STRUCTURE REPORTS

ISSN 1600-5368

Crystal structure of 6-chloro-5-iso-propylpyrimidine-2,4(1H,3H)-dione

Nadia G. Haress, ${ }^{\text {a }}$ Hazem A. Ghabbour, ${ }^{\text {a }}$ Ali A. El-Emam, ${ }^{\mathrm{a}, \mathrm{b}} \neq$ C. S. Chidan Kumar ${ }^{\mathrm{c}} \S$ and Hoong-Kun Fun ${ }^{\text {a, }, ~} * \mathbb{q}$
${ }^{\text {a }}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, ${ }^{\mathbf{b}}$ King Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: hfun.c@ksu.edu.sa

Received 23 September 2014; accepted 26 September 2014

Edited by J. Simpson, University of Otago, New Zealand

In the molecule of the title compound, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$, the conformation is determined by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which generate $S(6)$ and $S(5)$ ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of -70.8 (3) and 56.0 (3) ${ }^{\circ}$. In the crystal, two inversion-related molecules are linked via a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into $R_{2}^{2}(8)$ dimers; these dimers are connected into chains extending along the $b c$ plane via an additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and weaker $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure is further stabilized by a weak $\pi-\pi$ interaction [3.6465 (10) \AA] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network.

Keywords: crystal structure; pyrimidine-2,4-dione; hydrogen bonds; $\pi-\pi$ interaction.

CCDC reference: 1026350

1. Related literature

For the biological activity of pyrimidine-2,4(1H,3H)-diones, see: Miyasaka et al. (1989); Tanaka et al. (1995); Hopkins et al. (1996); El-Brollosy et al. (2009); Klein et al. (2001); Nencka et al. (2006); El-Emam et al. (2004). For the use of 5-alkyl-6-chloropyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-diones in synthesis, see: ElEmam et al. (2004). For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2011); Al-Omary et al. (2014); Haress et al. (2014). For the synthesis of the title compound,
see: Al-Turkistani et al. (2011); Koroniak et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995).

2. Experimental

2.1. Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$	$V=865.26(6) \AA^{3}$
$M_{r}=188.61$	$Z=4$
Monoclinic, $P 2_{2} / c$	$\mathrm{Cu} K \alpha$ radiation
$a=11.2244(4) \AA$	$\mu=3.62 \mathrm{~mm}^{-1}$
$b=6.8288(3) \AA$	$T=296 \mathrm{~K}$
$c=11.6641(5) \AA$	$0.45 \times 0.28 \times 0.26 \mathrm{~mm}$

$\beta=104.577$ (2) ${ }^{\circ}$

5647 measured reflections
1553 independent reflections
1444 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$
(SADABS; Bruker, 2009)

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad \mathrm{H}$ atoms treated by a mixture of $w R\left(F^{2}\right)=0.114 \quad$ independent and constrained
$S=1.06$ refinement
1553 reflections
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
122 parameters
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(3)$	$2.01(3)$	$2.833(2)$	$169(2)$
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(3)$	$2.03(3)$	$2.854(2)$	$171(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 1$	$0.94(3)$	$2.57(2)$	$3.132(2)$	$118.7(17)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots 1^{\mathrm{iii}}$	0.96	2.56	$3.455(3)$	156
C6-H6B \cdots O2	0.96	2.45	$3.034(3)$	119
Symmetry codes: (i)	$-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$	(ii)	$-x+1,-y,-z+1 ;$	(iii)
$-x+1,-y+1,-z+1$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

[^0]
Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5429).

References

Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. \& Fun, H.-K. (2014). Acta Cryst. E70, o179-o180.
Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. \& El-Emam, A. A. (2011). Molecules, 16, 4764-4774.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. \& Loddo, R. (2009). Arch. Pharm. 342, 663-670.

El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. \& Ng, S. W. (2011). Acta Cryst. E67, o2839.
El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. \& El-Sayed, M. A. (2004). Bull. Korean Chem. Soc., 25, 991-996.
Haress, N. G., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. \& Fun, H.-K. (2014). Acta Cryst. E70, o768-o769.

Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. \& Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.

Klein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. \& Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257-1263.

Koroniak, H., Jankowski, A. \& Krasnowski, M. (1993). Org. Prep. Proced. Int. 25, 563-568.
Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. \& De Clercq, E. (1989). J. Med. Chem. 32, 2507-2509.
Nencka, R., Votruba, I., Hrebabecký, H., Tloust’ová, E., Horská, K., Masojídková, M. \& Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, $1335-$ 1337.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. \& Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.

supporting information

Acta Cryst. (2014). E70, o1144-o1145 [doi:10.1107/S1600536814021382]

Crystal structure of 6-chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione

Nadia G. Haress, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and Hoong-Kun Fun

S1. Comment

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Omary et al., 2014; Haress et al., 2014, El-Brollosy et al., 2009), we have synthesized the title compound (I) as a precursor to the synthesis of a potential chemotherapeutic agent (Al-Turkistani et al., 2011).

In the title compound (Fig. 1), the molecular conformation is stabilized by intramolecular C6-H6B…O2 and C5$\mathrm{H} 5 \cdots \mathrm{Cl1}$ hydrogen bonds incorporating $S(6)$ and $S(5)$ ring motifs respectively (Bernstein et al., 1995). The isopropyl group is almost perpendicular to the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 4$ ring with the $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ torsion angles of $-70.8(3)^{\circ}$ and $56.0(3)^{\circ}$ respectively. In the crystal structure, two adjacent molecules are linked via a pair of N2$\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 2$ intermolecular hydrogen bonds forming inversion related $R_{2}{ }^{2}(8)$ dimers (Fig. 2).; these dimers are connected into chains via $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 1$ and weak $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bonds extending along the $b c$ plane. The crystal structure is further stabilized by a weak $\pi \cdots \pi$ interaction [3.6465 (10) \AA] producing a three-dimensional network.

S2. Experimental

5-Isopropylbarbituric acid ($8.51 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added portionwise with stirring to a mixture of phosphorus oxychloride $(19.2 \mathrm{ml})$ and N, N-dimethyl aniline $(10.3 \mathrm{ml})$ over a period of 10 minutes. The mixture was then heated under reflux for one hour. On cooling, the mixture was poured onto crushed ice (200 g m), stirred for 30 minutes and extracted with diethyl ether $(400 \mathrm{ml})$. The ethereal extract was dried over anhydrous sodium sulfate and evaporated under vacuum at room temperature to yield the intermediate 5 -isopropyl-2,4,6-trichloropyrimidine as a white waxy solid. 10% Sodium hydroxide (20 ml) was then added to the intermediate and the mixture was heated under reflux for 30 minutes. On cooling, the mixture was acidified with hydrochloric acid to $\mathrm{pH} 1-2$ and the separated precipitate was filtered, washed with cold water and crystallized from ethanol to yield $6.98 \mathrm{~g}(74 \%)$ of the title compound $\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}\right)$ as colourless crystals. M.P.: $257-259{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500.13 \mathrm{MHz}\right): \delta 1.14\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.51-2.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 11.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.79$
($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$, 125.76 MHz): $\delta 20.02\left(\mathrm{CH}_{3}\right), 26.52(\mathrm{CH}), 113.95(\mathrm{C}-5), 140.95(\mathrm{C}-6), 149.75(\mathrm{C}=\mathrm{O})$, $162.75(\mathrm{C}=\mathrm{O})$.

S3. Refinement

The nitrogen-bound H -atoms were located in a difference Fourier map and were refined freely [$\mathrm{N}-\mathrm{H} 0.83$ (2) and 0.84 (3) $\AA]$. Other H atoms were positioned geometrically $(\mathrm{C}=\mathrm{H} 0.95-0.96 \AA)$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2$
$U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

Figure 2

Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H -atoms not involved in the hydrogen bonding are omited for clarity.

