

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-7-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 18 June 2014; accepted 21 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.074; data-to-parameter ratio = 9.9.

In the title compound, $C_{10}H_4ClFO_3$, a chlorinated and fluorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. = 0.0336 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.062 (2) Å] being for a benzene-ring C atom. In the crystal, molecules are linked through stacking interactions [centroidcentroid distance between the benzene and pyran rings = 3.958 (3) Å and interplanar distance = 3.259 (3) Å], C-H···O hydrogen bonds, and short C···O contacts [2.879 (3) Å]. Unsymmetrical halogen-halogen interactions between the Cl and F atoms [Cl···F = 3.049 (3) Å, C-Cl···F = 148.10 (9)° and C-F···Cl = 162.06 (13)°] are also formed, giving a meandering two-dimensional network along the *a* axis.

Related literature

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013). For halogen–halogen interactions, see: Hathwar & Guru Row (2011); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{10}H_4CIFO_3}\\ M_r = 226.59\\ {\rm Orthorhombic,}\ P2_12_12_1\\ a = 5.725\ (3)\ {\rm \AA}\\ b = 32.57\ (3)\ {\rm \AA}\\ c = 4.706\ (4)\ {\rm \AA} \end{array}$

 $V = 877.4 (11) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.43 \text{ mm}^{-1}$ T = 100 K $0.40 \times 0.25 \times 0.08 \text{ mm}$ 1249 reflections with $F^2 > 2\sigma(F^2)$

3 standard reflections every 150

intensity decay: -0.1%

 $R_{\rm int} = 0.009$

reflections

Data collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.894, T_{max} = 0.966$ 1692 measured reflections 1346 independent reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.027 & \Delta \rho_{\max} = 0.29 \text{ e} \text{ Å}^{-3} \\ wR(F^2) = 0.074 & \Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3} \\ S = 1.09 & \text{Absolute structure: Flack (1983),} \\ 1346 \text{ reflections} & 105 \text{ Friedel Pairs} \\ 136 \text{ parameters} & \text{Absolute structure parameter:} \\ \text{H-atom parameters constrained} & 0.31 (9) \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{ \begin{array}{c} C7-H3\cdots O2^i \\ C1-H1\cdots O3^{ii} \end{array} } $	0.95 0.95	2.27 2.40	3.173 (3) 3.242 (3)	158 147

Symmetry codes: (i) x - 1, y, z + 1; (ii) $-x - \frac{1}{2}$, -y + 1, $z + \frac{1}{2}$.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999; cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

I acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2593).

References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hathwar, V. R. & Guru Row, T. N. (2011). Cryst. Growth Des. 11, 1338–1346. Ishikawa, Y. (2014). Acta Cryst. E70, 0514.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.
- Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.
- Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

supporting information

Acta Cryst. (2014). E70, o825 [https://doi.org/10.1107/S1600536814014706] 6-Chloro-7-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Comment

Halogen bonding and halogen…halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013, Mukherjee *et al.*, 2014, Metrangolo *et al.*, 2014). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014). Halogen bonding between the formyl oxygen atom and the chlorine atom at the 8-position and type I halogen…halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig.3 (top)). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Fig.3 (middle)). As part of our interest in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and monofluorinated 3-formylchromone derivative, 6-chloro-7-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-withdrawing substituent on the chlorine atom at 6-position and the interaction mode(*s*).

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0336 Å, and the largest deviations is 0.062 (2) Å for C4. These mean that these atoms are essentially coplanar (Fig.1).

In the crystal, the molecules are linked through stacking interaction between the translation-symmetry equivalentⁱ molecules [centroid–centroid distance between the benzene and pyran rings of the 4*H*-chromene units = 3.958 (3) Å, interplanar distance 3.259 (3) Å, i: x, y, z + 1], and through C–H…O hydrogen bonds (see hydrogen bonding table).

