimensional framework for (I) in polyhedral representation.

Tetrapotassium tetra[nickel(II)/iron(III)] pentakis(orthophosphate)

Crystal data

K_{3.84}Ni_{0.78}Fe_{3.19}(PO₄)₅ $M_r = 848.92$ Tetragonal, $P\overline{42}_{1c}$ Hall symbol: P -4 2 n a = 9.6622 (6) Å c = 9.380 (1) Å V = 875.70 (12) Å³ Z = 2F(000) = 826

Data collection

Oxford Diffraction Xcalibur-3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.562, T_{\max} = 0.743$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.095$ S = 1.041935 reflections 82 parameters $D_x = 3.222 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14788 reflections $\theta = 3.0-35^{\circ}$ $\mu = 4.90 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.12 \times 0.10 \times 0.05 \text{ mm}$

14788 measured reflections 1935 independent reflections 1771 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 35^\circ, \theta_{min} = 3.0^\circ$ $h = -15 \rightarrow 15$ $k = -15 \rightarrow 15$ $l = -15 \rightarrow 15$

l restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.8951P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure: Flack (1983), 829 Friedel
$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$	pairs
$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$	Absolute structure parameter: 0.02 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.07474 (5)	0.81210 (5)	0.21055 (5)	0.01399 (11)	0.799 (8)
Ni1	0.07474 (5)	0.81210 (5)	0.21055 (5)	0.01399 (11)	0.196 (10)
K1A	0.0677 (6)	0.3344 (4)	0.5415 (10)	0.0267 (8)	0.73 (3)
K1B	0.0837 (15)	0.3284 (14)	0.5131 (17)	0.0267 (8)	0.23 (3)
P1	0	1	0.5	0.0138 (3)	
P2	0.25560 (9)	0.58266 (10)	0.36473 (8)	0.01535 (18)	
01	0.1268 (3)	0.6356 (3)	0.2843 (3)	0.0238 (5)	
O2	0.2226 (3)	0.5930 (3)	0.5217 (3)	0.0245 (6)	
03	0.3798 (4)	0.6706 (4)	0.3236 (4)	0.0361 (8)	
04	0.2718 (3)	0.4322 (3)	0.3226 (3)	0.0289 (6)	
05	0.0560 (3)	0.8822 (3)	0.4074 (3)	0.0204 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0157 (2)	0.0181 (2)	0.00817 (16)	0.00085 (16)	-0.00043 (16)	-0.00122 (15)
Ni1	0.0157 (2)	0.0181 (2)	0.00817 (16)	0.00085 (16)	-0.00043 (16)	-0.00122 (15)
K1A	0.0289 (10)	0.0276 (6)	0.0235 (18)	-0.0078 (6)	-0.0031 (11)	0.0056 (9)
K1B	0.0289 (10)	0.0276 (6)	0.0235 (18)	-0.0078 (6)	-0.0031 (11)	0.0056 (9)
P1	0.0177 (5)	0.0177 (5)	0.0061 (6)	0	0	0
P2	0.0180 (4)	0.0198 (4)	0.0083 (3)	-0.0018 (3)	0.0008 (3)	-0.0018 (3)
01	0.0294 (13)	0.0228 (12)	0.0191 (11)	0.0015 (10)	-0.0095 (11)	0.0004 (10)
O2	0.0299 (13)	0.0363 (15)	0.0074 (9)	0.0067 (13)	-0.0033 (8)	0.0001 (10)
03	0.0270 (14)	0.0427 (19)	0.0385 (18)	-0.0108 (14)	0.0101 (13)	-0.0073 (15)
O4	0.0402 (16)	0.0222 (12)	0.0243 (13)	0.0091 (12)	0.0056 (11)	-0.0014 (11)
05	0.0245 (13)	0.0247 (12)	0.0120 (9)	0.0010 (10)	0.0020 (9)	-0.0054 (9)

Geometric parameters (Å, °)

Fe1—O1	1.908 (3)	P1—K1B ^{xii}	3.277 (13)
Fe1—O4 ⁱ	1.908 (3)	P1—K1B ^{iv}	3.277 (13)
Fe1—O3 ⁱⁱ	1.918 (3)	P1—K1B ^{xiii}	3.277 (13)