6-Chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$
$M_{r}=188.61$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.2244$ (4) \AA
$b=6.8288$ (3) \AA
$c=11.6641$ (5) \AA
$\beta=104.577(2)^{\circ}$
$V=865.26(6) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.292, T_{\text {max }}=0.458$
$F(000)=392$
$D_{\mathrm{x}}=1.448 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 3341 reflections
$\theta=3.9-69.4^{\circ}$
$\mu=3.62 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.45 \times 0.28 \times 0.26 \mathrm{~mm}$

5647 measured reflections
1553 independent reflections
1444 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=69.7^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-12 \rightarrow 13$
$k=-8 \rightarrow 7$
$l=-13 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.114$
$S=1.06$
1553 reflections
122 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from
    neighbouring sites
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0664 P)^{2}+0.3263 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.27\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.32\) e \(\AA^{-3}\)
Extinction correction: SHELXL, \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0181 (15)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C11	$0.20279(5)$	$0.71985(9)$	$0.34179(6)$	$0.0644(3)$
O1	$0.55744(12)$	$0.3674(2)$	$0.28760(12)$	$0.0465(4)$
O2	$0.35879(13)$	$0.0719(2)$	$0.53323(13)$	$0.0522(4)$
N1	$0.39383(14)$	$0.5227(2)$	$0.32786(14)$	$0.0386(4)$
N2	$0.45727(14)$	$0.2261(2)$	$0.41291(14)$	$0.0394(4)$
C1	$0.29636(16)$	$0.5181(3)$	$0.37878(16)$	$0.0371(4)$
C2	$0.47498(15)$	$0.3710(3)$	$0.33892(15)$	$0.0354(4)$
C3	$0.36295(16)$	$0.2134(3)$	$0.46972(15)$	$0.0371(4)$
C4	$0.27390(15)$	$0.3729(3)$	$0.44806(15)$	$0.0368(4)$
C5	$0.16037(17)$	$0.3635(3)$	$0.49593(17)$	$0.0437(5)$
C6	$0.1871(2)$	$0.3338(5)$	$0.6280(2)$	$0.0697(7)$
H6A	0.2438	0.4322	0.6675	0.105^{*}
H6B	0.2226	0.2065	0.6480	0.105^{*}
H6C	0.1119	0.3437	0.6527	0.105^{*}
C7	$0.0719(2)$	$0.2127(5)$	$0.4302(3)$	$0.0815(9)$
H7A	0.0568	0.2355	0.3465	0.122^{*}
H7B	-0.0041	0.2217	0.4533	0.122^{*}
H7C	0.1065	0.0845	0.4486	0.122^{*}
H1N1	$0.403(2)$	$0.617(4)$	$0.2856(19)$	$0.043(6)^{*}$
H1N2	$0.506(2)$	$0.132(4)$	$0.422(2)$	$0.059(7)^{*}$
H5	$0.125(2)$	$0.489(4)$	$0.481(2)$	$0.058(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0662(4)$	$0.0486(4)$	$0.0892(5)$	$0.0249(2)$	$0.0395(3)$	$0.0243(3)$
O1	$0.0481(7)$	$0.0421(8)$	$0.0587(9)$	$0.0001(6)$	$0.0307(6)$	$-0.0012(6)$
O2	$0.0522(8)$	$0.0506(9)$	$0.0614(9)$	$0.0157(6)$	$0.0286(6)$	$0.0227(7)$
N1	$0.0458(8)$	$0.0321(8)$	$0.0424(9)$	$0.0018(6)$	$0.0197(7)$	$0.0042(6)$
N2	$0.0394(8)$	$0.0381(8)$	$0.0451(9)$	$0.0095(7)$	$0.0187(7)$	$0.0061(6)$
C1	$0.0392(9)$	$0.0358(9)$	$0.0379(10)$	$0.0053(7)$	$0.0124(7)$	$-0.0011(7)$
C2	$0.0373(8)$	$0.0343(9)$	$0.0365(9)$	$-0.0012(7)$	$0.0129(7)$	$-0.0044(7)$
C3	$0.0376(9)$	$0.0394(10)$	$0.0361(10)$	$0.0033(7)$	$0.0125(7)$	$0.0025(7)$
C4	$0.0380(9)$	$0.0393(10)$	$0.0346(9)$	$0.0044(7)$	$0.0120(7)$	$0.0005(7)$
C5	$0.0420(9)$	$0.0460(11)$	$0.0485(11)$	$0.0095(8)$	$0.0215(8)$	$0.0060(8)$
C6	$0.0585(13)$	$0.108(2)$	$0.0512(14)$	$0.0016(14)$	$0.0296(11)$	$-0.0019(13)$
C7	$0.0472(13)$	$0.120(3)$	$0.0849(19)$	$-0.0208(14)$	$0.0314(13)$	$-0.0335(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

