

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*E*)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2*H*-1,2-benzothiazin-4ylidene]acetic acid

Shaojuan Zhu, Shagufta Parveen and Changjin Zhu*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China Correspondence e-mail: zcj@bit.edu.cn

Received 20 May 2014; accepted 6 June 2014

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.042; *wR* factor = 0.114; data-to-parameter ratio = 17.4.

In the asymmetric unit of the title compound, $C_{17}H_{12}F_3NO_4S$, there are two conformationally similar molecules in which the heterocyclic thiazine ring adopts a half-chair conformation, with the dihedral angle between the two benzene rings being 24.84 (8) and 37.42 (8)°. In the crystal, the molecules form dimers through cyclic carboxylic acid O-H···O hydrogenbonding associations [graph set $R_2^2(8)$] and are extended into chains along [101] through weak C-H···O_{sulfinyl} hydrogen bonds [graph set $R_2^2(14)$]..

Related literature

For pharmaceutical and biological properties of 1,2-benzothiazines, see: Zia-ur-Rehman *et al.* (2005); Lombardino *et al.* (1971); Bihovsky *et al.* (2004); For synthetic details of the title compound, see: Parveen *et al.* (2014*b*). For related structures, see: Yang *et al.* (2012); Parveen *et al.* (2014*a*). For graph-set analysis, see: Etter *et al.* 1990).

Experimental

Crystal data

 $\begin{array}{l} c = 15.076 \ (2) \ {\rm \mathring{A}} \\ \alpha = 104.631 \ (8)^{\circ} \\ \beta = 99.915 \ (6)^{\circ} \\ \gamma = 104.237 \ (6)^{\circ} \\ V = 1561.2 \ (4) \ {\rm \mathring{A}}^{3} \end{array}$

<i>Z</i> =	= 4			
Mo	ο Κα	rac	liatio	on
μ =	= 0.2	7 m	m^{-1}	

Data collection

Rigaku AFC10/Saturn724+ CCDdetector diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{\rm min} = 0.932, T_{\rm max} = 0.964$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.114$ S = 1.008293 reflections 477 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3O\cdots O8^{i}$ $O7-H7O\cdots O4^{ii}$ $C15-H15\cdots O6$ $C32-H32\cdots O2$	0.85 (3) 0.92 (3) 0.95	1.86 (3) 1.73 (3) 2.34 2.61	2.7063 (17) 2.6473 (17) 3.267 (2) 3.539 (2)	172 (3) 177 (2) 165 165

Symmetry codes: (i) x + 1, y, z - 1; (ii) x - 1, y, z + 1.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear* (Rigaku, 2008); data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2008).

This work was supported by the National Natural Science Foundation of China (grant No. 21272025), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20111101110042) and the Science and Technology Commission of Beijing (China) (grant No. Z131100004013003).

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2301).

References

Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). *Bioorg. Med. Chem. Lett.* **14**, 1035–1038.

Brandenburg, K. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). *Acta Cryst*. B46, 256–262. Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). *J. Med. Chem.*

14, 1171–1175.
 Parveen, S., Hussain, S., Zhu, S., Hao, X. & Zhu, C. (2014a). Acta Cryst. E70,

- o627.
- Parveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014b). RSC. Adv. 4, 21134–21140.
- Rigaku (2008). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, Y., Yu, Y. & Zhu, C. (2012). Acta Cryst. E68, 01364.
- Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2005). *Bull. Korean Chem. Soc.* **26**, 1771–1775.

 $0.31 \times 0.26 \times 0.18 \ \mathrm{mm}$

20894 measured reflections

8293 independent reflections

6954 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 153 K

 $R_{\rm int} = 0.030$

refinement $\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

supporting information

Acta Cryst. (2014). E70, o775 [https://doi.org/10.1107/S1600536814013245]

2-[(*E*)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2*H*-1,2-benzothiazin-4-ylidene]acetic acid

Shaojuan Zhu, Shagufta Parveen and Changjin Zhu

S1. Comment

1,2-Benzothiazine-1,1-dioxide derivatives are reported as having anti- inflammatory and anti-bacterial activities (Lombardino *et al.*, 1971) while some of its derivatives have been found to be calpain 1 inhibitors (Bihovsky *et al.*, 2004). More recently, its derivatives were reported as aldose reductase inhibitors (Parveen *et al.*, 2014*b*). Herein, we report the structure of the title derivative, $C_{17}H_{12}F_3NO_4S$, which is the *E* isomer of the previously published isomer 2-[(*Z*)-1,1-dioxo-2-(2,4,5-trifluorobenzyl)-3,4- dihydro-2*H*-1,2-benzothiazin-4-ylidene]acetic acid (Parveen *et al.*, 2014*a*).