A contact between the formyl oxygen atom and the chlorine atom at 6-position is not found in the title compound. Instead, unsymmetrical halogen…halogen interactions are formed between the chlorine and fluorine atoms [Cl1…F1 = 3.049(3) Å, C5–Cl1…F1 = $148.10(9)^\circ$, C6–F1…Cl1 = $162.06(13)^\circ$] to give a meandering two-dimensional-network along the *a* axis, as shown in Fig.2 and Fig.3 (bottom). It is suggested that the electron-withdrawing substituent at 7-position should make the σ -hole of the chlorine atom at 6-position larger, and the electropositive region of the chlorine atom should contact the electronegative region of the fluorine atom (Hathwar *et al.*, 2011). Symmetrical halogen…halogen interactions (F…F and Cl…Cl) are not observed in the title compound, which might support that the unsymmetrical Cl…F interaction is more favorable than the symmetrical ones.

Furthermore, short contacts between the formyl C10 and O3ⁱⁱ atoms [2.879 (3) Å, ii: -x + 1/2, -y + 1, z + 1/2] are observed. This interesting feature might be caused by strong dipole-dipole interaction between the formyl groups polarized by introduction of the chlorine and fluorine atoms into the chromone ring. These findings should be helpful to understand interaction of halogenated ligands with proteins, and are thus valuable for rational drug design.

S2. Experimental

5-Chloro-4-fluoro-2-hydroxyacetophenone was prepared from 4-chloro-3-fluorophenol by Fries rearrangement reaction. To a solution of 5-chloro-4-fluoro-2-hydroxyacetophenone (2.4 mmol) in *N*,*N*-dimethylformamide (10 ml) was added dropwise POCl₃ (6.0 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (30 ml) was added. The precipitates were collected, washed with water, and dried *in vacuo* (yield: 58%). ¹H NMR (400 MHz, CDCl₃): δ = 7.36 (d, 1H, *J* = 8.3 Hz), 8.37 (d, 1H, *J* = 8.3 Hz), 8.52 (s, 1H), 10.36 (s, 1H). DART-MS calcd for [C₁₀H₄Cl₁F₁O₃ + H⁺]: 226.991, found 227.014. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate/chloroform solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 3

Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top, Ishikawa & Motohashi, 2013), 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (middle, Ishikawa, 2014), and the title compound (bottom).

6-Chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data

C₁₀H₄ClFO₃ $M_r = 226.59$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.725 (3) Å b = 32.57 (3) Å c = 4.706 (4) Å V = 877.4 (11) Å³ Z = 4 F(000) = 456.00 $D_x = 1.715 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.0-17.5^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 100 KPrismatic, yellow $0.40 \times 0.25 \times 0.08 \text{ mm}$ Data collection

Rigaku AFC-7R	1249 reflections with $F^2 > 2\sigma(F^2)$
diffractometer	$R_{int} = 0.009$
ω scans	$\theta_{max} = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -4 \rightarrow 7$
(North <i>et al.</i> , 1968)	$k = 0 \rightarrow 42$
$T_{\min} = 0.894, T_{\max} = 0.966$	$l = -3 \rightarrow 6$
1692 measured reflections	3 standard reflections every 150 reflections
1346 independent reflections	intensity decay: -0.1%
RefinementRefinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.074$ $S = 1.09$ 1346 reflections136 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 0.3855P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³ Absolute structure: Flack (1983), 105 Friedel Pairs