Fe1—O5	1.975 (2)	$P1$ — $K1B^{v}$	3.277 (13)
Fe1—O2 ⁱⁱⁱ	1.979 (3)	P1—K1A ^{iv}	3.319 (4)
Fe1—K1B ^{iv}	3.498 (14)	P1—K1A ^{xii}	3.319 (4)
Fe1—K1A ^v	3.613 (4)	P1—K1A ^{xiii}	3.319 (4)
Fe1—K1A ⁱⁱⁱ	3.672 (4)	P1—K1A ^v	3.319 (4)
Fe1—K1A ^{iv}	3.679 (7)	P2—O2	1.510(3)
Fe1—K1B ^v	3.707 (13)	P2—O4	1.514 (3)
Fe1—K1B ⁱⁱⁱ	3.737 (13)	P2—O3	1.520 (3)
Fe1—K1B ⁱ	3.914 (17)	P2—O1	1.542 (3)
K1A—O5 ^{iv}	2.719 (5)	P2—K1A ^{xiv}	3.473 (9)
K1A—O5 ^{vi}	2.774 (5)	$P2-K1B^{v}$	3.493 (13)
K1A—O4 ^{vii}	2.830 (8)	$P2-K1A^{v}$	3.573 (4)
K1A—O3 ^{vi}	2.862 (5)	P2—K1A ^{iv}	3.626 (3)
K1A—O2 ^{iv}	2.898 (6)	P2—K1B ^{iv}	3.664 (13)
K1A—O2	2.919 (5)	P2—K1B ^{xiv}	3.758 (16)
K1A—O4	3.000 (9)	O1—K1B ^{iv}	2.978 (13)
K1A—O1 ^{vii}	3.031 (10)	O1—K1A ^{xiv}	3.031 (10)
K1A—O1 ^{iv}	3.072 (6)	O1—K1A ^{iv}	3.072 (6)
K1A—P1 ^{viii}	3.319 (4)	O1—K1B ^{xiv}	3.339 (18)
K1A—P2	3.435 (6)	O2—Ni1 ^{xv}	1.979 (3)
K1A—K1A ^{iv}	3.458 (10)	O2—Fe1 ^{xv}	1.979 (3)
K1B—O5 ^{iv}	2.636 (13)	O2—K1A ^{iv}	2.898 (6)
K1B—O4	2.739 (16)	O2—K1B ^{iv}	3.057 (15)
K1B—O5 ^{vi}	2.755 (13)	O2—K1B ^v	3.303 (16)
K1B—O3 ^{vi}	2.869 (13)	O3—Ni1 ^{xvi}	1.918 (3)
K1B—O2	2.889 (13)	O3—Fe1 ^{xvi}	1.918 (3)
K1B—O1 ^{iv}	2.978 (13)	O3—K1A ^v	2.862 (5)
K1B—O2 ^{iv}	3.057 (15)	O3—K1B ^v	2.869 (13)
K1B—O4 ^{vii}	3.065 (15)	O4—Ni1 ^{xvii}	1.908 (3)
K1B—P2	3.276 (13)	O4—Fe1 ^{xvii}	1.908 (3)
K1B—P1 ^{viii}	3.277 (13)	O4—K1A ^{xiv}	2.830 (8)
K1B—O2 ^{vi}	3.303 (16)	O4—K1B ^{xiv}	3.065 (15)
K1B—O1 ^{vii}	3.339 (18)	O5—K1B ^{iv}	2.636 (13)
P1—O5 ^{ix}	1.531 (3)	O5—K1A ^{iv}	2.719 (5)
P1—O5	1.531 (2)	O5—K1B ^v	2.755 (13)
P1	1.531 (3)	O5—K1A ^v	2.774 (5)
P1—O5 ^{xi}	1.531 (2)		
O1—Fe1—O4 ⁱ	113.45 (13)	$O5^{x}$ —P1—K1 B^{iv}	56.8 (2)
O1—Fe1—O3 ⁱⁱ	113.43 (14)	$O5^{xi}$ $P1$ $K1B^{iv}$	130.8 (3)
O4 ⁱ —Fe1—O3 ⁱⁱ	133.04 (15)	K1B ^{xii} —P1—K1B ^{iv}	175.7 (5)
O1—Fe1—O5	89.54 (12)	O5 ^{ix} —P1—K1B ^{xiii}	130.8 (3)
O4 ⁱ —Fe1—O5	90.85 (12)	O5—P1—K1B ^{xiii}	120.3 (3)
O3 ⁱⁱ —Fe1—O5	92.08 (13)	O5 ^x —P1—K1B ^{xiii}	52.3 (2)
O1—Fe1—O2 ⁱⁱⁱ	84.85 (12)	O5 ^{xi} —P1—K1B ^{xiii}	56.8 (2)
O4 ⁱ —Fe1—O2 ⁱⁱⁱ	92.89 (13)	K1B ^{xii} —P1—K1B ^{xiii}	90.08 (2)
O3 ⁱⁱ —Fe1—O2 ⁱⁱⁱ	88.65 (13)	K1B ^{iv} —P1—K1B ^{xiii}	90.08 (2)
O5—Fe1—O2 ⁱⁱⁱ	174.16 (12)	$O5^{ix}$ $P1$ $K1B^{v}$	52.3 (2)
	× /		\ /