In the title compound, there are two conformationally similar molecules (*A* and *B*) in the asymmetric unit (Fig. 1). The dihedral angles between mean plane of the two benzene rings [(C1—C6) and (C10—C15) in *A* and (C18–C23) and (C27–C32) in *B*] are 37.42 (8) and 24.84 (7)°, respectively. These values compare with 43.28 (9)° in the *Z* isomer (Parveen *et al.*, 2014*a*). The heterocyclic thiazine ring adopts a half-chair conformation. The acetic acid substituent groups show only minor conformational differences: torsion angles C8—C7—C16—C17 and C7—C16—C17—O3 [169.7 (16) and 174.59 (17)°, respectively] in *A* campare with C25—C24—C33—C34 and C24—C33—C34—O7 [-179.25 (16) and -168.18 (17), respectively] in *B*.

In the crystal the molecules form centrosymmetric dimers through intermolecular cyclic carboxylic acid O—H···O hydrogen-bonding associations [graph set $R^2_2(8)$ (Etter *et al.*, 1990)]. These dimers form one-dimensional chains which extend along [101] (Fig. 2), through weak duplex C—H···O_{sulfinyl} hydrogen-bonding associations (Table 1) [graph set $R^2_2(14)$].

S2. Experimental

A mixture of *E*-2-[2-(2,4,5-Trifluorobenzyl)-1,1-dioxido-2*H*-1,2-benzothiazin- 4(3*H*)-ylidene]acetic acid methyl ester (0.5 mmol), 10 *M* hydrochloric acid (8 mL), and 1,4-dioxane (5 mL) was refluxed at 60°C for 2 h. The crude product obtained was washed with cold water (3 times, 10 mL) and purified by flash chromatography with CH_2Cl_2 and methanol (100:1) as eluent, which afforded a white solid product on concentration under vacuum. Recrystallization from ethanol gave crystals of the title compound suitable for the X-ray analysis (yield = 60%).

S3. Refinement

H atoms bonded to O1 and O3 were located from a difference-Fourier map and were refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular conformation and atom numbering scheme for the two independent molecules (A and B) of the title compound in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Hydrogen-bonding interactions (O—H…O and C—H…O), shown as dashed lines, in the one-dimensional chain structure of the title compound. H atoms non–participating in hydrogen-bonding are omitted for clarity.

2-[(E)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H-1,2-benzothiazin-4-ylidene]acetic acid

Z = 4

F(000) = 784

 $\theta = 2.4 - 29.1^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$

Prism, colourless

 $0.31 \times 0.26 \times 0.18 \text{ mm}$

 $\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

20894 measured reflections 8293 independent reflections 6954 reflections with $I > 2\sigma(I)$

T = 153 K

 $R_{\rm int} = 0.030$

 $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -20 \rightarrow 20$

 $D_{\rm x} = 1.631 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5221 reflections

Crystal data

 $\begin{array}{l} C_{17}H_{12}F_{3}NO_{4}S\\ M_{r}=383.34\\ Triclinic, P\overline{1}\\ a=8.0028~(10)~\text{\AA}\\ b=14.249~(2)~\text{\AA}\\ c=15.076~(2)~\text{\AA}\\ a=104.631~(8)^{\circ}\\ \beta=99.915~(6)^{\circ}\\ \gamma=104.237~(6)^{\circ}\\ V=1561.2~(4)~\text{\AA}^{3} \end{array}$

Data collection

Rigaku AFC10/Saturn724+ CCD-detector
diffractometer
Radiation source: Rotating Anode
Graphite monochromator
Detector resolution: 28.5714 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
$T_{\min} = 0.932, \ T_{\max} = 0.964$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
8293 reflections	and constrained refinement
477 parameters	$w = 1/[\sigma^2(F_o^2) + (0.061P)^2 + 0.226P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.32 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.73455 (5)	0.69761 (3)	0.55702 (3)	0.02391 (10)
0.50292 (5)	0.87262 (3)	0.79867 (3)	0.02531 (10)
0.58349 (14)	0.89772 (9)	0.31143 (8)	0.0450 (3)
	<i>x</i> 0.73455 (5) 0.50292 (5) 0.58349 (14)	x y 0.73455 (5) 0.69761 (3) 0.50292 (5) 0.87262 (3) 0.58349 (14) 0.89772 (9)	x y z 0.73455 (5) 0.69761 (3) 0.55702 (3) 0.50292 (5) 0.87262 (3) 0.79867 (3) 0.58349 (14) 0.89772 (9) 0.31143 (8)