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.39186 (10)	0.273972 (16)	1.18743 (14)	0.02563 (15)
F1	-0.0630 (3)	0.29836 (4)	1.4050 (3)	0.0262 (4)
O1	-0.1743 (3)	0.41526 (4)	0.8442 (4)	0.0170 (4)
O2	0.4433 (3)	0.39789 (5)	0.4232 (4)	0.0197 (4)
O3	0.0422 (3)	0.49703 (5)	0.2146 (4)	0.0221 (4)
C1	-0.1015 (4)	0.44135 (6)	0.6415 (5)	0.0164 (5)
C2	0.1017 (4)	0.43740 (6)	0.4982 (5)	0.0150 (4)
C3	0.2589 (4)	0.40294 (6)	0.5529 (5)	0.0151 (5)
C4	0.3078 (4)	0.34031 (6)	0.8557 (5)	0.0166 (5)
C5	0.2284 (4)	0.31479 (6)	1.0679 (5)	0.0179 (5)
C6	0.0125 (4)	0.32307 (6)	1.1954 (5)	0.0179 (5)
C7	-0.1221 (4)	0.35619 (6)	1.1204 (5)	0.0168 (5)
C8	0.1766 (4)	0.37479 (6)	0.7742 (5)	0.0146 (5)
C9	-0.0373 (4)	0.38186 (6)	0.9084 (5)	0.0139 (5)
C10	0.1639 (4)	0.46812 (6)	0.2808 (5)	0.0174 (5)
H1	-0.1991	0.4640	0.5960	0.0197*
H2	0.4520	0.3346	0.7640	0.0200*
Н3	-0.2678	0.3614	1.2100	0.0202*
H4	0.3094	0.4650	0.1861	0.0208*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0256 (3)	0.0191 (3)	0.0322 (3)	0.0053 (3)	-0.0045 (3)	0.0062 (3)
F1	0.0290 (8)	0.0242 (7)	0.0256 (8)	-0.0050 (7)	-0.0003 (7)	0.0083 (6)
01	0.0134 (7)	0.0183 (7)	0.0194 (8)	0.0035 (6)	0.0028 (7)	0.0013 (7)
O2	0.0160 (8)	0.0231 (8)	0.0199 (8)	0.0032 (7)	0.0050 (8)	0.0007 (7)
O3	0.0219 (8)	0.0194 (7)	0.0250 (9)	0.0017 (7)	-0.0026 (8)	0.0047 (7)
C1	0.0170 (10)	0.0144 (9)	0.0180 (11)	0.0007 (8)	-0.0019 (11)	-0.0003 (9)
C2	0.0160 (10)	0.0143 (9)	0.0146 (10)	0.0003 (9)	-0.0007 (10)	-0.0016 (8)
C3	0.0150 (10)	0.0159 (10)	0.0144 (10)	-0.0004 (9)	-0.0025 (10)	-0.0029 (9)
C4	0.0161 (10)	0.0170 (10)	0.0169 (11)	0.0015 (9)	-0.0019 (10)	-0.0031 (9)
C5	0.0193 (11)	0.0136 (10)	0.0207 (11)	0.0023 (9)	-0.0049 (10)	-0.0004 (9)
C6	0.0208 (11)	0.0168 (10)	0.0162 (11)	-0.0050 (9)	-0.0007 (11)	0.0007 (10)
C7	0.0152 (10)	0.0202 (10)	0.0150 (10)	-0.0022 (9)	0.0002 (10)	-0.0025 (9)
C8	0.0157 (10)	0.0142 (9)	0.0137 (10)	-0.0001 (8)	-0.0013 (9)	-0.0026 (9)
C9	0.0137 (10)	0.0134 (9)	0.0147 (10)	-0.0004 (8)	-0.0034 (9)	-0.0029 (9)
C10	0.0175 (10)	0.0191 (10)	0.0156 (10)	-0.0009(9)	-0.0010(10)	-0.0013(9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C5	1.720 (3)	C4—C5	1.377 (4)
F1C6	1.344 (3)	C4—C8	1.405 (3)
01—C1	1.344 (3)	C5—C6	1.400 (4)
O1—C9	1.375 (3)	C6—C7	1.372 (3)
O2—C3	1.231 (3)	С7—С9	1.389 (3)
O3—C10	1.212 (3)	C8—C9	1.397 (3)
C1—C2	1.351 (4)	C1—H1	0.950
C2—C3	1.461 (3)	C4—H2	0.950
C2-C10	1.474 (3)	С7—Н3	0.950
C3—C8	1.465 (3)	C10—H4	0.950
Cl1…F1	2.908 (2)	F1…H3	2.5356
F1…C9	3.589 (4)	O1…H3	2.5157
O1…C3	2.862 (3)	O2…H2	2.6126
O1…C6	3.590 (4)	O2…H4	2.5720
O2…C1	3.576 (4)	O3…H1	2.5075
O2…C4	2.874 (3)	C1…H4	3.2741
O2…C10	2.870 (3)	C3…H1	3.2973
O3…C1	2.828 (3)	C3…H2	2.6768
C1…C7	3.576 (4)	С3…Н4	2.6745
C1…C8	2.761 (4)	С5…Н3	3.2890
C2…C9	2.763 (4)	С6…Н2	3.2547
C4…C7	2.806 (4)	C8…H3	3.2967
C5…C9	2.766 (4)	С9…Н1	3.1900
C6…C8	2.766 (4)	С9…Н2	3.2681
$Cl1 \cdots F1^i$	3.380 (3)	C10…H1	2.5568
Cl1…F1 ⁱⁱ	3.049 (3)	H1…H4	3.4924