O1—Fe1—K1B ^{iv}	58.3 (3)	$O5$ — $P1$ — $K1B^{v}$	56.8 (2)
O4 ⁱ —Fe1—K1B ^{iv}	135.1 (3)	$O5^{x}$ $P1$ $K1B^{v}$	130.8 (3)
O3 ⁱⁱ —Fe1—K1B ^{iv}	74.9 (3)	$O5^{xi}$ —P1—K1 B^{v}	120.3 (3)
O5—Fe1—K1B ^{iv}	48.3 (2)	$K1B^{xii}$ —P1— $K1B^{v}$	90.08 (2)
O2 ⁱⁱⁱ —Fe1—K1B ^{iv}	126.6 (2)	$K1B^{iv}$ — $P1$ — $K1B^{v}$	90.08 (2)
$O1$ —Fe1—K1 A^{v}	82.58 (14)	$K1B^{xiii}$ $P1 - K1B^{v}$	175.7 (5)
$O4^{i}$ —Fe1—K1A ^v	50.96 (18)	$O5^{ix}$ P1 K1 A ^{iv}	115.1 (2)
$O3^{ii}$ —Fe1—K1A ^v	139.59 (13)	$05-P1-K1A^{iv}$	54.03 (13)
O5—Fe1—K1A ^v	49.57 (14)	$O5^{x}$ P1 K1 A ^{iv}	56.12 (12)
$O2^{iii}$ —Fe1—K1A ^v	130.90 (13)	$O5^{xi}$ P1 K1 A ^{iv}	136.1 (2)
$K1B^{iv}$ Fe1 $K1A^{v}$	84 63 (17)	$K1B^{xii}$ $P1$ $K1A^{iv}$	170.7(4)
O1—Fe1—K1A ⁱⁱⁱ	75 43 (16)	$K1B^{iv}$ $P1$ $K1A^{iv}$	540(18)
$O4^{i}$ Fe1 K1A ⁱⁱⁱ	144 29 (15)	$K1B^{xiii}$ $P1 K1A^{iv}$	93 1 (3)
$O3^{ii}$ Fe1 K1 A^{iii}	50 43 (13)	$K1B^{v} = P1 = K1A^{iv}$	87 4 (3)
05 Fe1 KIA	$124\ 50\ (14)$	$O5^{ix}$ $P1$ $K1A^{xii}$	56.12(12)
O^{2ii} Fe1 K1A ⁱⁱⁱ	52 34 (13)	$05 - P1 - K1A^{xii}$	1361(2)
$K_{1}B^{iv}$ Fe1 $K_{1}A^{iii}$	70.86 (10)	$O5^{x}$ P1 K1A ^{xii}	130.1(2)
KID - RI - KIA	157 50 (3)	$O5^{xi}$ D1 K1A ^{xii}	54.03(13)
$\begin{array}{ccc} \mathbf{K} \mathbf{I} \mathbf{A} & -\mathbf{I} \mathbf{C} \mathbf{I} & -\mathbf{K} \mathbf{I} \mathbf{A} \\ \mathbf{O} \mathbf{I} & \mathbf{F} \mathbf{e} \mathbf{I} & \mathbf{K} \mathbf{I} \mathbf{A}^{\mathrm{iv}} \end{array}$	157.50 (5) 56 57 (12)	K_{1}	54.03(13)
O_{1} C_{1} K_{1} K_{1}	131.48(15)	$\mathbf{K}\mathbf{I}\mathbf{D} = \mathbf{I}\mathbf{I} = \mathbf{K}\mathbf{I}\mathbf{A}$ $\mathbf{K}\mathbf{I}\mathbf{D}^{\text{iv}} = \mathbf{D}\mathbf{I} = \mathbf{K}\mathbf{I}\mathbf{A}\mathbf{x}\mathbf{i}\mathbf{i}$	3.40(18)
$O_{4} = I_{C1} = K_{1A}$	78 87 (17)	$\mathbf{K}\mathbf{I}\mathbf{D} \longrightarrow \mathbf{I}\mathbf{I}\mathbf{I}\mathbf{K}\mathbf{I}\mathbf{A}$ $\mathbf{K}\mathbf{I}\mathbf{R}^{\text{xiii}} \mathbf{D}\mathbf{I} \mathbf{K}\mathbf{I}\mathbf{A}^{\text{xiii}}$	170.7(4)