F2	0.03716 (14)	0.93851 (8)	0.35868 (8)	0.0423 (3)
F3	0.08711 (14)	0.88184 (8)	0.51527 (8)	0.0391 (3)
F4	0.45408 (14)	0.54711 (9)	0.91587 (8)	0.0431 (3)
F5	1.01396 (15)	0.50243 (9)	0.90295 (8)	0.0469 (3)
F6	1.06588 (13)	0.63243 (8)	0.80223 (8)	0.0387 (3)
01	0.63170 (15)	0.60907 (9)	0.57395 (8)	0.0311 (3)
02	0.82039 (16)	0.78775(9)	0.63550 (8)	0.0328(3)
04	0.99668 (15)	0.69914 (10)	0.24217(8)	0.0337(3)
03	0.78052 (17)	0.70022(12)	0.12780(9)	0.0417(3)
05	0.63875(15)	0.96931 (9)	0.83329(9)	0.0335(3)
06	0.03079(13) 0.44968(17)	0.90931(9) 0.82015(11)	0.69925 (8)	0.0335(3)
07	0.71900(17) 0.26182(16)	0.02013(11) 0.72184(10)	1.15812(9)	0.0334(3)
08	0.26102(10) 0.06107(15)	0.72104(10) 0.74619(10)	1.15012(9) 1.05181(9)	0.0334(3)
N1	0.60107(15) 0.60349(16)	0.74019(10)	0.47719(9)	0.0375(3)
N2	0.00349(10) 0.56830(16)	0.72401(9) 0.70812(10)	0.47719(9) 0.85302(0)	0.0224(3)
N2	0.30830 (10)	0.79812(10)	0.85392(9) 0.40027(11)	0.0232(3)
Cl	1.0447(2)	0.03910(11) 0.65208(12)	0.49927(11)	0.0233(3)
02	1.0447 (2)	0.03398 (12)	0.33004 (13)	0.0298 (3)
H2	1.0695	0.6801	0.6230	0.036*
C3	1.1599 (2)	0.61036 (13)	0.51375 (14)	0.0344 (4)
H3	1.2670	0.6092	0.5515	0.041*
C4	1.1179 (2)	0.56859 (13)	0.41639 (14)	0.0341 (4)
H4	1.1912	0.5334	0.3879	0.041*
C5	0.9703 (2)	0.57747 (12)	0.35992 (13)	0.0286 (3)
H5	0.9452	0.5495	0.2931	0.034*
C6	0.85747 (19)	0.62700 (11)	0.39983 (11)	0.0234 (3)
C7	0.70501 (19)	0.64394 (11)	0.34115 (11)	0.0232 (3)
C8	0.54758 (19)	0.64252 (11)	0.38476 (11)	0.0238 (3)
H8A	0.4509	0.6533	0.3417	0.029*
H8B	0.5017	0.5755	0.3940	0.029*
C9	0.6528 (2)	0.82967 (12)	0.47205 (12)	0.0273 (3)
H9A	0.7281	0.8352	0.4268	0.033*
H9B	0.7224	0.8774	0.5350	0.033*
C10	0.4876 (2)	0.85800 (11)	0.44047 (11)	0.0237 (3)
C11	0.4596 (2)	0.89144 (12)	0.36246 (12)	0.0291 (3)
C12	0.3112 (2)	0.91996 (13)	0.33337 (12)	0.0320 (4)
H12	0.2965	0.9430	0.2795	0.038*
C13	0.1865 (2)	0.91365 (12)	0.38516 (12)	0.0285 (3)
C14	0.2105 (2)	0.88278 (12)	0.46446 (12)	0.0266 (3)
C15	0.3584 (2)	0.85423 (11)	0.49217 (11)	0.0245 (3)
H15	0.3727	0.8319	0.5465	0.029*
C16	0.6974 (2)	0.66706 (12)	0.25983 (11)	0.0274 (3)
H16	0.5849	0.6697	0.2297	0.033*
C17	0.8406 (2)	0.68902 (12)	0.21090 (11)	0.0273(3)
C18	0.31608 (19)	0.89025 (11)	0.83939 (11)	0.0224 (3)
C19	0.2095 (2)	0.93054 (13)	0.78660 (12)	0.0291 (3)
H19	0.2374	0.9444	0.7315	0.035*
C20	0.0627 (2)	0.95032 (13)	0.81459 (12)	0.0304 (3)
H20	-0.0118	0.9772	0.7787	0.036*

