data reports

OPEN a ACCESS

Crystal structure of {2,2'-[ethylenebis-(nitrilomethanylylidene)]diphenolato- $\kappa^4 O.N.N'.O'$ oxidovanadium(IV) methanol monosolvate

Rachel E. Hsuan, Jemma E. Hughes, Thomas H. Miller, Nabila Shaikh, Phoebe H. M. Cunningham, Alice E. O'Connor, Jeremiah P. Tidey and Alexander J. Blake*

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England. *Correspondence e-mail: a.j.blake@nottingham.ac.uk

Received 19 October 2014; accepted 22 October 2014

Edited by J. F. Gallagher, Dublin City University, Ireland

Two independent molecules of the title solvated complex, $[V(C_{16}H_{14}N_2O_2)O]$ ·CH₃OH, also known as [N,N'-bis(salicylidene)ethylenediamine]oxidovanadium(IV) or vanadyl salen, crystallize in the asymmetric unit. Each disordered methanol solvent molecule [occupancy ratios 0.678 (4):0.322 (4) and 0.750 (5):0.250 (5)] is linked to a [N,N'-bis(salicylidene)ethylenediamine]oxidovanadium(IV) molecule by an O-H···O hydrogen bond and to others by $C-H \cdots O$ hydrogen bonds. The resulting extended structure consists of a bilayer of molecules parallel to the *ab* plane. Despite the fact that solvates are common in complexes derived from substituted analogues of the N,N'-bis(salicylidene)ethylenediamine ligand, the title solvate is the first one of [N,N'-bis(salicy]idene)ethylenediamine]oxidovanadium(IV) to be structurally characterized. The two vanadyl species have very similar internal geometries, which are best characterized as distorted square-based pyramidal with the vanadium atom displaced from the N_2O_2 basal plane by 0.5966 (9) Å in the direction of the doubly-bonded oxide ligand.

Keywords: crystal structure; oxidovanadium(IV); 2,2'-[ethylenebis(nitrilomethanylylidene)]diphenolate; N, N'-bis(salicylidene)ethylenediamine; hydrogen bonding.

CCDC reference: 1030592

1. Related literature

The literature reports three structure determinations on the unsolvated title complex, also known as [N,N'-bis(salicy)-bis(saidene)ethylenediamine]oxidovanadium(IV). The first was in the monoclinic space group $P2_1/c$ by Riley *et al.* (1986), the

second by Li *et al.* (2004) in the triclinic space group $P\overline{1}$ and the third in the monoclinic space group $P2_1$ (Wang *et al.*, 2008). All three determinations were carried out at ambient temperature. According to the Cambridge Structural Database (Groom & Allen, 2014) no solvates of [N,N'-bis(salicylidene)ethylenediamine]oxidovanadium(IV) have been reported previously, although these are common for substituted analogues of the N,N'-bis(salicylidene)ethylenediamine ligand.

2. Experimental

2.1. Crystal data

[V(C₁₆H₁₄N₂O₂)O]·CH₄O $M_{*} = 365.27$ Orthorhombic, Pna21 a = 12.9597 (4) Å b = 8.8616 (2) Å c = 28.5426 (7) Å

2.2. Data collection

 $wR(F^2) = 0.105$

4634 reflections

479 parameters

32 restraints

S = 1.04

Agilent GV1000 diffractometer with an Atlas CCD detector Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) $T_{\min} = 0.480, T_{\max} = 0.959$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.037$ $\Delta \rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983). 1395 Friedel pairs Absolute structure parameter: 0.066(9)

 $R_{\rm int} = 0.025$

V = 3277.92 (15) Å³

 $0.31 \times 0.14 \times 0.05 \text{ mm}$

7416 measured reflections

4634 independent reflections

4350 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 5.27 \text{ mm}^{-1}$

T = 120 K

Z = 8

Table 1 Selected geometric parameters (Å, °).

H-atom parameters constrained

V1-O1 1.9155 (17) $V2-O4$ 1. V1-O2 1.9429 (16) $V2-O5$ 1	.9164 (16) .6089 (16)
$V_{1} = O_{2}$ 1 9429 (16) $V_{2} = O_{2}$ 1	.6089 (16)
$v_1 = 02$ 1.5727 (10) $v_2 = 05$ 1.	
V1-O3 1.6070 (17) V2-O6 1	.9314 (16)
V1-N1 2.0597 (19) V2-N3 2	.062 (2)
V1-N2 2.051 (2) V2-N4 2.	.060 (2)
O2-V1-N2 87.30 (8) O6-V2-N4	87.20 (8)
O2-V1-N1 150.78 (7) O6-V2-N3	150.79 (7)
O3-V1-O2 105.76 (8) O5-V2-O6	105.81 (8)
O3-V1-N2 107.35 (9) O5-V2-N4	107.66 (8)
O3-V1-O1 113.39 (8) O5-V2-O4	113.60 (8)
O3-V1-N1 102.90 (8) O5-V2-N3	102.81 (8)
N2-V1-N1 78.80 (8) N4-V2-N3	78.63 (8)
O1-V1-O2 86.60 (7) O4-V2-O6	86.66 (7)
O1-V1-N2 138.94 (8) O4-V2-N4	138.40 (8)
O1-V1-N1 87.26 (8) O4-V2-N3	87.25 (7)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C14-H14\cdots O8^{i}$	0.93	2.48	3.368 (4)	159
$C14-H14\cdots O8A^{i}$	0.93	2.48	3.299 (7)	147
$C25-H25\cdots O7^{ii}$	0.93	2.51	3.391 (4)	158
$C25-H25\cdots O7A^{ii}$	0.93	2.66	3.457 (9)	144
C13-H13···O3 ⁱⁱⁱ	0.93	2.60	3.372 (3)	141
$C23-H23\cdots O5^{iv}$	0.93	2.59	3.364 (3)	141
$O8-H8A\cdots O2$	0.82	2.12	2.926 (4)	167
$O7-H7A\cdots O6$	0.82	2.18	2.940 (3)	153
$O7-H7A\cdots O4$	0.82	2.64	3.246 (4)	132
$O8A - H8AA \cdots O1$	0.82	2.18	2.984 (6)	166
Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z.$	x, y+1, z;	(ii) $x, y - 1,$	<i>z</i> ; (iii) $x - \frac{1}{2}$,	$-y + \frac{5}{2}, z;$ (iv)