$O_5 = K_1 - K_1 A_{iv}$	76.07 (17) 46.28 (11)	$\mathbf{K}\mathbf{I}\mathbf{D} = \mathbf{I}\mathbf{I} = \mathbf{K}\mathbf{I}\mathbf{A}$ $\mathbf{V}\mathbf{I}\mathbf{D}\mathbf{V} = \mathbf{D}\mathbf{I} = \mathbf{V}\mathbf{I}\mathbf{A}\mathbf{x}\mathbf{i}\mathbf{i}$	07.4(3)
$\begin{array}{ccc} 0 & - & - & - & - & - & - & - & - & - &$	40.28(11) 128.36(11)	$\mathbf{K}\mathbf{I}\mathbf{D} \longrightarrow \mathbf{I}\mathbf{I} \longrightarrow \mathbf{K}\mathbf{I}\mathbf{A}\mathbf{X}\mathbf{I}\mathbf{X}$	33.1(3)
$K_1 \mathbf{P}_{iv} \mathbf{F}_{21} \mathbf{K}_1 \mathbf{A}_{iv}$	128.30(11)	A = 1 = A = A	136.1(2)
KID - FEI - KIA	4.1(2)	$O_5 = D_1 = K_1 A_{X_1}$	130.1(2)
$KIA \longrightarrow FCI \longrightarrow KIA$	00.01(0) 92.12(5)	O_{3} P_{1} $K_{1}A_{xiii}$	113.1(2) 54.02(12)
KIA - FeI - KIA	33.13(3)	O_{5} $- \Gamma I - KIA$	56 12 (12)
$O_1 = Fe_1 = K_1 D_1$	79.5 (2) 55.6 (2)	$V_{1} = P_{1} = K_{1} A_{xiii}$	30.12(12)
O4—FeI—KID	33.0(3)	$KIB^{III} P I - KIA^{IIII}$	95.1 (5)
$O_5 = FeI = KIB^2$	137.9(2)	$KIB^{H} - PI - KIA^{H}$	87.4 (3)
	40.0 (2)		5.40 (18)
V_{2}^{m} FeI KIB	133.3(2)	$KIB' - PI - KIA^{m}$	1/0.7(4)
KIB^{v} —FeI— KIB^{v}	80.1(2)	$KIA^{iv} - PI - KIA^{ini}$	90.79 (4)
KIA^{v} —FeI— KIB^{v}	4.68 (18)	$K A^{AA} - P - K A^{AB}$	90.79 (4)
KIA^{m} —FeI— KIB^{v}	153.49 (18)	$O5^{\text{III}}$ PI-KIA ^V	54.03 (13)
KIA^{W} —FeI— KIB^{W}	76.22 (18)	$05-PI-KIA^{\vee}$	56.12 (12)
OI—FeI—KIB ^{III}	79.6 (3)	$O5^{x}$ PI KIA ^v	136.1 (2)
O4 ¹ —Fel—KIB ^{III}	140.6 (2)	V_{2}^{M} P_{1}^{M} K_{1}^{M}	115.1 (2)
$O3^{n}$ —Fel—KIB ^m	49.0 (2)	KIB^{xn} PI KIA^{v}	87.4 (3)
O5—Fel—KIB ^m	127.4 (2)	KIB^{iv} PI KIA^{v}	93.1 (3)
$O2^{m}$ —Fe1—K1B ^m	49.9 (2)	$K1B^{xm}$ $P1$ $K1A^{v}$	170.7 (4)
$K1B^{iv}$ —Fe1— $K1B^{in}$	83.93 (9)	$K1B^{v}$ $P1$ $K1A^{v}$	5.40 (18)
$K1A^{v}$ —Fe1— $K1B^{in}$	162.0 (2)	$K1A^{iv}$ P1 $K1A^{v}$	90.79 (4)
$K1A^{m}$ —Fel— $K1B^{m}$	4.74 (16)	$K1A^{xu}$ $P1$ $K1A^{v}$	90.79 (4)
$K1A^{iv}$ —Fel— $K1B^{iii}$	87.29 (19)	$K1A^{xm}$ $P1$ $K1A^{v}$	166.5 (3)
K1B ^v —Fe1—K1B ⁱⁱⁱ	158.14 (6)	02—P2—O4	109.86 (17)
O1—Fe1—K1B ⁱ	90.4 (2)	O2—P2—O3	112.16 (19)
$O4^{i}$ —Fe1—K1B ⁱ	39.9 (2)	O4—P2—O3	112.85 (18)
O3 ⁱⁱ —Fe1—K1B ⁱ	137.3 (2)	O2—P2—O1	106.56 (17)