F1···Cl1 ⁱⁱⁱ	3.380 (3)	Cl1···H2 ^v	3.3732
F1…Cl1 ^{iv}	3.049 (3)	Cl1···H3 ⁱ	3.4511
F1…C4 ^v	3.297 (3)	F1···H2 ^{vi}	3.4577
F1····C5 ^v	3.577 (4)	F1···H2 ^v	3.5970
F1…C8 ^v	3.331 (3)	O1····H2 ⁱⁱⁱ	3.4090
O1…O2 ⁱⁱⁱ	3.006 (3)	O1····H3 ^{viii}	3.5035
O1…O2 ^{vi}	3.540 (3)	O1····H4 ^v	3.5895
O1…O3 ^v	3.416 (3)	O2…H1 ⁱ	3.0802
O1…C2 ^v	3.533 (4)	O2…H3 ^{vii}	2.2707
O1…C3 ⁱⁱⁱ	3.545 (3)	O3…H1 ^{viii}	3.3969
O1…C10 ^v	3.307 (3)	O3····H1 ^{xi}	2.4042
02…01 ^{vii}	3.540 (3)	O3····H4 ^{ix}	2.9039
02…01 ⁱ	3.006 (3)	O3…H4 ^x	2.6777
02…C1 ⁱ	3.138 (3)	C1···H3 ^{viii}	3.4372
O2····C4 ^{viii}	3.354 (4)	C1···H4 ^v	3.5633
02C5 ^{viii}	3.411 (4)	C1···H4 ^x	3.4837
02C7 ^{vii}	3 173 (3)	C2···H3 ^{viii}	3 5279
02···C8 ^{viii}	3.496(4)	$C2\cdots H4^{v}$	3 5642
02 00 03…01 ^{viii}	3 416 (3)	$C2\cdots H4^{x}$	3 3373
0303 ^{ix}	3 352 (3)	C3···H3 ^{vii}	3 4320
03···03 ^x	3.352(3)	C4···H3 ⁱ	3 0253
03···C1 ^{viii}	3 353 (4)	C5···H2v	3 5757
$O3 \cdots C1^{xi}$	3.242 (3)	C5···H3 ⁱ	3.3268
$O3 \cdots C2^{ix}$	3.123 (3)	C7···H2 ⁱⁱⁱ	3.0416
03····C3 ^{ix}	3 534 (4)	C9···H2 ⁱⁱⁱ	3 3732
O3…C10 ^{ix}	2.879 (3)	$C10\cdotsH1^{xi}$	3.5669
$O3 - C10^{x}$	3349(4)	C10····H4 ^{ix}	3 5488
C1O2 ⁱⁱⁱ	3,138 (3)	C10···H4 ^x	2.8982
C1O3 ^v	3,353 (4)	$H1\cdots O2^{iii}$	3.0802
C1···O3 ^{xii}	3.242 (3)	$H1\cdots O3^{v}$	3.3969
C1C10 ^v	3.481 (4)	H1…O3 ^{xii}	2.4042
C2…O1 ^{viii}	3.533 (4)	H1····C10 ^{xii}	3.5669
C2…O3 ^x	3.123 (3)	$H1\cdots H1^{xi}$	3.3725
C2···C7 ^{viii}	3.435 (4)	$H1\cdots H1^{xii}$	3.3725
C2···C9 ^{viii}	3.407 (4)	H1···H4 ⁱⁱⁱ	3.4116
C3…O1 ⁱ	3.545 (3)	H1····H4 ^x	3.2403
C3…O3 ^x	3.534 (4)	H2…Cl1 ^{viii}	3.3732
C3····C6 ^{viii}	3.404 (4)	H2…F1 ^{viii}	3.5970
C3····C7 ^{viii}	3.349 (4)	H2…F1 ^{vii}	3.4577
C3····C9 ^{viii}	3.542 (4)	H2…O1 ⁱ	3.4090
C4…F1 ^{viii}	3.297 (3)	H2····C5 ^{viii}	3.5757
C4…O2 ^v	3.354 (4)	H2····C7 ⁱ	3.0416
C4…C6 ^{viii}	3.581 (4)	H2····C9 ⁱ	3.3732
C4···C7 ⁱ	3.531 (4)	H2···H3 ^{vii}	3.1828
C5…F1 ^{viii}	3.577 (4)	H2···H3 ⁱ	2.7815
C5…O2 ^v	3.411 (4)	H3…Cl1 ⁱⁱⁱ	3.4511
C6…C3 ^v	3.404 (4)	H3…O1 ^v	3.5035
C6…C4 ^v	3.581 (4)	H3····O2 ^{vi}	2.2707

