STRUCTURE REPORTS

ISSN 1600-5368

Crystal structure of (5-methylimidazo-[1,2-a]pyridin-2-yl)methanol

Abdelmalik Elaatiaoui, ${ }^{\text {a }}$. Mohammed Koudad, ${ }^{\text {a }}$ Rafik Saddik, ${ }^{\text {a }}$ Noureddine Benchat ${ }^{\text {a }}$ and Lahcen El Ammari ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratory of Applied Chemistry and Environments (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco, and ${ }^{\mathbf{b}}$ Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail:
abdelmalik_elaatiaoui@yahoo.fr

Received 18 October 2014; accepted 20 October 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, the imidazo[1,2-a]pyridine moiety is approximately planar (r.m.s. deviation $=0.024 \AA$). The methanol group is nearly perpendicular to its mean plane as indicated by the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angles of $80.04(16)$ and $-96.30(17)^{\circ}$, respectively. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming inversion dimers with an $R_{2}^{2}(10)$ ring motif. The dimers are liked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, enclosing $R_{2}^{2}(10)$ ring motifs and forming ribbons along [201]. The ribbons are linked via a number of $\pi-\pi$ interactions [centroidcentroid distances vary from 3.4819 (8) to 3.7212 (8) \AA], forming a three-dimensional structure.

Keywords: crystal structure; imidazo[1,2-a]pyridine; hydrogen bonding; $\pi-\pi$ interactions.

CCDC reference: 1029873

1. Related literature

For the biological activities of derivatives of the title compound, see: Silvestre et al. (1998); Hamdouchi et al. (1999); Lhassani et al. (1999); Ertl et al. (2000). For the synthesis, see: Öhler et al. (1983); Chavignon et al. (1992).

2. Experimental

2.1. Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
$\gamma=88.386(2)^{\circ}$
$M_{r}=162.19$
$V=405.14$ (2) \AA^{3}
Triclinic, $P \overline{1}$
$a=7.3637$ (2) A
$Z=2$
$b=8.1589$ (2) \AA
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$c=8.3966$ (2) \AA
$T=296 \mathrm{~K}$
$\alpha=62.355(1)^{\circ}$
$0.38 \times 0.32 \times 0.27 \mathrm{~mm}$
$\beta=67.291(2)^{\circ}$

1865 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

2.2. Data collection

Bruker X8 APEX diffractometer 10226 measured reflections 2089 independent reflections

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.123$
110 parameters
H -atom parameters constrained
$S=1.04$
2089 reflections
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	0.82	1.98	$2.7734(17)$	163
C6-H6 O^{ii}	0.93	2.55	$3.4395(18)$	160

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y+2,-z+1$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5007).

References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chavignon, O., Teulade, J. C., Madesclaire, M., Gueiffier, A., Blache, T., Viols, H. \& Chapat, J. P. (1992). J. Heterocycl. Chem. 26, 691-697.

Ertl, P., Rohde, B. \& Selzer, P. (2000). J. Med. Chem. 43, 3714-3717.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. \& Vance, L. (1999). J. Med. Chem. 42, 50-59.

data reports

Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. \& Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271-274.
Öhler, E., Zbiral, E. \& El-Badawi, M. (1983). Tetrahedron Lett. 24, 5599-5602.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silvestre, J., Leeson, P. A. \& Castañer, J. (1998). Drugs Fut. 23, 598-601.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o1189-o1190 [doi:10.1107/S1600536814023022]

Crystal structure of (5-methylimidazo[1,2-a]pyridin-2-yl)methanol

Abdelmalik Elaatiaoui, Mohammed Koudad, Rafik Saddik, Noureddine Benchat and Lahcen El Ammari