O5—Fe1—K1B ⁱ	124.4 (2)	O4—P2—O1	105.92 (17)
O2 ⁱⁱⁱ —Fe1—K1B ⁱ	57.5 (2)	O3—P2—O1	109.10 (19)
K1B ^{iv} —Fe1—K1B ⁱ	145.0 (3)	O2—P2—K1B	61.9 (3)
K1A ^v —Fe1—K1B ⁱ	75.32 (18)	O4—P2—K1B	56.2 (3)
K1A ⁱⁱⁱ —Fe1—K1B ⁱ	109.1 (2)	O3—P2—K1B	158.0 (3)
K1A ^{iv} —Fe1—K1B ⁱ	141.56 (17)	O1—P2—K1B	92.7 (3)
K1B ^v —Fe1—K1B ⁱ	78.8 (2)	O2—P2—K1A	57.59 (18)
K1B ⁱⁱⁱ —Fe1—K1B ⁱ	107.17 (6)	O4—P2—K1A	60.68 (19)
05^{iv} K1A 05^{vi}	53.88 (13)	03—P2—K1A	158.44 (17)
O5 ^{iv} —K1A—O4 ^{vii}	98.74 (17)	01—P2—K1A	92.38 (12)
05^{vi} K1A -04^{vii}	59.16 (13)	K1B—P2—K1A	4.6 (2)
05^{iv} —K1A— 03^{vi}	135.3 (2)	$O2 - P2 - K1A^{xiv}$	145.72 (14)
05^{vi} K1A -03^{vi}	85.30 (13)	$O4$ — $P2$ — $K1A^{xiv}$	52.89 (13)
$O4^{\text{vii}}$ $K1A$ $O3^{\text{vi}}$	69.10 (15)	$O3 P2 K1A^{xiv}$	102.11(15)
05^{iv} K1A -02^{iv}	74.39 (12)	$01 - P2 - K1A^{xiv}$	60.63 (14)
05^{vi} K1A -02^{iv}	114.49 (17)	$K1B - P2 - K1A^{xiv}$	86.0 (3)
$O4^{\text{vii}}$ $K1A$ $O2^{\text{iv}}$	98 5 (3)	$K1A P2 K1A^{xiv}$	89.82 (9)
03^{vi} K1A 02^{iv}	147 9 (3)	$\Omega^2 - P^2 - K^1 B^{\nu}$	70.2(3)
05^{iv} KIA 02	148 8 (4)	$02 P^2 K^1 B^v$	161.9(3)
05^{vi} KIA 02	138.7(2)	$O_3 P_2 K_1 B_v$	537(3)
$O4^{\text{vii}}$ $K1A = O2$	1117(2)	$01 - P^2 - K^1 B^{v}$	910(2)
O_3^{vi} K1A O_2	56 21 (11)	$K1B P2 K1B^{v}$	130.91(4)
O^{2iv} K1A O^{2}	106 56 (15)	$K1A P2 K1B^{v}$	130.91(4) 126.3(2)
02 - KIA - 02	102.4(3)	$K1A^{xiv}$ P2 $K1B^{v}$	120.3(2)
$O_{5^{vi}} K_{1A} O_{4}$	102.4(3) 108.0(3)	$\Omega^2 P^2 K^{1}\Lambda^{v}$	751(2)
O_{4}^{vii} K1A O_{4}^{vii}	108.0(3) 138.76(16)	$O_2 - I_2 - KIA$	75.1(2) 161 74 (15)
$O_{3^{\text{vi}}} K_{1} A O_{4}$	70.94(17)	$O_3 P_2 K_{1Av}$	50.65(17)
O^{2iv} K1A O^{4}	121.00(10)	$O_1 P_2 K_1 A^{v}$	50.05 (17) 88 70 (14)
$O_2 = K_{1A} = O_4$	121.09(19) 10.42(13)	$V_1 = V_2 = K_1 A_V$	135 4 (2)
02 - KIA - 04	49.42(13)	$\mathbf{K}\mathbf{I}\mathbf{B}\mathbf{-}\mathbf{F}2\mathbf{-}\mathbf{K}\mathbf{I}\mathbf{A}$ $\mathbf{K}\mathbf{I}\mathbf{A}\mathbf{D}2\mathbf{K}\mathbf{I}\mathbf{A}\mathbf{v}$	133.4(2) 130.85(3)
$O_{5}^{vi} K_{1A} O_{1}^{vii}$	99.1(2)	KIA I 2 KIA VIAxiy D2 VIAy	130.85(3)
$O_{3} = K_{1} = O_{1} = O_{1}$	93.9 (2)	$KIA^{m} - P2 - KIA^{n}$	131.00(10)
O_{4}^{A} $K_{1}A$ O_{1}^{A}	49.00(10)	$\mathbf{R}_{\mathbf{I}} \mathbf{B}_{\mathbf{I}} - \mathbf{F}_{\mathbf{I}} - \mathbf{R}_{\mathbf{I}} \mathbf{R}_{\mathbf{I}}$	4.92(17)
$O_{2iv} K_{1A} = O_{1vii}$	102.8(3)	$O_2 - P_2 - K_1 A^{\mu}$	30.0(2)
$O_2 = K_1 A = O_1 V_1 i$	52.40(10) 105.0(2)	$O_4 P_2 K_{IA''}$	114.8/(14)
$O_2 - K_{1A} - O_1^{\text{vii}}$	103.9(2)	$O_3 - P_2 - K_1 A_1^{\prime\prime}$	152.28(15)
04 KIA 01^{11}	154.55(18)	$VI - P2 - KIA^{\prime\prime}$	57.0(2)
05^{vi} KIA 01^{vi}	55.90 (12) 100 51 (19)	KIB - P2 - KIA''	62.3(3)
$03^{$	109.51(18)	KIA P2 KIA	58.50 (19) 10(02 (10)
O_{4}^{m} KIA O_{1}^{m}	140.0(2)	$KIA^{AV} - P2 - KIA^{V}$	106.02(10)
$03^{\prime\prime}$ KIA $01^{\prime\prime}$	150.9 (3)	KIB' - P2 - KIA''	/9.60 (18)
02^{-1} KIA 01^{1}	48.28 (9)	KIA' - P2 - KIA''	82.07 (11)
02-KIA-01	100.54 (17)	$O_2 - P_2 - K_1 B_1$	54.9 (3)
	80.5 (2)	$04 - P2 - KIB^{iv}$	114.6 (2)
$U1^{\mu}$ KIA $U1^{\mu}$	100.48 (17)	$U_3 - P_2 - K_1 B^{iv}$	132.2 (2)
VS^{T} —KIA—PI ^{VIII}	27.11 (6)	$VI - P2 - KIB^{W}$	52.1 (3)
US^{v_1} —KIA—PI ^{vm}	27.26 (6)	$K1B - P2 - K1B^{V}$	64.0 (5)
$O4^{vn}$ —K1A—P1 ^{vm}	75.89 (12)	$K1A - P2 - K1B^{IV}$	60.5 (3)
$O3^{v_1}$ —K1A—P1 ^{viii}	112.04 (14)	$K1A^{xiv}$ —P2— $K1B^{iv}$	101.87 (18)