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

Acknowledgements

We thank Professor A. N. Khlobystov for the sample of unsolvated $\{2,2'$ -[ethylenebis(nitrilomethylidyne)]diphenolato- $\kappa^4 O, N, N', O'\}$ oxidovanadium(IV). We thank EPSRC (UK) for support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: GG2143).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.
- Li, L. Z., Xu, T., Wang, D.-Q. & Du, L.-Y. (2004). Huaxue Yanjiu Yu Yingyong (Chem. Res. Appl.), 16, 664–666.
- Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. & Raymond, K. N. (1986). *Inorg. Chem.* 25, 154–160.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C., Yuan, J.-H., Xie, G., Yu, M.-J. & Li, J. (2008). Acta Cryst. E64, m775– m776.

supporting information

Acta Cryst. (2014). E70, m380-m381 [doi:10.1107/S1600536814023332]

Crystal structure of {2,2'-[ethylenebis(nitrilomethanylylidene)]diphenolato- $\kappa^4 O, N, N', O'$ }oxidovanadium(IV) methanol monosolvate

Rachel E. Hsuan, Jemma E. Hughes, Thomas H. Miller, Nabila Shaikh, Phoebe H. M. Cunningham, Alice E. O'Connor, Jeremiah P. Tidey and Alexander J. Blake

S1. Experimental

Crystals of the title complex were obtained by slow cooling of a methanolic solution of $\{2,2'-[ethylenebis(nitrilomethyl-idyne)]$ diphenolato- $\kappa^4 O, N, N', O'\}$ oxidovanadium(IV).

S2. Refinement

With the exceptions of methyl groups (which were refined as rigid rotating groups) and OH groups (for which were idealized tetrahedral OH were refined as rigid rotating groups), H atoms were allowed to ride on their parent atoms with $U_{iso}(H) = 1.5 \times U_{eq}(C,O)$ for methyl and OH groups and $1.2 \times U_{eq}(C)$ for others.

The O8–C34, O8A–C34A, O7–C33 and O7A–C33A distances were restrained to a target value of 1.43 (1) Å. SIMU and RIGU restraints (Sheldrick, 2008) were applied to the solvent molecules, and linked occupancies were used to stabilize the refinement of the MeOH solvent molecules.

For the absolute structure determination, the classical Flack method was preferred over Parsons because the s.u. was lower.

Figure 1

One of the two independent solvated molecules in the asymmetric unit, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only one component of the disordered MeOH molecule is shown.

$\{2,2'-[Ethylenebis(nitrilomethanylylidene)]$ diphenolato- $\kappa^4O, N, N', O'\}$ oxidovanadium(IV) methanol monosolvate

Crystal data	
$[V(C_{16}H_{14}N_{2}O_{2})O] \cdot CH_{4}O$ $M_{r} = 365.27$ Orthorhombic, <i>Pna</i> 2 ₁ a = 12.9597 (4) Å b = 8.8616 (2) Å c = 28.5426 (7) Å V = 3277.92 (15) Å ³ Z = 8 F(000) = 1512	$D_x = 1.480 \text{ Mg m}^{-3}$ Cu <i>Ka</i> radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3840 reflections $\theta = 5.2-72.3^{\circ}$ $\mu = 5.27 \text{ mm}^{-1}$ T = 120 K Block, green $0.31 \times 0.14 \times 0.05 \text{ mm}$
Data collection	
Agilent GV1000 diffractometer with an Atlas CCD detector Radiation source: Agilent GV1000 (Cu) X-ray Source Mirror monochromator Detector resolution: 10.3271 pixels mm ⁻¹ ω scans Absorption correction: gaussian (<i>CrysAlis PRO</i> ; Agilent, 2013)	$T_{\min} = 0.480, T_{\max} = 0.959$ 7416 measured reflections 4634 independent reflections 4350 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 74.4^{\circ}, \theta_{\text{min}} = 5.2^{\circ}$ $h = -15 \rightarrow 15$ $k = -10 \rightarrow 6$ $l = -33 \rightarrow 34$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$	S = 1.04 4634 reflections 479 parameters 32 restraints
· · /	

Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{\rm max} = 0.02$ $\Delta\rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
neighbouring sites	Absolute structure: Flack (1983), 1395 Friedel
H-atom parameters constrained	pairs
$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 1.252P]$ where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: 0.066 (9)

