Crystal structure of 1,6-dithiacyclodeca-cis-3,cis-8-diene (DTCDD)

Russell G. Baughman, ${ }^{\text {a }}$ Molly C. Delanty ${ }^{\text {a }}$ and Michael F. Ortwerth ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Chemistry, Truman State University, Kirksville, MO 63501-4221, USA, and ${ }^{\text {b }}$ Office of Special Medical Programs, Food and Drug Administration, Silver Spring, MD 20993-0002, USA. *Correspondence e-mail: baughman@truman.edu

Received 20 September 2014; accepted 22 October 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~S}_{2}$ (trivial name DTCDD), was obtained as a side product of the reaction between cis-1,4-dichlorobut-2-ene and sodium sulfide. The asymmetric unit consists of one-quarter of the molecule (S site symmetry 2) and the complete molecule has $2 / m\left(C_{2 h}\right)$ point symmetry with the $\mathrm{C}=\mathrm{C}$ bond in an E conformation. The geometry of the title compound is compared to those of a chloro derivative and a mercury complex.

Keywords: crystal structure; 1,6-dithiacyclodeca-cis-3,cis-8-diene; DTCDD.

CCDC reference: 1030564

1. Related literature

The structure of the compound having the ethylinic H atoms replaced by Cl atoms has been reported (Eaton et al., 2002) as has one where the title compound is ligated to Hg atoms (Cheung \& Sim, 1965).

2. Experimental

2.1. Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~S}_{2}$
$M_{r}=172.31$
Orthorhombic, Cmca
$a=13.5706$ (6) \AA
$b=7.5329$ (4) \AA
$c=8.4303$ (4) \AA
$V=861.80(7) \AA^{3}$
$Z=4$

Mo $K \alpha$ radiation
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.43 \times 0.40 \times 0.17 \mathrm{~mm}$

2.2. Data collection

Bruker P4 diffractometer Absorption correction: integration (XSHELL; Bruker, 1999)
$T_{\text {min }}=0.676, T_{\text {max }}=0.845$
707 measured reflections
509 independent reflections

398 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
3 standard reflections every 100 reflections intensity decay: 1.0%

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
24 parameters
$w R\left(F^{2}\right)=0.090$
H -atom parameters constrained
$S=1.07$
509 reflections
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Comparison of selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for the title and two similar compounds.

All three compounds crystallize in centrosymmetric space groups, thus there are \pm values for all torsion angles.

Atoms a	DTCDD	$\mathrm{Cl} \mathrm{derivative}^{b}$	$\mathrm{Hg}^{\text {ligated }}{ }^{c, d}$
$\mathrm{~S} 1-\mathrm{C} 1$	$1.8177(18)$	$1.809(2), 1.805(2)$	1.87
$\mathrm{C} 1-\mathrm{C} 2$	$1.484(3)$	$1.494(3)$	1.60
$\mathrm{C} 2=\mathrm{C} 2^{\mathrm{i}}$	$1.333(3)$	$1.326(3)$	1.30
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1$	$101.52(11)$	$101.63(10)$	103
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$112.93(13)$	$115.28(15), 114.69(14)$	110
$\mathrm{C} 2^{f}-\mathrm{C} 2-\mathrm{C} 1$	$127.18(9)$	$125.91(17), 125.64(19)$	128
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{C1}^{\mathrm{ii}}$	$59.88(11)$	$61.75,64.51^{d}$	
$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{C} 2=\mathrm{C}^{\mathrm{i}}$	$122.78(19)$	$119.82,123.28^{d}$	$63.17,54.95^{d}$

Notes: (a) This work's labeling; (b) Eaton et al. (2002); (c) Cheung \& Sim (1965); (d) from the CSD (Allen, 2002). Symmetry codes: (i) $1-x, y, z$; (ii) $x, 1-y, 1-z$.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC and SHELXL97.

Acknowledgements

We thank Truman State University for a summer research grant for MCD.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7285).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA. Cheung, K. K. \& Sim, G. A. (1965). J. Chem. Soc. pp. 5988-6004.
Eaton, D. L., Selegue, J. P., Anthony, J. \& Patrick, B. O. (2002). Heterocycles, 57, 2373-2381.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o1218 [doi:10.1107/S1600536814023319]

Crystal structure of 1,6-dithiacyclodeca-cis-3,cis-8-diene (DTCDD)