O2 ^{iv} —K1A—P1 ^{viii}	92.13 (12)	$K1B^v$ — $P2$ — $K1B^{iv}$	80.7 (4)
O2—K1A—P1 ^{viii}	158.0 (3)	$K1A^v$ — $P2$ — $K1B^{iv}$	82.84 (15)
O4—K1A—P1 ^{viii}	110.9 (3)	$K1A^{iv}$ — $P2$ — $K1B^{iv}$	4.89 (16)
O1 ^{vii} —K1A—P1 ^{viii}	94.63 (17)	O2—P2—K1B ^{xiv}	147.0 (2)
O1 ^{iv} —K1A—P1 ^{viii}	83.06 (12)	O4—P2—K1B ^{xiv}	51.9 (2)
O5 ^{iv} —K1A—P2	123.1 (3)	O3—P2—K1B ^{xiv}	100.8 (2)
O5 ^{vi} —K1A—P2	131.9 (3)	O1—P2—K1B ^{xiv}	62.5 (2)
O4 ^{vii} —K1A—P2	134.67 (15)	K1B—P2—K1B ^{xiv}	86.7 (2)
O3 ^{vi} —K1A—P2	68.87 (13)	K1A—P2—K1B ^{xiv}	90.6 (2)
O2 ^{iv} —K1A—P2	108.16 (12)	K1A ^{xiv} —P2—K1B ^{xiv}	2.1 (2)
O2—K1A—P2	25.89 (8)	K1B ^v —P2—K1B ^{xiv}	136.6 (3)
O4—K1A—P2	26.12 (7)	$K1A^v$ — $P2$ — $K1B^{xiv}$	131.8 (3)
O1 ^{vii} —K1A—P2	128.24 (19)	K1A ^{iv} —P2—K1B ^{xiv}	108.05 (18)
O1 ^{iv} —K1A—P2	83.01 (17)	K1B ^{iv} —P2—K1B ^{xiv}	103.9 (3)
P1 ^{viii} —K1A—P2	136.7 (3)	P2—O1—Fe1	133.35 (16)
O5 ^{iv} —K1A—K1A ^{iv}	123.1 (2)	P2—O1—K1B ^{iv}	103.7 (4)
O5 ^{vi} —K1A—K1A ^{iv}	164.4 (3)	Fe1—O1—K1B ^{iv}	88.7 (3)
O4 ^{vii} —K1A—K1A ^{iv}	109.62 (17)	P2—O1—K1A ^{xiv}	93.04 (15)
O3 ^{vi} —K1A—K1A ^{iv}	101.10 (15)	Fe1—O1—K1A ^{xiv}	109.87 (14)
O2 ^{iv} —K1A—K1A ^{iv}	53.81 (18)	K1B ^{iv} —O1—K1A ^{xiv}	134.6 (2)
O2—K1A—K1A ^{iv}	53.25 (10)	$P2-O1-K1A^{iv}$	98.1 (2)
O4—K1A—K1A ^{iv}	87.55 (11)	Fe1—O1—K1A ^{iv}	92.22 (17)
O1 ^{vii} —K1A—K1A ^{iv}	68.91 (12)	$K1B^{iv}$ — $O1$ — $K1A^{iv}$	5.7 (2)
O1 ^{iv} —K1A—K1A ^{iv}	71.40 (18)	K1A ^{xiv} —O1—K1A ^{iv}	136.63 (15)
P1 ^{viii} —K1A—K1A ^{iv}	145.7 (2)	P2—O1—K1B ^{xiv}	93.3 (3)
P2—K1A—K1A ^{iv}	63.49 (9)	Fe1—O1—K1B ^{xiv}	109.0 (2)
O5 ^{iv} —K1B—O4	112.2 (6)	K1B ^{iv} —O1—K1B ^{xiv}	135.4 (4)
O5 ^{iv} —K1B—O5 ^{vi}	54.9 (3)	K1A ^{xiv} —O1—K1B ^{xiv}	1.0 (3)
O4—K1B—O5 ^{vi}	116.6 (6)	K1A ^{iv} —O1—K1B ^{xiv}	137.52 (19)
O5 ^{iv} —K1B—O3 ^{vi}	139.3 (5)	P2—O2—Ni1 ^{xv}	140.79 (19)
O4—K1B—O3 ^{vi}	74.7 (4)	P2—O2—Fe1 ^{xv}	140.79 (19)
O5 ^{vi} —K1B—O3 ^{vi}	85.5 (4)	Ni1 ^{xv} —O2—Fe1 ^{xv}	0.00 (3)
O5 ^{iv} —K1B—O2	158.7 (6)	P2—O2—K1B	90.7 (4)
O4—K1B—O2	52.1 (3)	Ni1 ^{xv} —O2—K1B	98.6 (3)
O5 ^{vi} —K1B—O2	141.5 (5)	Fe1 ^{xv} —O2—K1B	98.6 (3)
O3 ^{vi} —K1B—O2	56.5 (3)	P2-02-K1A ^{iv}	106.4 (2)
O5 ^{iv} —K1B—O1 ^{iv}	57.9 (3)	Ni1 ^{xv} —O2—K1A ^{iv}	112.8 (2)
O4—K1B—O1 ^{iv}	86.6 (4)	Fe1 ^{xv} —O2—K1A ^{iv}	112.8 (2)
O5 ^{vi} —K1B—O1 ^{iv}	112.9 (4)	K1B-O2-K1A ^{iv}	76.5 (3)
O3 ^{vi} —K1B—O1 ^{iv}	158.5 (5)	P2—O2—K1A	96.5 (2)
O2—K1B—O1 ^{iv}	103.5 (4)	Ni1 ^{xv} —O2—K1A	95.20 (17)
O5 ^{iv} —K1B—O2 ^{iv}	72.9 (3)	Fe1 ^{xv} —O2—K1A	95.20 (17)
O4—K1B—O2 ^{iv}	124.7 (5)	K1B—O2—K1A	6.2 (2)
O5 ^{vi} —K1B—O2 ^{iv}	110.2 (5)	K1A ^{iv} —O2—K1A	72.95 (18)
O3 ^{vi} —K1B—O2 ^{iv}	138.1 (6)	P2—O2—K1B ^{iv}	101.2 (3)
O2—K1B—O2 ^{iv}	103.3 (4)	Ni1 ^{xv} —O2—K1B ^{iv}	118.0 (3)
O1 ^{iv} —K1B—O2 ^{iv}	47.8 (2)	$Fe1^{xv}$ —O2—K1 B^{iv}	118.0 (3)
O5 ^{iv} —K1B—O4 ^{vii}	95.0 (4)	K1B-02-K1B ^{iv}	76.7 (4)
	· /		× /