Special details

Experimental. Absorption correction: CrysAlisPro version 1.171.36.32 (Agilent, 2013). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
V1	0.33525 (3)	1.13029 (4)	0.50170(2)	0.02409 (8)	
V2	0.57988 (3)	0.36777 (4)	0.18892 (2)	0.02364 (8)	
01	0.24854 (12)	0.95916 (19)	0.49027 (6)	0.0305 (4)	
O2	0.41375 (12)	1.06657 (19)	0.44719 (6)	0.0277 (4)	
O3	0.41104 (12)	1.1086 (2)	0.54575 (6)	0.0298 (4)	
O4	0.49307 (12)	0.53856 (17)	0.20089 (6)	0.0292 (4)	
O5	0.65555 (12)	0.39010 (19)	0.14477 (6)	0.0292 (4)	
O6	0.65825 (12)	0.4296 (2)	0.24318 (6)	0.0294 (4)	
N2	0.35312 (15)	1.3476 (2)	0.47830 (7)	0.0275 (4)	
N4	0.59693 (16)	0.1492 (2)	0.21225 (7)	0.0289 (5)	
C12	0.49325 (19)	1.1394 (3)	0.42862 (7)	0.0283 (6)	
C14	0.42784 (18)	1.3949 (3)	0.45247 (8)	0.0295 (5)	
H14	0.4327	1.4981	0.4471	0.035*	
C30	0.73712 (18)	0.3563 (3)	0.26195 (8)	0.0306 (6)	
C3	0.15814 (17)	0.9193 (3)	0.50810 (8)	0.0280 (5)	
C25	0.6714 (2)	0.1024 (3)	0.23826 (8)	0.0322 (6)	
H25	0.6761	-0.0010	0.2435	0.039*	
N1	0.20834 (14)	1.2335 (2)	0.53104 (7)	0.0269 (4)	
C26	0.8334 (2)	0.1282 (3)	0.28130 (9)	0.0409 (7)	
H26	0.8397	0.0237	0.2803	0.049*	
N3	0.45275 (15)	0.2651 (2)	0.15943 (7)	0.0278 (4)	
C4	0.09719 (17)	1.0158 (3)	0.53631 (7)	0.0273 (5)	
C10	0.6518 (2)	1.1282 (4)	0.38350 (9)	0.0423 (8)	
H10	0.7005	1.0710	0.3674	0.051*	
C8	0.5908 (2)	1.3668 (3)	0.40987 (8)	0.0396 (7)	
H8	0.5986	1.4710	0.4113	0.048*	
C15	0.2266 (2)	1.3957 (3)	0.53910 (9)	0.0326 (6)	
H15A	0.2729	1.4102	0.5654	0.039*	
H15B	0.1621	1.4470	0.5457	0.039*	
C22	0.40338 (16)	0.5789 (3)	0.18283 (8)	0.0273 (5)	
C17	0.36417 (19)	0.7228 (3)	0.19338 (10)	0.0352 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H17	0.4014	0.7860	0.2132	0.042*	
C24	0.74815 (18)	0.1970 (3)	0.26002 (8)	0.0316 (6)	
C13	0.12347 (18)	1.1718 (3)	0.54445 (8)	0.0295 (5)	
H13	0.0761	1.2316	0.5604	0.035*	
C18	0.2719 (2)	0.7725 (3)	0.17509 (9)	0.0390 (6)	
H18	0.2478	0.8680	0.1830	0.047*	
C1	0.0269 (2)	0.7261 (3)	0.51707 (9)	0.0375 (6)	
H1	0.0032	0.6295	0.5102	0.045*	
C9	0.50432 (18)	1.2990 (3)	0.43126(7)	0.0301 (6)	
C7	0.6641 (2)	1.2817 (4)	0.38686 (9)	0.0451 (8)	
H7	0.7215	1.3281	0.3737	0.054*	
C20	0.34189 (17)	0.4834(3)	0.15433 (7)	0.0278(5)	
C28	0.8976 (2)	0.3678(4)	0.30590 (9)	0.0440(8)	
H28	0.9476	0.4251	0.3211	0.053*	
C2	0.11882 (19)	0.7752(3)	0.49797 (9)	0.0331 (6)	
H2	0.1554	0.7117	0.4780	0.040*	
C23	0.36811 (17)	0.3277(3)	0.14619 (8)	0.0283(5)	
H23	0.3205	0.2683	0.1302	0.034*	
C16	0.27463(19)	1.4566 (3)	0.49437 (9)	0.0333 (6)	
H16A	0 2220	1 4695	0 4705	0.040*	
H16B	0.3064	1.5539	0.5003	0.040*	
C5	0.00379(18)	0.9625 (3)	0 55506 (8)	0.0323 (6)	
Н5	-0.0355	1 0263	0.5738	0.039*	
C21	0 24831 (18)	0.5379(3)	0.13563 (8)	0.0334 (6)	
H21	0.2088	0.3373 (3)	0.1166	0.040*	
C11	0.56715 (19)	1 0573 (3)	0 40398 (8)	0.0344 (6)	
H11	0.5598	0.9533	0.4011	0.041*	
C19	0 21417 (19)	0.6823 (3)	0 14501 (9)	0.0377 (6)	
H19	0.1538	0.7186	0.1315	0.045*	
C27	0.9082 (2)	0.2117(4)	0 30372 (9)	0.0508 (8)	
H27	0.9650	0.1644	0.3172	0.061*	
C6	-0.03109(19)	0.8186 (3)	0.54647(9)	0.0362 (6)	
H6	-0.0919	0.7839	0.5600	0.043*	
C29	0.81364 (18)	0.4385(4)	0.28575 (8)	0.0360 (6)	
H29	0.8076	0.5429	0.2880	0.043*	
C31	0.51874 (19)	0.0415(3)	0.19582 (9)	0.0328 (6)	
H31A	0.4662	0.0279	0.2196	0.0328 (0)	
H31R	0.5505	-0.0555	0.1896	0.039*	
C32	0.3505 0.4706 (2)	0.1028 (3)	0.15151 (9)	0.0332 (6)	
H32A	0.5165	0.0879	0.1251	0.0332 (0)	
H32R	0.4059	0.0518	0.1251	0.040*	
08	0.3881(3)	0.0510 0.7530(4)	0.41726 (11)	0.0533 (9)	0 678 (4)
H8A	0.3953	0.8354	0.4299	0.0303 ())	0.678(4)
07	0.6257 (3)	0.0331 0.7431(3)	0.1235 0.27352(11)	0.0573 (9)	0.750 (5)
H7A	0.6295	0.6685	0.2566	0.086*	0.750(5)
C33	0.5510 (3)	0.7185 (6)	0 30846 (13)	0.0506 (11)	0.750(5)
H33A	0.4851	0.7011	0 2940	0.076*	0.750(5)
H33R	0.469	0.8056	0.2240	0.076*	0.750(5)
11330	0.5-05	0.0000	0.5204	0.070	0.750(5)