C6…C8 ^v	3.337 (4)	H3····C1 ^v	3.4372
C7···O2 ^{vi}	3.173 (3)	H3····C2 ^v	3.5279
C7…C2 ^v	3.435 (4)	H3····C3 ^{vi}	3.4320
C7…C3 ^v	3.349 (4)	H3…C4 ⁱⁱⁱ	3.0253
C7···C4 ⁱⁱⁱ	3.531 (4)	H3····C5 ⁱⁱⁱ	3.3268
C7…C8 ^v	3.571 (4)	H3…H2 ⁱⁱⁱ	2.7815
C8…F1 ^{viii}	3.331 (3)	H3…H2 ^{vi}	3.1828
C8…O2 ^v	3.496 (4)	H4…O1 ^{viii}	3.5895
C8····C6 ^{viii}	3.337 (4)	H4…O3 ^{ix}	2.6777
C8····C7 ^{viii}	3.571 (4)	H4···O3 ^x	2.9039
C9C2 ^v	3407(4)	H4…C1 ^{viii}	3 5633
C9C3 ^v	3,542,(4)	H4····C1 ^{ix}	3 4837
$C9\cdots C10^{v}$	3 506 (4)	H4…C2 ^{viii}	3 5642
$C10\cdots O1^{viii}$	3 307 (3)	$H4\cdots C2^{ix}$	3 3373
$C10O3^{ix}$	3.349(4)	$H4\cdots C10^{ix}$	2 8982
$C10O3^{x}$	2,879(3)	$H4\cdots C10^{x}$	3 5488
$C10 \cdots C1^{\text{viii}}$	2.075(3)	$H4 \cdots H1^{i}$	3 4116
	3.401(4)	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	3 2403
$C10 \cdots C10^{ix}$	3.300(4) 3.280(4)	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	3.2403
C10 $C10$	3.289(4)		3.3442
	5.269 (4) 2.8250	п4…п4"	5.5442
CI1H2	2.8239		
C1C9	118.64 (17)	C3—C8—C4	121.5 (2)
O1—C1—C2	124.15 (19)	C3—C8—C9	120.02 (19)
C1—C2—C3	121.03 (19)	C4—C8—C9	118.5 (2)
C1 - C2 - C10	119.31 (19)	01	115.77 (19)
$C_{3}-C_{2}-C_{10}$	119.7 (2)	01	122.08 (19)
02-C3-C2	122.9 (2)	C7—C9—C8	122.1 (2)
$0^{2}-C^{3}-C^{8}$	123.02(19)	03-C10-C2	1245(2)
$C_2 - C_3 - C_8$	114 06 (19)	01-C1-H1	117 920
$C_{5} - C_{4} - C_{8}$	1203(2)	C^2 — C^1 — H^1	117.920
$C_{11} - C_{5} - C_{4}$	120.5(2) 121.60(18)	C_{2} C_{4} H_{2}	119.879
C11 - C5 - C6	119 27 (17)	C8-C4-H2	119.849
C4-C5-C6	119.27(17) 119.1(2)	C6-C7-H3	121 234
$F_1 - C_6 - C_5$	119.1 (2)	C9-C7-H3	121.254
F1 - C6 - C7	118.6(2)	O_{3} C_{10} H_{4}	117 735
$C_{5} - C_{6} - C_{7}$	110.0(2) 122 5 (2)	C_{2} C_{10} H_{4}	117.735
$C_{5} = C_{0} = C_{7}$	122.3(2) 117.5(2)	62-610-114	117.750
0-0/-09	117.5 (2)		
C1C7C7	179.81 (16)	C8—C4—C5—C11	-176.25 (17)
C1—O1—C9—C8	1.4 (3)	C8—C4—C5—C6	1.7 (3)
C9—O1—C1—C2	-1.3 (3)	H2—C4—C5—Cl1	3.7
C9-01-C1-H1	178.7	H2—C4—C5—C6	-178.3
01—C1—C2—C3	1.1 (4)	H2—C4—C8—C3	-1.2
O1—C1—C2—C10	-179.67 (17)	H2—C4—C8—C9	178.6
H1—C1—C2—C3	-178.9	Cl1—C5—C6—F1	-1.2 (3)
H1-C1-C2-C10	0.3	Cl1—C5—C6—C7	176.87 (14)
C1—C2—C3—O2	178.64 (19)	C4—C5—C6—F1	-179.17 (19)
-			