O4—K1B—O4 ^{vii}	140.1 (5)	$K1A^{iv}$ — $O2$ — $K1B^{iv}$	5.2 (2)
O5 ^{vi} —K1B—O4 ^{vii}	56.5 (3)	K1A—O2—K1B ^{iv}	73.6 (3)
O3 ^{vi} —K1B—O4 ^{vii}	65.8 (3)	P2—O2—K1B ^v	84.3 (3)
O2—K1B—O4 ^{vii}	106.1 (4)	Ni1 ^{xv} —O2—K1B ^v	92.2 (3)
O1 ^{iv} —K1B—O4 ^{vii}	133.3 (5)	$Fe1^{xv}$ — $O2$ — $K1B^{v}$	92.2 (3)
O2 ^{iv} —K1B—O4 ^{vii}	90.3 (5)	$K1B - O2 - K1B^{v}$	168.0 (3)
$O5^{iv}$ —K1B—P2	132.8 (6)	$K1A^{iv} - O2 - K1B^{v}$	94.42 (19)
O4—K1B—P2	27.35 (14)	$K1A - O2 - K1B^{v}$	167.1 (3)
$O5^{vi}$ —K1B—P2	140.4 (6)	$K1B^{iv} - 02 - K1B^{v}$	93.6 (5)
$O3^{vi}$ —K1B—P2	71.2 (3)	$P2-O3-Ni1^{xvi}$	1501(3)
Ω^2 —K1B—P2	27.44(13)	$P2 = O3 = Fe1^{xvi}$	150.1(3)
$O1^{iv}$ K1B P2	87 3 (3)	$Ni1^{xvi}$ $O3$ $Fe1^{xvi}$	0.00(3)
Ω^{2iv} K1B P2	1084(4)	$P_{2} = 0^{3} = K_{1} A_{v}$	105 1 (2)
$O2^{vii}$ K1B P2	131.7(4)	$Ni1^{xvi}$ $O3$ $K1^{4v}$	98.46 (16)
O_{5}^{iv} K1B P1 ^{viii}	27.36(14)	Fe^{1xvi} O3 $K^{1}A^{v}$	98.46 (16)
$O_4 K_{1B} B_{1}$	27.30(14)	$P_2 \cap Q_2 = K_1 P_2$	98.40(10)
O_4 KID Γ Γ	119.0(0)	$\mathbf{F}_{2} = \mathbf{O}_{3} = \mathbf{K}_{1} \mathbf{D}_{1}$	101.0(4)
O_{2} $K_{1}D_{1}$ P_{1}	27.71(15)		100.8(3)
O_3^{T} KIB PI ^{T}	113.1 (4)	$Fe^{1} = 03 = K1B^{2}$	100.8(3)
	166.6 (6)	$KIA^{\prime} = 03 = KIB^{\prime}$	6.3(2)
OI ^W —KIB—PI ^{VIII}	85.3 (3)	$P2 = 04 = N11^{\text{xvii}}$	135.0 (2)
$O2^{T}$ KIB PI	90.1 (3)	$P2 - O4 - Fe^{1 \times m}$	135.0 (2)
	73.6 (3)	$N_1 I^{XVI} - O_4 - Fe I^{XVI}$	0.00 (3)
P2—K1B—P1 ^{vin}	146.7 (6)	P2—O4—K1B	96.5 (3)
$O5^{iv}$ —K1B— $O2^{vi}$	102.0 (5)	$Ni1^{xvn}$ O4—K1B	113.5 (3)
$O4-K1B-O2^{vi}$	54.6 (3)	Fe1 ^{xvii} —O4—K1B	113.5 (3)
$O5^{vi}$ —K1B— $O2^{vi}$	67.5 (3)	$P2-O4-K1A^{xiv}$	101.84 (19)
$O3^{vi}$ —K1B— $O2^{vi}$	47.4 (2)	Ni1 ^{xvii} —O4—K1A ^{xiv}	97.46 (19)
$O2-K1B-O2^{vi}$	80.6 (4)	Fe1 ^{xvii} —O4—K1A ^{xiv}	97.46 (19)
$O1^{iv}$ —K1B— $O2^{vi}$	127.7 (6)	K1B—O4—K1A ^{xiv}	111.5 (3)
$O2^{iv}$ —K1B— $O2^{vi}$	174.4 (5)	P2—O4—K1A	93.21 (17)
$O4^{vii}$ —K1B— $O2^{vi}$	92.5 (3)	Ni1 ^{xvii} —O4—K1A	115.51 (15)
P2—K1B—O2 ^{vi}	73.2 (3)	Fe1 ^{xvii} —O4—K1A	115.51 (15)
$P1^{viii}$ —K1B—O2 ^{vi}	86.0 (4)	K1B—O4—K1A	3.5 (3)
O5 ^{iv} —K1B—O1 ^{vii}	93.5 (4)	K1A ^{xiv} —O4—K1A	113.54 (12)
O4—K1B—O1 ^{vii}	150.5 (5)	P2	105.2 (3)
O5 ^{vi} —K1B—O1 ^{vii}	89.6 (4)	Ni1 ^{xvii} —O4—K1B ^{xiv}	93.5 (3)
O3 ^{vi} —K1B—O1 ^{vii}	95.5 (4)	Fe1 ^{xvii} —O4—K1B ^{xiv}	93.5 (3)
O2—K1B—O1 ^{vii}	99.1 (5)	K1B—O4—K1B ^{xiv}	112.9 (2)
O1 ^{iv} —K1B—O1 ^{vii}	95.8 (4)	K1A ^{xiv} —O4—K1B ^{xiv}	4.0 (3)
O2 ^{iv} —K1B—O1 ^{vii}	48.2 (3)	K1A—O4—K1B ^{xiv}	115.1 (3)
O4 ^{vii} —K1B—O1 ^{vii}	44.5 (2)	P1-05-Fe1	144.88 (18)
P2—K1B—O1 ^{vii}	123.2 (5)	P1-05-K1B ^{iv}	100.3 (3)
P1 ^{viii} —K1B—O1 ^{vii}	89.8 (4)	Fe1—O5—K1B ^{iv}	97.7 (3)
O2 ^{vi} —K1B—O1 ^{vii}	135.7 (4)	P1—O5—K1A ^{iv}	98.87 (15)
O5 ^{ix} —P1—O5	108.79 (10)	Fe1—O5—K1A ^{iv}	102.05 (18)
$O5^{ix}$ —P1— $O5^{x}$	110.8 (2)	$K1B^{iv}$ —O5— $K1A^{iv}$	6.5 (2)
$05-P1-05^{x}$	108.79 (10)	P1-05-K1B ^v	95.5 (3)
$O5^{ix}$ $P1$ $O5^{xi}$	108.79 (10)	$Fe1 \longrightarrow K1B^{v}$	101.9 (3)