C21	0.0259 (2)	0.93060 (12)	0.89503 (12)	0.0282 (3)
H21	-0.0744	0.9447	0.9147	0.034*
C22	0.1323 (2)	0.89045 (11)	0.94806 (11)	0.0257 (3)
H22	0.1043	0.8787	1.0038	0.031*
C23	0.27989 (18)	0.86690 (10)	0.92127 (10)	0.0199 (3)
C24	0.39674 (19)	0.82390 (11)	0.97612 (10)	0.0207 (3)
C25	0.57919 (19)	0.83583 (12)	0.95578 (10)	0.0225 (3)
H25A	0.6501	0.9087	0.9807	0.027*
H25B	0.6418	0.7981	0.9894	0.027*
C26	0.4900 (2)	0.68674 (12)	0.80941 (12)	0.0276 (3)
H26A	0.4519	0.6705	0.7398	0.033*
H26B	0.3843	0.6616	0.8324	0.033*
C27	0.6278 (2)	0.63582 (11)	0.83449 (11)	0.0237 (3)
C28	0.6062 (2)	0.56868 (12)	0.88642 (12)	0.0286 (3)
C29	0.7309 (2)	0.52137 (13)	0.91045 (13)	0.0346 (4)
H29	0.7113	0.4752	0.9461	0.042*
C30	0.8843 (2)	0.54411 (13)	0.88054 (12)	0.0316 (4)
C31	0.9114 (2)	0.61120 (12)	0.82925 (11)	0.0266 (3)
C32	0.7862 (2)	0.65739 (11)	0.80590 (11)	0.0249 (3)
H32	0.8071	0.7037	0.7705	0.030*
C33	0.3679 (2)	0.77728 (11)	1.04221 (11)	0.0242 (3)
H33	0.4672	0.7587	1.0681	0.029*
C34	0.2146 (2)	0.74921 (11)	1.08260 (11)	0.0250 (3)
H7O	0.168 (3)	0.7121 (19)	1.1855 (17)	0.067 (8)*
H3O	0.865 (4)	0.720 (2)	0.1031 (19)	0.077 (9)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.02321 (19)	0.02732 (19)	0.0232 (2)	0.00954 (14)	0.00707 (15)	0.00851 (14)
S2	0.02388 (19)	0.0386 (2)	0.0241 (2)	0.01631 (16)	0.01081 (15)	0.01787 (16)
F1	0.0420 (6)	0.0616 (7)	0.0486 (7)	0.0182 (5)	0.0274 (5)	0.0332 (6)
F2	0.0334 (6)	0.0458 (6)	0.0555 (7)	0.0206 (5)	0.0046 (5)	0.0252 (5)
F3	0.0347 (5)	0.0464 (6)	0.0510 (7)	0.0214 (5)	0.0237 (5)	0.0229 (5)
F4	0.0389 (6)	0.0487 (6)	0.0551 (7)	0.0143 (5)	0.0289 (5)	0.0267 (5)
F5	0.0471 (7)	0.0532 (7)	0.0505 (7)	0.0352 (6)	0.0067 (5)	0.0174 (6)
F6	0.0234 (5)	0.0409 (6)	0.0516 (7)	0.0125 (4)	0.0154 (5)	0.0070 (5)
01	0.0305 (6)	0.0368 (6)	0.0326 (6)	0.0106 (5)	0.0128 (5)	0.0184 (5)
O2	0.0334 (6)	0.0353 (6)	0.0253 (6)	0.0123 (5)	0.0042 (5)	0.0023 (5)
O4	0.0260 (6)	0.0490 (7)	0.0280 (6)	0.0065 (5)	0.0093 (5)	0.0182 (5)
O3	0.0297 (7)	0.0699 (10)	0.0330 (7)	0.0114 (6)	0.0110 (5)	0.0304 (7)
O5	0.0253 (6)	0.0410 (7)	0.0467 (8)	0.0122 (5)	0.0143 (5)	0.0293 (6)
O6	0.0427 (7)	0.0659 (9)	0.0222 (6)	0.0336 (7)	0.0137 (5)	0.0188 (6)
O7	0.0327 (6)	0.0492 (7)	0.0321 (7)	0.0171 (6)	0.0153 (5)	0.0269 (6)
08	0.0249 (6)	0.0608 (8)	0.0334 (7)	0.0077 (6)	0.0080 (5)	0.0283 (6)
N1	0.0209 (6)	0.0236 (6)	0.0241 (6)	0.0081 (5)	0.0066 (5)	0.0075 (5)
N2	0.0228 (6)	0.0309 (7)	0.0217 (6)	0.0132 (5)	0.0079 (5)	0.0112 (5)
C1	0.0214 (7)	0.0221 (7)	0.0293 (8)	0.0075 (5)	0.0089 (6)	0.0104 (6)