H33C	0.5700	0.6320	0.3268	0.076*	0.750 (5)
C34	0.3009 (4)	0.7570 (6)	0.38743 (15)	0.0614 (14)	0.678 (4)
H34A	0.3138	0.6966	0.3602	0.092*	0.678 (4)
H34B	0.2876	0.8593	0.3781	0.092*	0.678 (4)
H34C	0.2419	0.7180	0.4038	0.092*	0.678 (4)
O7A	0.5715 (10)	0.7560 (9)	0.2706 (2)	0.068 (3)	0.250 (5)
H7AA	0.5107	0.7627	0.2629	0.103*	0.250 (5)
C33A	0.5784 (9)	0.6910 (16)	0.3163 (3)	0.073 (4)	0.250 (5)
H33D	0.6391	0.6293	0.3182	0.110*	0.250 (5)
H33E	0.5185	0.6302	0.3221	0.110*	0.250 (5)
H33F	0.5823	0.7700	0.3393	0.110*	0.250 (5)
C34A	0.3143 (7)	0.7847 (9)	0.37978 (19)	0.041 (2)	0.322 (4)
H34D	0.3315	0.7086	0.3572	0.061*	0.322 (4)
H34E	0.3511	0.8759	0.3726	0.061*	0.322 (4)
H34F	0.2414	0.8038	0.3788	0.061*	0.322 (4)
08A	0.3422 (6)	0.7342 (7)	0.42510 (16)	0.0481 (19)	0.322 (4)
H8AA	0.3271	0.7990	0.4444	0.072*	0.322 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
V1	0.02276 (15)	0.02190 (17)	0.02763 (14)	0.00204 (14)	-0.00088 (14)	-0.00101 (14)
V2	0.02314 (15)	0.02248 (17)	0.02531 (14)	-0.00205 (14)	0.00061 (14)	-0.00063 (14)
01	0.0274 (7)	0.0247 (8)	0.0394 (8)	0.0009 (6)	0.0042 (7)	-0.0034 (7)
O2	0.0263 (7)	0.0274 (8)	0.0295 (7)	-0.0023 (7)	0.0018 (6)	-0.0025 (6)
03	0.0232 (7)	0.0338 (9)	0.0325 (7)	0.0038 (7)	-0.0038 (6)	0.0015 (7)
O4	0.0276 (7)	0.0246 (8)	0.0355 (7)	-0.0019 (6)	-0.0030 (7)	-0.0032 (7)
05	0.0249 (7)	0.0318 (8)	0.0310 (7)	-0.0031 (7)	0.0021 (6)	0.0000 (7)
06	0.0282 (7)	0.0312 (8)	0.0289 (6)	-0.0007 (7)	-0.0021 (6)	-0.0023 (7)
N2	0.0288 (8)	0.0239 (9)	0.0297 (8)	0.0006 (8)	-0.0091 (8)	-0.0023 (8)
N4	0.0326 (9)	0.0250 (9)	0.0290 (8)	0.0013 (8)	0.0067 (8)	0.0004 (8)
C12	0.0333 (11)	0.0334 (12)	0.0183 (8)	-0.0018 (10)	-0.0057 (9)	0.0025 (8)
C14	0.0329 (11)	0.0300 (11)	0.0255 (9)	-0.0055 (10)	-0.0071 (9)	0.0028 (9)
C30	0.0270 (10)	0.0426 (13)	0.0222 (8)	0.0018 (10)	0.0061 (9)	-0.0022 (9)
C3	0.0259 (9)	0.0266 (10)	0.0316 (9)	0.0010 (9)	-0.0035 (9)	0.0032 (9)
C25	0.0432 (12)	0.0287 (11)	0.0248 (9)	0.0079 (10)	0.0086 (10)	0.0029 (9)
N1	0.0230 (8)	0.0278 (9)	0.0301 (8)	0.0034 (7)	-0.0022 (7)	-0.0059 (8)
C26	0.0420 (13)	0.0542 (16)	0.0266 (10)	0.0179 (12)	0.0028 (11)	0.0024 (11)
N3	0.0285 (9)	0.0256 (9)	0.0294 (8)	-0.0043 (8)	0.0036 (8)	-0.0056 (8)
C4	0.0263 (10)	0.0307 (11)	0.0248 (8)	0.0021 (9)	-0.0051 (8)	0.0022 (9)
C10	0.0376 (13)	0.0658 (19)	0.0234 (9)	0.0038 (13)	0.0046 (10)	0.0017 (11)
C8	0.0449 (14)	0.0480 (15)	0.0260 (10)	-0.0143 (12)	-0.0023 (10)	0.0045 (10)
C15	0.0321 (11)	0.0289 (11)	0.0368 (11)	0.0081 (10)	-0.0023 (10)	-0.0079 (9)
C22	0.0228 (9)	0.0292 (11)	0.0300 (9)	0.0006 (9)	0.0034 (9)	0.0061 (9)
C17	0.0319 (10)	0.0290 (11)	0.0447 (12)	-0.0012 (10)	0.0053 (11)	0.0022 (11)
C24	0.0346 (11)	0.0369 (12)	0.0233 (8)	0.0073 (11)	0.0044 (9)	0.0012 (10)
C13	0.0254 (10)	0.0372 (12)	0.0257 (9)	0.0077 (10)	-0.0029 (9)	-0.0041 (9)
C18	0.0391 (12)	0.0319 (12)	0.0458 (12)	0.0081 (11)	0.0133 (11)	0.0098 (11)