Russell G. Baughman, Molly C. Delanty and Michael F. Ortwerth

S1. Structural commentary

During a study of hydrodesulfurization, the reaction of cis-1,4-dichloro-2-butene and sodium sulfide yielded 1,6-dithia-cyclodeca-cis-3,cis-8-diene ("DTCDD)") as a side product. Since its structure is not listed in the Cambridge Structural Database (Allen, 2002), although the Cl derivative (Eaton et al., 2002) and Hg -ligated form (Cheung and Sim, 1965) are, it was decided to perform the single-crystal structural analysis of DTCDD. The asymmetric unit of DTCDD is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~S}_{0.5}$, which then generates three more symmetry elements within the 22-atom molecule $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~S}_{2}\right)$ (Fig. 1) in the Cmca unit cell which contains four molecules (Fig. 2).
Comparisons of DTCDD with the Cl and Hg derivatives give some insight into the nature of the systems. $\mathrm{The} \mathrm{C}=\mathrm{C}$ bonds for all three compounds exhibit the E isomer (cf. Fig. 1). The Hg data were derived from film data, so precise comparisons of distances and angles is somewhat limited, although some conclusions may still be drawn. If the s.u.'s in Hg distances and angles are assumed to be $\sim 0.02 \AA$ and 1°, respectively, the three compounds have many similar distances and angles $\leq 3 \sigma$ (Table 1). There are, however, a few noteworthy exceptions.
The $\mathrm{S} 1-\mathrm{C} 1$ bond lengths in DTCDD and the C 1 derivative are within 3σ of each other while the $\mathrm{C} 1-\mathrm{C} 2$ distance in the Hg complex is $\sim 6 \sigma$ greater than the other two. The two $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$ angles in DTCDD and the Cl derivative differ by as much as 16σ; the same angle in the Cl derivative may differ by as much as $5 \sigma\left(5^{\circ}\right)$ from the Hg derivative, while the DTCDD and Hg derivative angles are essentially the same $(\leq 3 \sigma)$. A difference of as much as 8σ is noted between the $\mathrm{C} 2=\mathrm{C} 2-\mathrm{C} 1$ angles in DTCDD and the Cl derivative, while the Hg analog angle is within 3σ of both of the other compounds. Many of these differences may likely be attributed to the presence of the Cl 's on all four C 2 's only in the Cl derivative.

S2. Synthesis and crystallization

DTCDD is a side product of the reaction of cis-1,4-dichloro-2-butene and sodium sulfide in $\mathrm{MeOH} / \mathrm{DMSO}$. DTCDD was slowly recrystallized from a solution in pentane to yield colourless parallelepipeds.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Approximate positions of the H atoms were first obtained from a difference map, then placed into "ideal" positions. Bond lengths were constrained at $0.93 \AA$ (AFIX 43) for the ethylenic H and at $0.97 \AA$ (AFIX 23) for the methylenic H's. $U_{\mathrm{iso}}(\mathrm{H})$ were fixed at 1.2 $U_{\text {eq }}$ (parent).
In the final stages of refinement, 4 reflections with very small or negative F_{o} 's were deemed to be in high disagreement with their F_{c} 's and were eliminated from final refinement.

Figure 1
The molecular structure of DTCDD with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) $1-x, y, z ;$ (ii) x, 1-y, 1-z; (iii) 1-x, 1-y, 1-z.

Figure 2
The unit-cell packing in DTCDD viewed down the b-axis.

1,6-Dithiacyclodeca-cis-3,cis-8-diene

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~S}_{2}$

$$
\begin{aligned}
& a=13.5706(6) \AA \\
& b=7.5329(4) \AA \\
& c=8.4303(4) \AA \\
& V=861.80(7) \AA^{3}
\end{aligned}
$$

$Z=4$
$F(000)=368$
$D_{\mathrm{x}}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 100 reflections

Data collection

Bruker P4

diffractometer
Radiation source: normal-focus sealed tube
Graphite monochromator
$\theta / 2 \theta$ scans
Absorption correction: integration
(XSHELL; Bruker, 1999)
$T_{\min }=0.676, T_{\text {max }}=0.845$
707 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
509 reflections
24 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$\theta=10.8-22.2^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Parallelepiped, colorless
$0.43 \times 0.40 \times 0.17 \mathrm{~mm}$

509 independent reflections
398 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-1 \rightarrow 17$
$k=-1 \rightarrow 9$
$l=-10 \rightarrow 1$
3 standard reflections every 100 reflections intensity decay: 1.0%

Secondary atom site location: difference Fourier

map
Hydrogen site location: difference Fourier map
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0314 P)^{2}+0.6276 P\right]
$$

$$
\text { where } P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor, $w R$, and goodness of fit, S, are based on F^{2}, conventional R-factors, R, are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.30007(4)$	0.5000	0.5000	$0.0595(3)$
C1	$0.38479(12)$	$0.6100(3)$	$0.3650(2)$	$0.0431(5)$
H1A	0.4246	0.5210	0.3119	0.052^{*}
H1B	0.3472	0.6724	0.2846	0.052^{*}
C2	$0.45087(12)$	$0.7380(2)$	$0.4462(2)$	$0.0400(4)$
H2	0.4204	0.8281	0.5034	0.048^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0253(3)$	$0.0766(6)$	$0.0767(6)$	0.000	0.000	$0.0329(5)$
C1	$0.0316(8)$	$0.0521(11)$	$0.0455(9)$	$0.0009(8)$	$-0.0024(7)$	$0.0113(8)$
C2	$0.0460(10)$	$0.0333(8)$	$0.0406(8)$	$0.0076(8)$	$0.0049(8)$	$0.0055(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1-C1	1.8177 (18)	C1-H1B	0.9700
$\mathrm{S} 1-\mathrm{Cl}{ }^{\text {i }}$	1.8177 (18)	$\mathrm{C} 2-\mathrm{C} 2{ }^{\text {ii }}$	1.333 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.484 (3)	C2-H2	0.9300
C1-H1A	0.9700		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	101.52 (11)	S1-C1-H1B	109.0
C2-C1-S1	112.93 (13)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.0	$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{C} 1$	127.18 (9)
S1-C1-H1A	109.0	$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{H} 2$	116.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.0	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	116.4
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-59.88 (11)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {ii }}$	122.76 (9)

Symmetry codes: (i) $x,-y+1,-z+1$; (ii) $-x+1, y, z$.