supporting information

C2	0.0246 (8)	0.0301 (8)	0.0381 (9)	0.0092 (6)	0.0062 (7)	0.0166 (7)
C3	0.0222 (8)	0.0323 (8)	0.0563 (12)	0.0104 (7)	0.0107 (8)	0.0239 (8)
C4	0.0278 (8)	0.0303 (8)	0.0588 (12)	0.0144 (7)	0.0246 (8)	0.0240 (8)
C5	0.0290 (8)	0.0259 (7)	0.0379 (9)	0.0102 (6)	0.0182 (7)	0.0136 (7)
C6	0.0215 (7)	0.0198 (6)	0.0310 (8)	0.0056 (5)	0.0105 (6)	0.0094 (6)
C7	0.0211 (7)	0.0229 (7)	0.0237 (7)	0.0047 (5)	0.0073 (6)	0.0050 (6)
C8	0.0208 (7)	0.0268 (7)	0.0237 (8)	0.0063 (6)	0.0070 (6)	0.0076 (6)
C9	0.0226 (7)	0.0239 (7)	0.0368 (9)	0.0076 (6)	0.0074 (6)	0.0109 (6)
C10	0.0236 (7)	0.0205 (7)	0.0272 (8)	0.0060 (6)	0.0058 (6)	0.0088 (6)
C11	0.0287 (8)	0.0303 (8)	0.0325 (9)	0.0071 (6)	0.0133 (7)	0.0148 (7)
C12	0.0360 (9)	0.0315 (8)	0.0309 (9)	0.0082 (7)	0.0050 (7)	0.0180 (7)
C13	0.0249 (8)	0.0239 (7)	0.0367 (9)	0.0096 (6)	0.0013 (7)	0.0115 (6)
C14	0.0253 (7)	0.0252 (7)	0.0318 (9)	0.0089 (6)	0.0104 (6)	0.0100 (6)
C15	0.0273 (8)	0.0247 (7)	0.0255 (8)	0.0100 (6)	0.0079 (6)	0.0115 (6)
C16	0.0232 (7)	0.0315 (8)	0.0257 (8)	0.0049 (6)	0.0068 (6)	0.0085 (6)
C17	0.0278 (8)	0.0293 (8)	0.0235 (8)	0.0048 (6)	0.0073 (6)	0.0091 (6)
C18	0.0208 (7)	0.0274 (7)	0.0230 (7)	0.0107 (6)	0.0068 (6)	0.0105 (6)
C19	0.0292 (8)	0.0383 (9)	0.0268 (8)	0.0171 (7)	0.0073 (6)	0.0153 (7)
C20	0.0257 (8)	0.0353 (8)	0.0329 (9)	0.0160 (7)	0.0028 (7)	0.0117 (7)
C21	0.0200 (7)	0.0288 (8)	0.0360 (9)	0.0102 (6)	0.0077 (6)	0.0073 (7)
C22	0.0247 (7)	0.0261 (7)	0.0307 (8)	0.0099 (6)	0.0119 (6)	0.0107 (6)
C23	0.0191 (7)	0.0207 (6)	0.0205 (7)	0.0062 (5)	0.0048 (5)	0.0071 (5)
C24	0.0205 (7)	0.0223 (7)	0.0197 (7)	0.0065 (5)	0.0060 (5)	0.0063 (5)
C25	0.0209 (7)	0.0293 (7)	0.0214 (7)	0.0105 (6)	0.0059 (6)	0.0117 (6)
C26	0.0208 (7)	0.0298 (8)	0.0302 (8)	0.0085 (6)	0.0042 (6)	0.0065 (6)
C27	0.0213 (7)	0.0260 (7)	0.0234 (8)	0.0086 (6)	0.0063 (6)	0.0050 (6)
C28	0.0273 (8)	0.0301 (8)	0.0313 (9)	0.0090 (6)	0.0135 (7)	0.0101 (6)
C29	0.0439 (10)	0.0333 (9)	0.0340 (9)	0.0171 (8)	0.0124 (8)	0.0162 (7)
C30	0.0331 (9)	0.0328 (8)	0.0307 (9)	0.0194 (7)	0.0021 (7)	0.0075 (7)
C31	0.0196 (7)	0.0283 (8)	0.0293 (8)	0.0093 (6)	0.0075 (6)	0.0019 (6)
C32	0.0244 (7)	0.0254 (7)	0.0260 (8)	0.0084 (6)	0.0086 (6)	0.0077 (6)
C33	0.0240 (7)	0.0288 (7)	0.0228 (7)	0.0089 (6)	0.0080 (6)	0.0106 (6)
C34	0.0282 (8)	0.0263 (7)	0.0219 (7)	0.0067 (6)	0.0080 (6)	0.0102 (6)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.4282 (12)	С9—Н9А	0.9900
S101	1.4347 (12)	С9—Н9В	0.9900
S1—N1	1.6365 (13)	C10—C11	1.380 (2)
S1—C1	1.7708 (16)	C10—C15	1.396 (2)
S2—O6	1.4298 (13)	C11—C12	1.384 (2)
S2—O5	1.4342 (13)	C12—C13	1.369 (2)
S2—N2	1.6322 (13)	C12—H12	0.9500
S2-C18	1.7603 (15)	C13—C14	1.374 (2)
F1-C11	1.3553 (18)	C14—C15	1.376 (2)
F2-C13	1.3525 (18)	C15—H15	0.9500
F3—C14	1.3494 (18)	C16—C17	1.478 (2)
F4—C28	1.3578 (18)	C16—H16	0.9500