supporting information

C1	0.0357 (12)	0.0302 (11)	0.0468 (12)	-0.0025 (11)	-0.0094 (11)	0.0112 (11)
C9	0.0310 (10)	0.0420 (13)	0.0172 (8)	-0.0051 (11)	-0.0043 (9)	0.0023 (9)
C7	0.0394 (13)	0.0687 (19)	0.0272 (10)	-0.0097 (13)	0.0092 (10)	0.0072 (12)
C20	0.0225 (9)	0.0351 (12)	0.0258 (9)	-0.0038 (9)	0.0030 (8)	-0.0002 (9)
C28	0.0322 (12)	0.075 (2)	0.0250 (10)	-0.0029 (13)	-0.0005 (10)	-0.0022 (11)
C2	0.0306 (11)	0.0276 (11)	0.0411 (11)	-0.0002 (10)	-0.0026 (10)	0.0023 (10)
C23	0.0230 (9)	0.0349 (12)	0.0269 (9)	-0.0054 (10)	0.0001 (8)	-0.0029 (9)
C16	0.0349 (11)	0.0237 (11)	0.0412 (11)	0.0045 (10)	-0.0115 (10)	-0.0012 (9)
C5	0.0268 (10)	0.0438 (14)	0.0262 (9)	0.0024 (10)	-0.0019 (9)	0.0028 (10)
C21	0.0265 (10)	0.0468 (14)	0.0269 (9)	-0.0018 (11)	0.0017 (9)	0.0081 (10)
C11	0.0348 (11)	0.0461 (14)	0.0223 (8)	0.0024 (11)	-0.0023 (9)	-0.0005 (10)
C19	0.0292 (11)	0.0481 (14)	0.0358 (10)	0.0045 (11)	0.0040 (10)	0.0134 (11)
C27	0.0431 (13)	0.079 (2)	0.0301 (11)	0.0202 (15)	-0.0037 (11)	0.0057 (13)
C6	0.0263 (10)	0.0466 (14)	0.0356 (10)	-0.0044 (11)	-0.0024 (10)	0.0126 (11)
C29	0.0291 (10)	0.0553 (15)	0.0238 (9)	-0.0055 (11)	0.0001 (9)	-0.0019 (10)
C31	0.0377 (11)	0.0225 (11)	0.0383 (11)	-0.0061 (9)	0.0077 (10)	-0.0031 (10)
C32	0.0340 (11)	0.0263 (11)	0.0394 (11)	-0.0039 (10)	0.0084 (10)	-0.0086 (10)
08	0.0693 (19)	0.0407 (16)	0.0501 (15)	0.0048 (15)	-0.0044 (16)	-0.0062 (14)
07	0.0792 (19)	0.0308 (13)	0.0618 (16)	-0.0094 (14)	0.0178 (16)	-0.0105 (13)
C33	0.055 (2)	0.058 (2)	0.0383 (16)	0.006 (2)	-0.0047 (17)	-0.0122 (16)
C34	0.086 (3)	0.057 (3)	0.0412 (19)	-0.025 (2)	-0.008 (2)	0.0187 (19)
O7A	0.122 (8)	0.028 (4)	0.055 (4)	0.017 (5)	-0.020 (4)	-0.016 (3)
C33A	0.043 (5)	0.105 (9)	0.071 (5)	0.049 (5)	-0.002 (4)	0.009 (5)
C34A	0.076 (5)	0.028 (4)	0.019 (3)	-0.025 (4)	0.012 (3)	0.000 (3)
O8A	0.090 (5)	0.029 (3)	0.025 (2)	0.008 (3)	-0.002 (3)	-0.003 (2)