C11-C1	1.7200 (18)	C4-C5	1.516 (2)
$\mathrm{O} 1-\mathrm{C} 2$	1.222 (2)	C5-C7	1.500 (3)
O2-C3	1.226 (2)	C5-C6	1.507 (3)
N1-C2	1.364 (2)	C5-H5	0.95 (3)
N1-C1	1.370 (2)	C6-H6A	0.9600
N1-H1N1	0.83 (2)	C6-H6B	0.9600
N2-C2	1.360 (2)	C6-H6C	0.9600
N2-C3	1.386 (2)	C7-H7A	0.9600
N2-H1N2	0.84 (3)	C7-H7B	0.9600
C1-C4	1.342 (3)	C7-H7C	0.9600
C3-C4	1.457 (2)		
C2-N1-C1	121.92 (16)	C7-C5-C6	111.5 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	117.6 (15)	C7-C5-C4	110.49 (17)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	120.4 (15)	C6-C5-C4	114.38 (17)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	126.87 (16)	C7-C5-H5	109.6 (16)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	116.1 (17)	C6-C5-H5	106.3 (15)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	116.9 (17)	C4-C5-H5	104.3 (15)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 1$	124.69 (16)	C5-C6-H6A	109.5
C4-C1-Cl1	123.17 (14)	C5-C6-H6B	109.5
N1-C1-Cl1	112.13 (13)	H6A-C6-H6B	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$	123.07 (17)	C5-C6- H 6 C	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	122.60 (17)	H6A-C6-H6C	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	114.32 (15)	H6B-C6-H6C	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 2$	119.22 (16)	C5-C7- H 7 A	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	124.43 (16)	C5-C7-H7B	109.5
N2-C3-C4	116.35 (16)	H7A-C7-H7B	109.5
C1-C4-C3	115.60 (16)	C5-C7- 77 C	109.5
C1-C4-C5	123.76 (16)	H7A-C7- 77 C	109.5
C3-C4-C5	120.54 (16)	H7B-C7-H7C	109.5

$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	$3.4(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$-175.22(17)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 1$	$-175.53(14)$	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$3.6(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 1$	$-176.48(18)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1$	$177.94(19)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$4.4(3)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1$	$-2.5(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$175.02(17)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-5.7(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$-5.8(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$173.89(16)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{O} 2$	$179.34(18)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$105.3(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.3(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$-70.8(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$1.0(3)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-128.0(2)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$179.85(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$56.0(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(3)$	$2.01(3)$	$2.833(2)$	$169(2)$
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.83(3)$	$2.03(3)$	$2.854(2)$	$171(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl1}$	$0.94(3)$	$2.57(2)$	$3.132(2)$	$118.7(17)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.96	2.56	$3.455(3)$	156
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2$	0.96	2.45	$3.034(3)$	119

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1,-y+1,-z+1$.

[^0]: \ddagger Additonal correspondence author, e-mail: elemam5@hotmail.com.
 § Thomson Reuters ResearcherID: C-3194-2011.

 - Thomson Reuters ResearcherID: A-3561-2009.