F5—C30	1.3519 (19)	C18—C19	1.388 (2)
F6—C31	1.3554 (17)	C18—C23	1.415 (2)
O4—C17	1.2156 (19)	C19—C20	1.383 (2)
O3—C17	1.326 (2)	С19—Н19	0.9500
O3—H3O	0.85 (3)	C20—C21	1.375 (2)
07—C34	1.3189 (19)	C20—H20	0.9500
O7—H7O	0.92 (3)	C21—C22	1.389 (2)
O8—C34	1.2224 (19)	C21—H21	0.9500
N1—C8	1.4841 (19)	C22—C23	1.401 (2)
N1—C9	1.4853 (19)	C22—H22	0.9500
N2—C25	1.4725 (19)	C23—C24	1.485 (2)
N2—C26	1.480 (2)	C24—C33	1.351 (2)
C1—C2	1.392 (2)	C24—C25	1.521 (2)
C1—C6	1.407 (2)	C25—H25A	0.9900
C2—C3	1.388 (2)	C25—H25B	0.9900
C2—H2	0.9500	C26—C27	1.508 (2)
C3—C4	1.383 (3)	C26—H26A	0.9900
C3—H3	0.9500	C26—H26B	0.9900
C4—C5	1.385 (2)	C27—C28	1.379 (2)
C4—H4	0.9500	C27—C32	1.397 (2)
C5—C6	1.401 (2)	C28—C29	1.383 (2)
C5—H5	0.9500	C29—C30	1.373 (2)
C6—C7	1.487 (2)	C29—H29	0.9500
C7—C16	1.343 (2)	C30—C31	1.374 (2)
C7—C8	1.516 (2)	C31—C32	1.372 (2)
C8—H8A	0.9900	C32—H32	0.9500
C8—H8B	0.9900	C33—C34	1.475 (2)
C9—C10	1.510 (2)	С33—Н33	0.9500
O2—S1—O1	118.55 (7)	C13—C14—C15	120.66 (15)
O2—S1—N1	108.96 (7)	C14—C15—C10	120.07 (14)
O1—S1—N1	107.34 (7)	C14—C15—H15	120.0
O2—S1—C1	110.39 (7)	C10—C15—H15	120.0
01—S1—C1	106.24 (7)	C7—C16—C17	128.74 (15)
N1—S1—C1	104.43 (7)	C7—C16—H16	115.6
O6—S2—O5	118.94 (8)	C17—C16—H16	115.6
O6—S2—N2	108.52 (7)	O4—C17—O3	122.46 (15)
O5—S2—N2	107.54 (7)	O4—C17—C16	125.63 (15)
O6—S2—C18	109.72 (7)	O3—C17—C16	111.87 (14)
O5—S2—C18	107.20 (7)	C19—C18—C23	122.65 (14)
N2—S2—C18	103.89 (7)	C19—C18—S2	115.21 (12)
С17—О3—НЗО	111.3 (19)	C23—C18—S2	122.13 (11)
С34—07—Н7О	108.4 (16)	C20—C19—C18	119.63 (15)
C8—N1—C9	115.31 (12)	С20—С19—Н19	120.2
C8—N1—S1	111.40 (10)	С18—С19—Н19	120.2
C9—N1—S1	117.72 (10)	C21—C20—C19	119.25 (15)
C25—N2—C26	115.52 (12)	C21—C20—H20	120.4
C25—N2—S2	110.86 (10)	C19—C20—H20	120.4