Geometric parameters (Å, °)

V1-01	1.9155 (17)	C13—H13	0.9300
V1—O2	1.9429 (16)	C18—H18	0.9300
V1—O3	1.6070 (17)	C18—C19	1.392 (4)
V1—N1	2.0597 (19)	C1—H1	0.9300
V1—N2	2.051 (2)	C1—C2	1.381 (4)
V2—O4	1.9164 (16)	C1—C6	1.393 (4)
V2—O5	1.6089 (16)	С7—Н7	0.9300
V2—O6	1.9314 (16)	C20—C23	1.440 (4)
V2—N3	2.062 (2)	C20—C21	1.410 (3)
V2—N4	2.060 (2)	C28—H28	0.9300
O6—C30	1.324 (3)	C28—C27	1.392 (5)
O2—C12	1.326 (3)	C28—C29	1.381 (4)
N4—C25	1.286 (3)	С2—Н2	0.9300
N4—C31	1.469 (3)	С23—Н23	0.9300
N2—C14	1.287 (3)	C16—H16A	0.9700
N2—C16	1.476 (3)	C16—H16B	0.9700
O1—C3	1.325 (3)	С5—Н5	0.9300
С12—С9	1.424 (4)	C5—C6	1.375 (4)
C12—C11	1.393 (4)	C21—H21	0.9300
O4—C22	1.321 (3)	C21—C19	1.380 (4)

C14—H14	0.9300	C11—H11	0.9300
C14—C9	1.439 (3)	C19—H19	0.9300
C30—C24	1.420 (4)	C27—H27	0.9300
C30—C29	1.406 (4)	С6—Н6	0.9300
C3—C4	1.415 (3)	C29—H29	0.9300
C3—C2	1.405 (4)	C31—H31A	0.9700
C25—H25	0.9300	C31—H31B	0.9700
C25—C24	1.442 (4)	C31—C32	1.511 (4)
N1—C15	1.474 (3)	C32—H32A	0.9700
N1—C13	1.286 (3)	C32—H32B	0.9700
C26—H26	0.9300	08—H8A	0.8200
C26—C24	1 401 (4)	08-C34	1 416 (6)
$C_{26}^{}C_{27}^{}$	1.101(1) 1.377(4)	07—H7A	0.8200
N3—C23	1.286 (3)	07 - C33	1407(5)
N3—C32	1.200(3) 1 474(3)	C33_H33A	0.9600
C4-C13	1.474(3) 1 443(4)	C33_H33B	0.9600
C_{4}	1.405 (3)	C33 H33C	0.9600
$C_1 = C_1$	0.9300	C_{34} H34A	0.9600
C_{10}	1 373 (5)	C_{34} H_{24} H_{24} H_{24}	0.9600
C_{10} C_{11}	1.373(3) 1.202(4)	C_{34} $H_{24}C$	0.9000
	0.0300	074 H740	0.9000
C_{0}	1,411,(4)	$O/A = \Pi/AA$	0.8200
C°	1.411(4) 1.270(4)	O/A = C33A	1.428 (9)
C_{0}	1.579 (4)	C33A—H33D	0.9600
CI5—HI5A	0.9700	C33A—H33E	0.9600
	0.9700	C33A—H33F	0.9600
C13 - C10	1.520 (4)	C_{34A} H34D	0.9600
	1.405 (4)	C34A - H34E	0.9600
C12_C20	1.419 (3)	C34A - H34F	0.9600
	0.9300	C34A = 08A	1.416 (7)
C1/C18	1.376 (4)	О8А—Н8АА	0.8200
O2—V1—N2	87.30 (8)	C6—C1—H1	119.4
O2—V1—N1	150.78 (7)	C12—C9—C14	122.6 (2)
O3—V1—O2	105.76 (8)	C8—C9—C12	118.7 (2)
O3—V1—N2	107.35 (9)	C8—C9—C14	118.6 (2)
O3—V1—O1	113.39 (8)	C10—C7—C8	119.7 (3)
O3—V1—N1	102.90 (8)	С10—С7—Н7	120.2
N2—V1—N1	78.80 (8)	С8—С7—Н7	120.2
O1—V1—O2	86.60 (7)	C22—C20—C23	122.1 (2)
O1—V1—N2	138.94 (8)	C21—C20—C22	119.7 (2)
O1—V1—N1	87.26 (8)	C21—C20—C23	118.1 (2)
O6—V2—N4	87.20 (8)	C27—C28—H28	119.6
O6—V2—N3	150.79 (7)	C29—C28—H28	119.6
O5—V2—O6	105.81 (8)	C29—C28—C27	120.7 (3)
O5—V2—N4	107.66 (8)	С3—С2—Н2	119.4
O5—V2—O4	113.60 (8)	C1—C2—C3	121.2 (2)
O5—V2—N3	102.81 (8)	C1—C2—H2	119.4
N4—V2—N3	78.63 (8)	N3—C23—C20	124.6 (2)