S1. Comment

Imidazo[1,2-a]pyridine moieties represent important building blocks in both natural and synthetic bioactive compounds, which have been shown to possess diverse therapeutic activities (Silvestre et al., 1998; Hamdouchi et al., 1999; Lhassani et al., 1999; Ertl et al., 2000). The synthesis of the title compound is based on the methods described in the literature (Ohler et al., 1983; Chavignon et al., 1992).
The title compound is formed by a fused five- and six-membered rings almost coplanar, with a maximum deviation of 0.029 (1) \AA for C 7 atom (Fig. 1). The mean plane through the fused ring system ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 7$) is nearly perpendicular to the hydroxide group as indicated by the torsion angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$ of -96.30 (17) ${ }^{\circ}$.
The cohesion of the crystal structure is ensured by $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$ and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bonds, forming ribbons lying nearly perpendicular to the a axis, as shown in Fig. 2 and Table 1. There are a number of $\pi-\pi$ interactions present linking the ribbons and forming a three-dimensional structure $\left[\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{\mathrm{i}}=3.6025\right.$ (7) $\AA, \mathrm{Cg} 1 \cdots \mathrm{Cg} 2^{\mathrm{i}}=3.6610$ (8) \AA, $\mathrm{Cg} 1 \cdots \mathrm{Cg} 2^{\mathrm{ii}}=3.7212$ (8) \AA, and $\mathrm{Cg} 2 \cdots \mathrm{Cg} 2^{\mathrm{ii}}=3.4819$ (8) \AA; where Cg 1 and Cg 2 are the centroids of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7$ and $\mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 5$ rings, respectively; symmetry codes: (i) $-\mathrm{x},-\mathrm{y}+2,-\mathrm{z}$; (ii) $-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}]$.

S2. Experimental

The process for the synthesis of (5-methyl-imidazo[1,2-a]pyridine-2-yl) methanol described here occurs in two distinct stages: 1) Condensation of the 6-methylpyridin-2-amine with the ethyl bromopyruvate in boiling methanol. The mixture was then heated at 343 K for 4 h and neutralized at 273 K with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The product was extracted with dichloromethane. The organic layer was dried over sodium sulfate and the dichloromethane removed under reduced pressure. The crude product was purified on a silica gel column and identified as ethyl-5-methylimidazo [1,2-a]pyridine -2-carboxylate with 60% yield; 2) The reduction of the ester prepared above with lithium hydride and aluminium at room temperature in methanol for 2 h leads to a solid phase which was recrystallized from ethanol. Colourless crystals of the title compound were obtained with a yield of 67% (m.p. 413 K).

S3. Refinement

H atoms were located in a difference Fourier map and treated as riding atoms with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for methyl and OH H atoms and $=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Figure 1

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A partial view perpendicular to a axis of the crystal packing of the title compound, showing a layer of molecules linked by hydrogen bonds (dashed lines; see Table 1 for details).

(5-Methylimidazo[1,2-a]pyridin-2-yl)methanol

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=162.19$
Triclinic, $P \overline{1}$
Hall symbol: -p 1
$a=7.3637$ (2) \AA
$b=8.1589$ (2) \AA
$c=8.3966(2) \AA$
$\alpha=62.355(1)^{\circ}$
$\beta=67.291(2)^{\circ}$
$\gamma=88.386(2)^{\circ}$
$V=405.14(2) \AA^{3}$

Data collection

Bruker X8 APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
10226 measured reflections
2089 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.123$
$S=1.04$
2089 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$Z=2$
$F(000)=172$
$D_{\mathrm{x}}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 413 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2089 reflections
$\theta=2.9-28.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.38 \times 0.32 \times 0.27 \mathrm{~mm}$

1865 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.7^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 10$
$l=-11 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0645 P)^{2}+0.0845 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Extinction correction: $S H E L X L$, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.061 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.23574(17)$	$0.88694(15)$	$0.02939(17)$	$0.0374(3)$
C2	$0.3772(2)$	$0.8861(2)$	$-0.1413(2)$	$0.0487(3)$