supporting information

O5—P1—O5 ^{xi}	110.8 (2)	$K1B^{iv}$ —O5— $K1B^{v}$	118.67 (12)
$O5^{x}$ $P1 O5^{xi}$	108.79 (10)	K1A ^{iv} —O5—K1B ^v	112.8 (3)
$O5^{ix}$ —P1—K1 B^{xii}	56.8 (2)	P1—O5—K1A ^v	96.61 (14)
O5—P1—K1B ^{xii}	130.8 (3)	Fe1—O5—K1A ^v	97.63 (18)
$O5^{x}$ —P1—K1 B^{xii}	120.3 (3)	$K1B^{iv}$ —O5— $K1A^{v}$	124.5 (3)
O5 ^{xi} —P1—K1B ^{xii}	52.3 (2)	$K1A^{iv}$ —O5— $K1A^{v}$	118.73 (10)
$O5^{ix}$ —P1—K1 B^{iv}	120.3 (3)	$K1B^v$ —O5— $K1A^v$	6.5 (2)
$O5$ — $P1$ — $K1B^{iv}$	52.3 (2)		

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) x-1/2, -y+3/2, -z+1/2; (iii) y-1/2, x+1/2, z-1/2; (iv) -x, -y+1, z; (v) y, -x+1, -z+1; (vi) -y+1/2, -x+1/2; (vii) x, y-1, z; (vi) x, y-1, z; (vii) x, y-1, z; (vii) x, y-1, z; (vii) -y+1/2, -x+1/2; (viii) x, y-1, z; (vii) -y+1/2, -x+1/2; (viii) x, y-1, z; (vii) -y+1/2, -x+1/2; (viii) x, y-1, z; (vii) x, y-1, z; (vii) -y, x+1, -z+1; (vi) -y+1/2, -x+1/2; (viii) x, y-1/2, x+1/2; (viii) x, y+1, z; (viii) -y, x+1, -z+1; (viv) -y+1/2, -x+1/2; (viv) -y-1/2; (viv) -y-1/2; (viv) -y-1/2, -x+1/2; (viv) -y-1/2; (viv) -y-1/2