O4—V2—O6	86.66 (7)	N3—C23—H23	117.7
O4—V2—N4	138.40 (8)	C20—C23—H23	117.7
O4—V2—N3	87.25 (7)	N2—C16—C15	108.1 (2)
C30—O6—V2	126.23 (15)	N2—C16—H16A	110.1
C12—O2—V1	125.84 (15)	N2—C16—H16B	110.1
C25—N4—V2	124.78 (18)	C15—C16—H16A	110.1
C25—N4—C31	119.5 (2)	C15—C16—H16B	110.1
C31—N4—V2	115.70 (15)	H16A—C16—H16B	108.4
C14—N2—V1	125.24 (17)	С4—С5—Н5	119.1
C14—N2—C16	118.9 (2)	C6—C5—C4	121.8 (2)
C16—N2—V1	115.82 (15)	С6—С5—Н5	119.1
C3—O1—V1	131.62 (15)	C20—C21—H21	119.3
O2—C12—C9	122.7 (2)	C19—C21—C20	121.3 (2)
02-C12-C11	118.8 (2)	C19—C21—H21	119.3
C11—C12—C9	118.4 (2)	C12—C11—C10	121.2 (3)
C22—O4—V2	131.37 (15)	C12—C11—H11	119.4
N2-C14-H14	117.7	C10—C11—H11	119.4
N2-C14-C9	124.5 (2)	C18—C19—H19	120.7
C9-C14-H14	117.7	C_{21} $-C_{19}$ $-C_{18}$	118.7 (2)
06-C30-C24	123 4 (2)	C_{21} C_{19} H_{19}	120.7
06-C30-C29	1190(2)	$C_{26} - C_{27} - C_{28}$	1190(3)
$C_{29} - C_{30} - C_{24}$	117.6 (2)	С26—С27—Н27	120.5
01-C3-C4	1235(2)	$C_{28} = C_{27} = H_{27}$	120.5
$01 - C_3 - C_2$	118.9(2)	C1 - C6 - H6	120.8
$C_2 - C_3 - C_4$	117.6(2)	C5-C6-C1	1184(2)
N4—C25—H25	117.3	C5—C6—H6	120.8
N4-C25-C24	125 4 (2)	C_{30} C_{29} H_{29}	119.3
C_{24} C_{25} H_{25}	117.3	C_{28} C_{29} C_{30}	121 4 (3)
C15 - N1 - V1	111.60 (15)	$C_{28} = C_{29} = H_{29}$	1193
C13 - N1 - V1	127.96 (17)	N4-C31-H31A	110.0
C13 - N1 - C15	1203(2)	N4-C31-H31B	110.0
C24—C26—H26	119.2	N4-C31-C32	108 60 (19)
$C_{27} - C_{26} - H_{26}$	119.2	H31A-C31-H31B	108.4
$C_{27} - C_{26} - C_{24}$	121.5 (3)	C32—C31—H31A	110.0
C_{23} N3 V2	127.69(17)	C32—C31—H31B	110.0
$C_{23} = N_3 = C_{32}$	127.05(17) 120.6(2)	N3-C32-C31	106 66 (19)
$C_{32} = N_3 = V_2$	111.60(15)	N3-C32-H32A	110.4
C_{3} C_{4} C_{13}	122 6 (2)	N3—C32—H32B	110.4
C_{5} C_{4} C_{3}	1197(2)	$C_{31} - C_{32} - H_{32A}$	110.4
$C_{5} - C_{4} - C_{13}$	117.6 (2)	C31—C32—H32R	110.4
C7-C10-H10	119.7	H32A-C32-H32B	108.6
C7-C10-C11	120 5 (3)	C34 - C8 - H8A	109.5
$C_{11} - C_{10} - H_{10}$	119.7	$C_{33} = 07 = H7A$	109.5
C9—C8—H8	119.3	07—C33—H33A	109.5
C7—C8—H8	119.3	07—C33—H33B	109.5
C7 - C8 - C9	121 4 (3)	07—C33—H33C	109.5
N1-C15-H15A	110.5	H33A—C33—H33B	109.5
N1-C15-H15B	110.5	H33A—C33—H33C	109.5
NI-CIO-HIOB	110.5	H33A-C33-H33C	109.5