supporting information

C1 - C2 - C3 - C8 $C1 - C2 - C10 - O3$ $C1 - C2 - C10 - H4$ $C3 - C2 - C10 - H4$ $C3 - C2 - C10 - H4$ $C10 - C2 - C3 - O2$ $C10 - C2 - C3 - C8$ $O2 - C3 - C8 - C4$ $O2 - C3 - C8 - C9$ $C2 - C3 - C8 - C4$ $C2 - C3 - C8 - C9$	-0.9 (3) -1.5 (4) 178.5 177.79 (19) -2.2 -0.6 (3) 179.86 (17) 1.2 (4) -178.51 (18) -179.22 (17) 1.0 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.1 (4) 178.33 (16) -1.7 0.3 (4) -179.7 -178.42 (18) -0.0 (3) 1.6 180.0 -1.3 (3) -179.63 (17)
C2-C3-C8-C9	1.0 (3)	C3—C8—C9—C7	-179.63 (17)
C5-C4-C8-C3	178.79 (18)	C4—C8—C9—O1	178.90 (18)
C5-C4-C8-C9	-1.5 (3)	C4—C8—C9—C7	0.6 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*+3; (iii) *x*-1, *y*, *z*; (iv) *x*-1/2, -*y*+1/2, -*z*+3; (v) *x*, *y*, *z*+1; (vi) *x*-1, *y*, *z*+1; (vii) *x*+1, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (ix) -*x*+1/2, -*y*+1, *z*-1/2; (x) -*x*+1/2, -*y*+1, *z*-1/2; (xii) -*x*-1/2, -*y*+1, *z*-1/2; (xiii) -*x*-1/2, -*y*+1, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
С7—Н3…О2 ^{vi}	0.95	2.27	3.173 (3)	158
C1—H1····O3 ^{xii}	0.95	2.40	3.242 (3)	147

Symmetry codes: (vi) *x*-1, *y*, *z*+1; (xii) -*x*-1/2, -*y*+1, *z*+1/2.