H2	0.3890	0.7743	-0.1456	0.058^{*}
C3	$0.49565(19)$	$1.0507(2)$	$-0.29887(19)$	$0.0502(3)$
H3	0.5907	1.0510	-0.4110	0.060^{*}
C4	$0.47630(19)$	$1.22086(19)$	$-0.29465(18)$	$0.0466(3)$
H4	0.5601	1.3318	-0.4038	0.056^{*}
C5	$0.33794(18)$	$1.22657(16)$	$-0.13469(16)$	$0.0399(3)$
C9	$0.3049(2)$	$1.39916(18)$	$-0.1173(2)$	$0.0565(4)$
H9B	0.3236	1.3850	-0.0049	0.085^{*}
H9A	0.1709	1.4183	-0.1004	0.085^{*}
H9C	0.3987	1.5057	-0.2355	0.085^{*}
C6	$0.07560(16)$	$1.02021(15)$	$0.21002(15)$	$0.0363(3)$
H6	0.0311	1.1066	0.2529	0.044^{*}
C7	$0.01244(16)$	$0.82991(15)$	$0.31517(16)$	$0.0383(3)$
C8	$-0.1332(2)$	$0.71513(18)$	$0.52658(18)$	$0.0496(3)$
H8A	-0.2211	0.7936	0.5652	0.060^{*}
H8B	-0.2151	0.6140	0.5406	0.060^{*}
N1	$0.10972(15)$	$0.74701(14)$	$0.20387(15)$	$0.0420(3)$
N2	$0.21944(13)$	$1.05816(12)$	$0.02646(13)$	$0.0339(2)$
O1	$-0.03554(17)$	$0.63769(13)$	$0.65406(14)$	$0.0566(3)$
H1	-0.0705	0.5229	0.7180	0.085^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0427(6)$	$0.0355(5)$	$0.0412(6)$	$0.0108(4)$	$-0.0231(5)$	$-0.0201(4)$
C2	$0.0558(7)$	$0.0532(7)$	$0.0519(7)$	$0.0214(6)$	$-0.0269(6)$	$-0.0342(6)$
C3	$0.0463(6)$	$0.0690(9)$	$0.0402(6)$	$0.0161(6)$	$-0.0178(5)$	$-0.0310(6)$
C4	$0.0450(6)$	$0.0538(7)$	$0.0341(5)$	$0.0009(5)$	$-0.0155(5)$	$-0.0170(5)$
C5	$0.0445(6)$	$0.0379(6)$	$0.0335(5)$	$0.0009(4)$	$-0.0176(5)$	$-0.0134(4)$
C9	$0.0760(9)$	$0.0358(6)$	$0.0433(6)$	$-0.0035(6)$	$-0.0164(6)$	$-0.0147(5)$
C6	$0.0392(5)$	$0.0342(5)$	$0.0336(5)$	$0.0073(4)$	$-0.0146(4)$	$-0.0158(4)$
C7	$0.0388(5)$	$0.0343(5)$	$0.0381(5)$	$0.0057(4)$	$-0.0178(4)$	$-0.0139(4)$
C8	$0.0488(7)$	$0.0407(6)$	$0.0411(6)$	$0.0028(5)$	$-0.0115(5)$	$-0.0119(5)$
N1	$0.0494(6)$	$0.0332(5)$	$0.0445(5)$	$0.0086(4)$	$-0.0222(4)$	$-0.0179(4)$
N2	$0.0376(5)$	$0.0325(4)$	$0.0329(4)$	$0.0063(3)$	$-0.0171(4)$	$-0.0151(4)$
O1	$0.0880(7)$	$0.0361(5)$	$0.0419(5)$	$0.0043(4)$	$-0.0303(5)$	$-0.0136(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.3299(15)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{N} 2$	$1.3884(14)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.4126(17)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.3631(15)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.356(2)$	$\mathrm{C} 6-\mathrm{N} 2$	$1.3815(13)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.407(2)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.3735(15)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 7-\mathrm{C} 8$	$1.4907(16)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.3576(17)$	$\mathrm{C} 8-\mathrm{O} 1$	$1.4154(16)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700

C5—N2
C5-C9
C9——H9B
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$
C3-C2-C1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$
C2-C3-C4
C2-C3-H3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$
C5-C4-C3
C5-C4-H4
C3-C4-H4
C4-C5-N2
C4-C5-C9
N2-C5-C9
C5-C9—H9B
C5-C9——H9A
H9B-C9—H9A
C5-C9—H9C
1.3823 (14)
1.4857 (18)
0.9600
110.57 (10)
131.10 (11)
118.32 (11)
119.09 (12)
120.5
120.5
120.76 (12)
119.6
119.6
121.41 (12)
119.3
119.3
117.59 (11)
125.31 (11)
117.10 (10)
109.5
109.5
109.5
109.5

C8-H8B

0.9700

O1—H1 0.8200

H9B-C9- H 9 C
H9A-C9—H9C
C7-C6-N2
C7-C6- H 6
N2-C6-H6
C6-C7-N1
C6-C7-C8
N1-C7-C8
O1-C8-C7
O1-C8-H8A
C7-C8-H8A
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$
C7-C8—H8B
H8A-C8-H8B
C1-N1-C7
C6-N2-C5
C6-N2-C1
C5-N2- C 1
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{H} 1$
109.5
109.5
105.70 (10)
127.1
127.1
111.22 (10)
127.34 (11)
121.36 (11)
111.84 (10)
109.2
109.2
109.2
109.2
107.9
105.62 (9)
130.27 (10)
106.89 (9)
122.79 (10)
109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1—H1 $\cdots \mathrm{N} 1^{\mathrm{i}}$	0.82	1.98	$2.7734(17)$	163
C6—H6 $\cdots 1^{\mathrm{ii}}$	0.93	2.55	$3.4395(18)$	160

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y+2,-z+1$.