C26—N2—S2	118.25 (10)	C20—C21—C22	121.26 (15)
C2—C1—C6	121.78 (14)	C20—C21—H21	119.4
C2-C1-S1	117.04 (12)	C22—C21—H21	119.4
C6—C1—S1	120.96 (11)	C21—C22—C23	121.56 (15)
C3—C2—C1	119.30 (17)	C21—C22—H22	119.2
С3—С2—Н2	120.3	C23—C22—H22	119.2
C1—C2—H2	120.3	C22—C23—C18	115.61 (14)
C4—C3—C2	119.67 (16)	C22—C23—C24	123.11 (13)
C4—C3—H3	120.2	C18 - C23 - C24	121 24 (13)
$C_2 - C_3 - H_3$	120.2	C_{33} C_{24} C_{23}	130.34(14)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	120.2	C_{33} C_{24} C_{25} C_{33} C_{24} C_{25}	114 86 (13)
$C_3 = C_4 = C_3$	110.6	$C_{23} = C_{24} = C_{25}$	114.00(13) 114.70(12)
$C_5 = C_4 = H_4$	119.0	$N_{2} = C_{2} = C_{2}$	114.79(12) 112.43(12)
C_{3}	119.0	$N_2 = C_{23} = C_{24}$	112.45 (12)
C4 - C5 - U5	121.02 (10)	$N_2 = C_{23} = H_{23}A$	109.1
C4—C5—H5	119.5	C24—C25—H25A	109.1
C6—C5—H5	119.5	N2-C25-H25B	109.1
C5—C6—C1	116.90 (15)	C24—C25—H25B	109.1
C5—C6—C7	122.38 (15)	H25A—C25—H25B	107.8
C1—C6—C7	120.71 (13)	N2—C26—C27	108.89 (12)
C16—C7—C6	127.74 (14)	N2—C26—H26A	109.9
C16—C7—C8	117.96 (14)	C27—C26—H26A	109.9
C6—C7—C8	114.11 (13)	N2—C26—H26B	109.9
N1—C8—C7	109.66 (12)	С27—С26—Н26В	109.9
N1—C8—H8A	109.7	H26A—C26—H26B	108.3
С7—С8—Н8А	109.7	C28—C27—C32	117.47 (14)
N1—C8—H8B	109.7	C28—C27—C26	122.76 (14)
С7—С8—Н8В	109.7	C32—C27—C26	119.77 (14)
H8A—C8—H8B	108.2	F4—C28—C27	118.67 (14)
N1-C9-C10	110.27 (12)	F4—C28—C29	117.60 (15)
N1—C9—H9A	109.6	$C_{27} - C_{28} - C_{29}$	123 74 (15)
C10-C9-H9A	109.6	$C_{20} = C_{20} = C_{20}$	117.02 (16)
N1H9B	109.6	C_{30} C_{29} C_{20} H_{29}	121.5
C_{10} C_{0} HQB	109.6	$C_{20} = C_{20} = H_{20}$	121.5
	109.0	$E_{20} = C_{20} = C_{20}$	121.3 120.42 (16)
$119A - C_{2} - 119B$	100.1 117.22(14)	$F_{5} = C_{50} = C_{25}$	120.43(10)
$C_{11} = C_{10} = C_{13}$	117.22(14) 122.28(14)	$F_{3} = C_{30} = C_{31}$	116.33(10)
C11 - C10 - C9	122.38 (14)	$C_{29} = C_{30} = C_{31}$	121.00 (15)
C13 - C10 - C9	120.36 (14)	F6 = C31 = C32	119.75 (15)
FI-CII-CI0	118.92 (15)	F6—C31—C30	119.01 (14)
F1—C11—C12	117.63 (14)	C32—C31—C30	121.24 (15)
C10-C11-C12	123.44 (15)	C31—C32—C27	119.54 (15)
C13—C12—C11	117.47 (15)	С31—С32—Н32	120.2
C13—C12—H12	121.3	С27—С32—Н32	120.2
C11—C12—H12	121.3	C24—C33—C34	133.41 (15)
F2—C13—C12	119.91 (15)	С24—С33—Н33	113.3
F2-C13-C14	118.98 (15)	С34—С33—Н33	113.3
C12—C13—C14	121.11 (15)	O8—C34—O7	121.92 (14)
F3—C14—C13	118.81 (14)	O8—C34—C33	127.55 (14)
F3—C14—C15	120.53 (14)	O7—C34—C33	110.48 (14)