N1-C15-C16	106.33 (19)	H33B—C33—H33C	109.5
H15A—C15—H15B	108.7	O8—C34—H34A	109.5
C16—C15—H15A	110.5	O8—C34—H34B	109.5
C16—C15—H15B	110.5	O8—C34—H34C	109.5
O4—C22—C17	118.7 (2)	H34A—C34—H34B	109.5
O4—C22—C20	123.8 (2)	H34A—C34—H34C	109.5
C17—C22—C20	117.5 (2)	H34B—C34—H34C	109.5
С22—С17—Н17	119.2	С33А—О7А—Н7АА	109.5
C18—C17—C22	121.5 (2)	O7A—C33A—H33D	109.5
C18—C17—H17	119.2	O7A—C33A—H33E	109.5
C30—C24—C25	121.7 (2)	O7A—C33A—H33F	109.5
C26—C24—C30	119.7 (2)	H33D—C33A—H33E	109.5
C26—C24—C25	118.6 (2)	H33D—C33A—H33F	109.5
N1—C13—C4	124.1 (2)	H33E—C33A—H33F	109.5
N1—C13—H13	117.9	H34D—C34A—H34E	109.5
C4—C13—H13	117.9	H34D—C34A—H34F	109.5
С17—С18—Н18	119.4	H34E—C34A—H34F	109.5
C17—C18—C19	121.2 (3)	O8A - C34A - H34D	109.5
C19—C18—H18	119.4	08A—C34A—H34E	109.5
C2-C1-H1	119.4	O8A - C34A - H34F	109.5
$C_2 - C_1 - C_6$	121 2 (3)	C34A = O8A = H8AA	109.5
c_ c1 cc	(0)		10,10
V2-06-C30-C24	-29.7(3)	C4—C5—C6—C1	-2.1(4)
V2—O6—C30—C29	151.31 (17)	C15—N1—C13—C4	177.3 (2)
V2—N4—C25—C24	7.9 (3)	C22—C17—C18—C19	-0.6 (4)
V2—N4—C31—C32	22.2 (2)	C22—C20—C23—N3	-7.4 (4)
V2—O4—C22—C17	-170.69 (17)	C22—C20—C21—C19	-1.0(3)
V2—O4—C22—C20	11.4 (3)	C17—C22—C20—C23	-172.0(2)
V2—N3—C23—C20	-7.0 (3)	C17—C22—C20—C21	3.7 (3)
V2—N3—C32—C31	46.0 (2)	C17—C18—C19—C21	3.4 (4)
V1—O2—C12—C9	-29.3 (3)	C24—C30—C29—C28	1.1 (3)
V1-02-C12-C11	153.17 (16)	C24—C26—C27—C28	1.1 (4)
V1—N2—C14—C9	7.7 (3)	C13—N1—C15—C16	-137.4 (2)
V1—N2—C16—C15	22.8 (2)	C13—C4—C5—C6	175.5 (2)
V1—O1—C3—C4	10.4 (3)	C9—C12—C11—C10	1.9 (3)
V1—O1—C3—C2	-170.93 (17)	C9—C8—C7—C10	1.7 (4)
V1—N1—C15—C16	46.5 (2)	C7—C10—C11—C12	-0.5 (4)
V1—N1—C13—C4	-7.2 (3)	C7—C8—C9—C12	-0.2 (4)
O6—C30—C24—C25	-1.8(3)	C7—C8—C9—C14	-176.6(2)
O6—C30—C24—C26	-179.2 (2)	C20—C22—C17—C18	-3.0 (4)
O6—C30—C29—C28	-179.9(2)	C20-C21-C19-C18	-2.6(4)
O2—C12—C9—C14	-2.8 (3)	C2—C3—C4—C13	-172.5 (2)
O2—C12—C9—C8	-179.1 (2)	C2—C3—C4—C5	3.4 (3)
O2—C12—C11—C10	179.6 (2)	C2—C1—C6—C5	1.9 (4)
N4—C25—C24—C30	12.3 (4)	C23—N3—C32—C31	-137.4 (2)
N4—C25—C24—C26	-170.2(2)	C23—C20—C21—C19	174.9 (2)
N4—C31—C32—N3	-42.8 (2)	C16—N2—C14—C9	-174.5(2)
N2-C14-C9-C12	13.4 (3)	C5-C4-C13-N1	176.9 (2)
	<u>\-</u>)		(-)

N2-C14-C9-C8	-1703(2)	C21—C20—C23—N3	176 9 (2)
01—C3—C4—C13	6.2 (3)	C11—C12—C9—C14	174.7 (2)
O1—C3—C4—C5	-177.9 (2)	C11—C12—C9—C8	-1.6 (3)
O1—C3—C2—C1	177.6 (2)	C11—C10—C7—C8	-1.3 (4)
O4—C22—C17—C18	179.0 (2)	C27—C26—C24—C30	-0.8 (4)
O4—C22—C20—C23	5.9 (3)	C27—C26—C24—C25	-178.4 (2)
O4—C22—C20—C21	-178.4 (2)	C27—C28—C29—C30	-0.8 (4)
C14—N2—C16—C15	-155.1 (2)	C6-C1-C2-C3	1.1 (4)
C3-C4-C13-N1	-7.1 (4)	C29—C30—C24—C25	177.2 (2)
C3—C4—C5—C6	-0.6 (3)	C29—C30—C24—C26	-0.3 (3)
C25—N4—C31—C32	-155.7 (2)	C29—C28—C27—C26	-0.3 (4)
N1-C15-C16-N2	-43.4 (2)	C31—N4—C25—C24	-174.5 (2)
C4—C3—C2—C1	-3.7 (4)	C32—N3—C23—C20	177.0 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C14—H14…O8 ⁱ	0.93	2.48	3.368 (4)	159
C14—H14···O8 <i>A</i> ⁱ	0.93	2.48	3.299 (7)	147
C25—H25…O7 ⁱⁱ	0.93	2.51	3.391 (4)	158
C25—H25····O7 <i>A</i> ⁱⁱ	0.93	2.66	3.457 (9)	144
C13—H13…O3 ⁱⁱⁱ	0.93	2.60	3.372 (3)	141
C23—H23····O5 ^{iv}	0.93	2.59	3.364 (3)	141
O8—H8A···O2	0.82	2.12	2.926 (4)	167
O7—H7 <i>A</i> ···O6	0.82	2.18	2.940 (3)	153
O7—H7 <i>A</i> ···O4	0.82	2.64	3.246 (4)	132
08 <i>A</i> —H8 <i>AA</i> …O1	0.82	2.18	2.984 (6)	166

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1/2, -*y*+5/2, *z*; (iv) *x*-1/2, -*y*+1/2, *z*.