O2—S1—N1—C8	165.08 (10)	C11—C10—C15—C14	0.3 (2)
O1—S1—N1—C8	-65.38 (11)	C9—C10—C15—C14	178.24 (14)
C1—S1—N1—C8	47.13 (11)	C6—C7—C16—C17	-4.9 (3)
O2—S1—N1—C9	28.63 (13)	C8—C7—C16—C17	169.70 (15)
O1—S1—N1—C9	158.17 (11)	C7—C16—C17—O4	-7.5 (3)
C1—S1—N1—C9	-89.32 (12)	C7—C16—C17—O3	174.59 (16)
O6—S2—N2—C25	-164.94 (10)	O6—S2—C18—C19	-49.22 (15)
O5—S2—N2—C25	65.20 (11)	O5—S2—C18—C19	81.24 (13)
C18—S2—N2—C25	-48.23 (11)	N2—S2—C18—C19	-165.08 (12)
O6—S2—N2—C26	-28.22(13)	O6—S2—C18—C23	132.05 (13)
O5—S2—N2—C26	-158.09 (11)	O5—S2—C18—C23	-97.48 (13)
C18—S2—N2—C26	88.48 (12)	N2—S2—C18—C23	16.19 (14)
O2—S1—C1—C2	48.83 (14)	C23—C18—C19—C20	0.8 (2)
O1—S1—C1—C2	-80.91 (13)	S2-C18-C19-C20	-177.93 (13)
N1—S1—C1—C2	165.80 (12)	C18—C19—C20—C21	0.6 (3)
O2—S1—C1—C6	-136.40 (12)	C19—C20—C21—C22	-0.6 (2)
O1—S1—C1—C6	93.86 (13)	C20—C21—C22—C23	-1.0(2)
N1—S1—C1—C6	-19.43 (14)	C21—C22—C23—C18	2.3 (2)
C6—C1—C2—C3	-4.0 (2)	C21—C22—C23—C24	180.00 (14)
S1—C1—C2—C3	170.69 (12)	C19—C18—C23—C22	-2.2 (2)
C1—C2—C3—C4	-2.9 (2)	S2—C18—C23—C22	176.43 (11)
C2—C3—C4—C5	5.6 (2)	C19—C18—C23—C24	-179.98 (14)
C3—C4—C5—C6	-1.4 (2)	S2-C18-C23-C24	-1.3 (2)
C4—C5—C6—C1	-5.3 (2)	C22—C23—C24—C33	18.1 (2)
C4—C5—C6—C7	175.82 (14)	C18—C23—C24—C33	-164.34 (16)
C2-C1-C6-C5	8.0 (2)	C22—C23—C24—C25	-160.80 (13)
S1—C1—C6—C5	-166.50 (11)	C18—C23—C24—C25	16.81 (19)
C2-C1-C6-C7	-173.07 (14)	C26—N2—C25—C24	-67.74 (16)
S1—C1—C6—C7	12.41 (19)	S2—N2—C25—C24	70.24 (14)
C5—C6—C7—C16	-37.3 (2)	C33—C24—C25—N2	128.86 (14)
C1—C6—C7—C16	143.83 (16)	C23—C24—C25—N2	-52.10 (17)
C5—C6—C7—C8	147.93 (14)	C25—N2—C26—C27	-77.84 (15)
C1—C6—C7—C8	-30.93 (19)	S2—N2—C26—C27	147.39 (11)
C9—N1—C8—C7	67.11 (16)	N2-C26-C27-C28	117.32 (16)
S1—N1—C8—C7	-70.46 (14)	N2-C26-C27-C32	-61.75 (19)
C16—C7—C8—N1	-115.16 (15)	C32—C27—C28—F4	179.40 (14)
C6—C7—C8—N1	60.14 (16)	C26—C27—C28—F4	0.3 (2)
C8—N1—C9—C10	76.81 (16)	C32—C27—C28—C29	-0.7 (2)
S1—N1—C9—C10	-148.39 (11)	C26—C27—C28—C29	-179.81 (16)
N1-C9-C10-C11	-124.09 (16)	F4—C28—C29—C30	-179.77 (15)
N1—C9—C10—C15	58.04 (19)	C27—C28—C29—C30	0.3 (3)
C15-C10-C11-F1	178.93 (14)	C28—C29—C30—F5	178.65 (15)
C9—C10—C11—F1	1.0 (2)	C28—C29—C30—C31	0.1 (3)
C15—C10—C11—C12	-0.6 (2)	F5-C30-C31-F6	0.6 (2)
C9—C10—C11—C12	-178.53 (15)	C29—C30—C31—F6	179.15 (15)
F1-C11-C12-C13	-179.90 (15)	F5-C30-C31-C32	-178.77 (14)
C10-C11-C12-C13	-0.4 (3)	C29—C30—C31—C32	-0.2 (3)

supporting information

C11—C12—C13—F2	-178.60 (14)	F6—C31—C32—C27	-179.54 (13)
C11—C12—C13—C14	1.7 (2)	C30—C31—C32—C27	-0.2 (2)
F2—C13—C14—F3	-2.4 (2)	C28—C27—C32—C31	0.6 (2)
C12—C13—C14—F3	177.31 (15)	C26—C27—C32—C31	179.73 (14)
F2—C13—C14—C15	178.23 (14)	C23—C24—C33—C34	1.9 (3)
C12—C13—C14—C15	-2.1 (2)	C25—C24—C33—C34	-179.25 (15)
F3—C14—C15—C10	-178.34 (14)	C24—C33—C34—O8	14.6 (3)
F3-C14-C15-C10	-178.34 (14)	C24—C33—C34—O8	14.6 (3)
C13-C14-C15-C10	1.0 (2)	C24—C33—C34—O7	-168.18 (17)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
03—H3 <i>O</i> ···O8 ⁱ	0.85 (3)	1.86 (3)	2.7063 (17)	172 (3)
07—H7 <i>O</i> …O4 ⁱⁱ	0.92 (3)	1.73 (3)	2.6473 (17)	177 (2)
С15—Н15…Об	0.95	2.34	3.267 (2)	165
С32—Н32…О2	0.95	2.61	3.539 (2)	165

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*-1, *y*, *z*+1.